Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
Sci Total Environ ; 912: 168790, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38000735

ABSTRACT

Biological communities are currently facing multi-stressor scenarios whose ecological impacts are challenging to estimate. In that respect, considering the complex nature of ecosystems and types and interaction among stressors is mandatory. Microcosm approaches using free-living nematode assemblages can effectively be used to assess complexity since they preserve the interactions inherent to complex systems when testing for multiple stress effects. In this study, we investigated the interaction effects of three stress factors, namely i-metallic mixture of Cu, Pb, Zn, and Hg (control [L0], low, [L1] and high [L2]), ii- CO2-driven acidification (pH 7.6 and 8.0), and iii- temperature rise (26 and 28 °C), on estuarine free-living nematode assemblages. Metal contamination had the greatest influence on free-living nematode assemblages, irrespective of pH and temperature scenarios. Interestingly, whilst the most abundant free-living nematode genera showed significant decreases in their densities when exposed to contamination, other, less abundant, genera were apparently favored and showed significantly higher densities in contaminated treatments. The augmented densities of tolerant genera may be attributed to indirect effects resulting from the impacts of toxicity on other components of the system, indicating the potential for emergent effects in response to stress. Temperature and pH interacted significantly with contamination. Whilst temperature rise had potentialized contamination effects, acidification showed the opposite trend, acting as a buffer to the effects of contamination. Such results show that temperature rise and CO2-driven acidification interact with contamination on coastal waters, highlighting the importance of considering the intricate interplay of these co-occurring stressors when assessing the ecological impacts on coastal ecosystems.


Subject(s)
Mercury , Nematoda , Animals , Ecosystem , Carbon Dioxide/toxicity , Mercury/pharmacology , Biota
2.
J Trace Elem Med Biol ; 80: 127318, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37864919

ABSTRACT

BACKGROUND: Aluminum and nickel are potent neurotoxicants to which humans are constantly exposed. Previous studies have demonstrated that these two metals can affect the motor system, but their effects on the cerebellum, a central nervous system region with the highest number of neurons, have remained largely unexplored. Therefore, we conducted a study to investigate the adverse effects of Al, Ni, and Al+Ni in vivo. METHODS: In our study, seven male Sprague Dawley rats per group were orally exposed to deionized water, 0.2 mg/kg of Ni, 1 mg/kg of Al, and 0.2 mg/kg of Ni + 1 mg/kg of Al (as a binary heavy metals mixture; HMM), respectively. RESULTS: Ni, Al, and HMM exposed rats accumulated higher levels of Al and Ni compared to controls, and HMM treated animals had higher levels of Ca and Fe in the cerebellum (p < 0.05). Malondialdehyde (MDA) levels were significantly (p < 0.05) higher in the HMM, Ni, and Al treated groups compared to the control group that received deionized water. Superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GPx) activities were significantly (p < 0.05) reduced in the HMM, Ni, and Al treated groups compared to the control group that received deionized water. Ni, Al, and HMM significantly (p < 0.05) shortened the length of time of the grip in comparison to the control. Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) levels were significantly decreased in the nickel, Al, and heavy metal mixture groups compared with the control group. Moreover, there was a significant decrease in the activity of acetylcholinesterase (AChE) and a increase in cyclooxygenase-2 (COX-2) activity in the Ni, Al, and HMM treated groups compared to the control group. CONCLUSION: HMM exposed animals had significantly poorer performance in the Rotarod test (p < 0.05) than controls. Al and Ni induced impairment of cerebellar function at various levels.


Subject(s)
Metals, Heavy , Motor Disorders , Humans , Rats , Male , Animals , Acetylcholinesterase/metabolism , Nickel/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Nerve Growth Factor/metabolism , Nerve Growth Factor/pharmacology , Oxidative Stress , Rats, Sprague-Dawley , Metals, Heavy/pharmacology , Antioxidants/metabolism , Cerebellum/metabolism , Catalase/metabolism , Glutathione/metabolism , Superoxide Dismutase/metabolism , Water/pharmacology
3.
Curr Res Toxicol ; 5: 100129, 2023.
Article in English | MEDLINE | ID: mdl-37841055

ABSTRACT

This study evaluated nickel and aluminium-induced neurotoxicity, as a binary metal mixture. Twenty-eight male Sprague Dawley albino rats were weight-matched and divided into four groups. Group 1 (control) received deionized water. Group 2 and 3 received Aluminium (1 mg/kg) and Nickel (0.2 mg/kg) respectively, while Group 4 received Ni and Al mixture HMM three times a week orally for 90 days. Barnes maze tests was performed. Rats were sacrificed under pentobarbital anaesthesia, cerebral cortex and hippocampus were separated, and metal levels were measured using Atomic Absorption Spectroscopy (AAS). Malondialdehyde (MDA), catalase (CAT), glutathione content (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), Brain Derived Neurotrophic Factor (BDNF), Nerve growth factor NGF, cyclo-oxygenase COX-2 and Acetylcholinesterase (AChE) were assayed using ELISA kits. Ni/Al binary mixture exposed rats showed a shorter latency period (though not significant) of 3.21 ± 1.40 s in comparison to 3.77 ± 1.11 (Ni only) and 3.99 ± 1.16(Al only). Ni/Al mixture gp had the lowest levels of Mg in both the hippocampus and frontal cortex when compared with the individual metals. In the hippocampus Al only exposed rats significantly showed p < 0.05 higher iron and Ca levels in comparison to Ni/Al mixture. Al alone significantly showed p < 0.05 lower levels of Fe but higher Ca than the Ni/Al mixture group. Exposure to Al only showed lower levels of BDNF in comparison to Ni/Al combination, whereas Ni/Al mixture gp had lower levels of NGF in comparison to the individual metals in the hippocampus. In the frontal cortex Ni only, group showed significantly lower BDNF in comparison to Ni/Al mixture whereas the mixture showed significantly lower NGF when compared with Al only group. There were higher levels of COX-2 in the Ni/Al mixture than individual metal treated rats in both hippocampus and frontal cortex. AChE levels in the Ni/Al mixture group was higher than Ni or Al only gps in the hippocampus whereas in the frontal cortex, Ni/Al exposed rats showed significantly lower AChE levels in comparison to Al only group. Ni, Al and Ni/Al mixture exhibited memory impairment by activation of oxidative stress, COX-2, and diminution of AChE, BDNF and NGF levels in cerebral cortex and hippocampus. The BDNF-COX-2 AChE signalling pathway may be involved in the neurotoxicity of Ni and Al.

4.
Ecotoxicol Environ Saf ; 264: 115425, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37660527

ABSTRACT

Lead (Pb), cadmium (Cd), and mercury (Hg) are environmentally toxic heavy metals that can be simultaneously detected at low levels in the blood of the general population. Although our previous studies have demonstrated neurodevelopmental toxicity upon co-exposure to these heavy metals at these low levels, the precise mechanisms remain largely unknown. Dendritic spines are the structural foundation of memory and undergo significant dynamic changes during development. This study focused on the dynamics of dendritic spines during brain development following Pb, Cd, and Hg co-exposure-induced memory impairment. First, the dynamic characteristics of dendritic spines in the prefrontal cortex were observed throughout the life cycle of normal rats. We observed that dendritic spines increased rapidly from birth to their peak value at weaning, followed by significant pruning and a decrease during adolescence. Dendritic spines tended to be stable until their loss in old age. Subsequently, a rat model of low-dose Pb, Cd, and Hg co-exposure from embryo to adolescence was established. The results showed that exposure to low doses of heavy metals equivalent to those detected in the blood of the general population impaired spatial memory and altered the dynamics of dendritic spine pruning from weaning to adolescence. Proteomic analysis of brain and blood samples suggested that differentially expressed proteins upon heavy metal exposure were enriched in dendritic spine-related cytoskeletal regulation and axon guidance signaling pathways and that cofilin was enriched in both of these pathways. Further experiments confirmed that heavy metal exposure altered actin cytoskeleton dynamics and disturbed the dendritic spine pruning-related LIM domain kinase 1-cofilin pathway in the rat prefrontal cortex. Our findings demonstrate that low-dose Pb, Cd, and Hg co-exposure may promote memory impairment by perturbing dendritic spine dynamics through dendritic spine pruning-related signaling pathways.


Subject(s)
Cadmium , Mercury , Humans , Adolescent , Animals , Rats , Cadmium/toxicity , Mercury/toxicity , Dendritic Spines , Lead/toxicity , Proteomics , Actin Depolymerizing Factors , Brain , Memory Disorders/chemically induced
5.
Sci Total Environ ; 895: 165009, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37353033

ABSTRACT

The heavy metals lead (Pb), cadmium (Cd), and mercury (Hg) that cause neurocognitive impairment have been extensively studied. These elements typically do not exist alone in the environment; they are often found with other heavy metals and can enter the body through various routes, thereby impacting health. Our previous research showed that low Pb, Cd, and Hg levels cause neurobehavioral impairments in weaning and adult rats. However, little is known about the biomarkers and mechanisms underlying Pb, Cd, and Hg mixture-induced neurological impairments. A combined analysis of metabolomic and proteomic data may reveal heavy metal-induced alterations in metabolic and protein profiles, thereby improving our understanding of the molecular mechanisms underlying heavy metal-induced neurological impairments. Therefore, brain tissue and serum samples were collected from rats exposed to a Pb, Cd, and Hg mixture for proteomic and metabolomic analyses, respectively. The analysis revealed 363 differential proteins in the brain and 206 metabolites in serum uniquely altered in the Pb, Cd, and Hg mixture exposure group, compared to those of the control group. The main metabolic impacted pathways were unsaturated fatty acids biosynthesis, linoleic acid metabolism, phenylalanine metabolism, and tryptophan metabolism. We further identified that the levels of arachidonic acid (C20:4 n-3) and, adrenic acid (C22:4 n-3) were elevated and that kynurenic acid (KA) and quinolinic acid (QA) levels and the KA/QA ratio, were decreased in the group exposed to the Pb, Cd, and Hg mixture. A joint analysis of the proteome and metabolome showed that significantly altered proteins such as LPCAT3, SLC7A11, ASCL4, and KYAT1 may participate in the neurological impairments induced by the heavy metal mixture. Overall, we hypothesize that the dysregulation of ferroptosis and kynurenine pathways is associated with neurological damage due to chronic exposure to a heavy metal mixture.


Subject(s)
Mercury , Metals, Heavy , Rats , Animals , Cadmium/toxicity , Proteomics , Lead/toxicity , Metals, Heavy/toxicity , Mercury/toxicity , Brain
6.
Int J Hyg Environ Health ; 248: 114113, 2023 03.
Article in English | MEDLINE | ID: mdl-36641952

ABSTRACT

Environmental exposure to heavy metal mixture of lead (Pb), cadmium (Cd), and mercury (Hg) would induce hazardous health effects. However, there is a paucity of data on how exposure to heavy metal mixture alters the metabolic dynamics of individual metals. Considering that the dose plays a key role in determining the toxicity of heavy metals, we performed a factorial design with three heavy metals (Pb, Cd, and Hg) at low exposure levels. Female rats were exposed to Pb, Cd, and (or) Hg from successful mating until pup weaning. Their concentrations in maternal blood, breast milk, and postnatal day 0 (PND0) and PND21 offspring blood and whole brain were measured. Using ANOVA analysis, Pearson correlation, and structural equation model, we demonstrated the complex interactions among heavy metals during their absorption, mother-offspring transport, and target organ accumulation. Among all the explored samples, almost all the highest Pb, Cd, and Hg levels were observed in their respective single heavy metal exposure groups. In addition, Hg was found could antagonize the transport of Pb or Cd, when they cross the placental barrier and blood-brain barriers (BBB). However, the effect of Hg no longer presented when they are absorbed through the digestive system. The antagonistic effect of Pb on Cd was observed when they cross the placental barrier. In addition, Cd was also found to compete the transport pathway of Pb when they cross the BBB after birth. Compared to Pb and Hg, we found that the transport efficiency of Cd in the digestive system was lower, whereas the chelation of Cd by the placental barrier was better. This preliminary information may help researchers to explore the mechanism underlying the hazardous effects of heavy metal mixture exposure, or for regulatory agencies to revise guidelines for heavy metal exposure.


Subject(s)
Mercury , Metals, Heavy , Female , Pregnancy , Rats , Animals , Cadmium/toxicity , Lead/toxicity , Mercury/toxicity , Placenta , Metals, Heavy/toxicity , Lactation
7.
Curr Res Toxicol ; 4: 100098, 2023.
Article in English | MEDLINE | ID: mdl-36624872

ABSTRACT

The thyroid is vital for the proper functioning of the female reproductive system since it regulates the metabolism and development of ovary. This is an evaluation of the essential trace elements ETE on the heavy metals mixture HMM mediated oxido-inflammatory effects in the ovary and thyroid of female albino rats. Eight groups (5 female rats /group) were treated as follows for 60 days: Group 1: Deionized water only; Group 2: (Pb, Hg, Mn and Al); Group 3: HMM + ZnCl2, 0.80 mg/kg; Group 4: HMM + Na2SeO3, 1.50 mg/kg; Group 5: HMM + ZnCl2, 0.80 mg/kg and Na2SeO3, 1.50 mg/kg combined. On day 60 animals were euthanized, ovary and thyroid were harvested and used for, MDA, NO, antioxidants, TNF-α, IL-6, HMOX-1, Caspase-3, NF-KB, NRF2, HM and histopathology. There was significant bioaccumulation of Pb, Al, Hg and MN; elevated IL-6 and TNF-α, MDA and NO, caspase-3 and NRF2, NFKB and HMOX-1 with significant decrease in antioxidants in the HMM only group in comparison to the control. Co-treatment with ETE reversed most of these effects. ETE may ameliorate HMM -induced ovarian and thyrotoxicity in female albino rats by blunting oxido-inflammatory activities.

8.
Ecotoxicol Environ Saf ; 248: 114306, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36402077

ABSTRACT

Although previous studies have examined the hepatotoxicity of single metal exposure, the associations between metal mixture and non-alcoholic fatty liver disease (NAFLD) or fibrosis remain unclear. This study investigated the associations of urinary metal mixture with the risks of NAFLD and liver fibrosis in US adults using data from the National Health and Nutrition Examination Survey (NHANES) from 2017.01 to 2020.03. Vibration-controlled transient elastography was used to detect the controlled attenuation parameter (CAP) and liver stiffness measurement (LSM), which are indicators of NAFLD and liver fibrosis respectively. Three novel mixture modeling approaches including the Bayesian kernel machine regression (BKMR), weighted quantile sum (WQS) regression and quantile g-computation (qgcomp) were used to estimate the associations of the urinary fourteen-metal mixture with Ln CAP and Ln LSM. There were 2283 adults aged over 18 years (1209 women and 1074 men) were included. Among women, urinary metal mixture was positively associated with Ln CAP in the BKMR and qgcomp models (both P < 0.05). However, no significantly associations of urinary metal mixture with Ln CAP were observed among men in all models (all P > 0.05). The metal mixture was not associated with Ln LSM in the three models regardless of genders (all P > 0.05). In conclusion, we observed sex-specific associations between urinary metal mixture and the prevalence of NAFLD in US adults. These findings emphasize the role of environmental heavy metal exposure in the development of NAFLD, and confirm the need for more prospective cohort studies on sex-specific manner.


Subject(s)
Non-alcoholic Fatty Liver Disease , Adult , Female , Humans , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/epidemiology , Nutrition Surveys , Bayes Theorem , Prospective Studies , Liver Cirrhosis/chemically induced , Liver Cirrhosis/epidemiology , Metals
9.
Toxicology ; 481: 153350, 2022 11.
Article in English | MEDLINE | ID: mdl-36220500

ABSTRACT

This study evaluated the protective role o of zinc and selenium on heavy metal mixture (HMM) induced hepatic-nephropathy. Twenty-five female Wistar albino rats were weight-matched and divided into five groups of five female rats each. Group 1(control) received deionized water only. Group 2 received heavy metal mixture HMM (20 mg·kg-1 of Pb, 0.40 mg·kg-1 of Hg, 0.56 mg·kg-1 of Mn and 35 mg·kg-1 of Al). Groups 3, 4 and 5 were co-administered with metal mixtures and Zn, Se and Zn + Se respectively. Treatments were through oral gavage for 60 days; animals were sacrificed under pentobarbital and liver and kidney harvested for tests. Zn, Se and Zn + Se reduced metal accumulation in the liver and kidney. HMM exposure caused non-significant increase in AST, ALP, ALT and TP, but significant increase in IL-6 and TNF -α, Nf-kB, Hmox-1, Nfr2, MDA and NO when compared to the control. Essential trace elements significantly decreased IL-6 and TNF -α, Nf-kB, Hmox-1and Nfr2 in comparison to HMM only group. Treatment with Zn, Se and Zn + Se significantly reversed the HHM mediated decreased SOD levels. HMM triggered degenerative changes in the central vein, showed vacuolations with connective tissues fragmentation and lymphocytes infiltration were reversed by essential trace elements. Essential trace elements supplementation is protective against HMM mediated hepato-renal impairment.


Subject(s)
Kidney Diseases , Mercury , Metals, Heavy , Selenium , Trace Elements , Animals , Rats , Female , Selenium/pharmacology , Zinc/pharmacology , Trace Elements/pharmacology , NF-kappa B , Lead , Interleukin-6 , Rats, Wistar , Metals, Heavy/toxicity , Liver , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control
10.
Ecotoxicol Environ Saf ; 231: 113196, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35051768

ABSTRACT

BACKGROUND: Researchers have reported that chromium (Cr) exposure may be associated with metabolism of glucose and lipids in residents living in a long-term Cr polluted area. Previous statistical analysis is mainly focused on individual chromium exposure. Furtherly, we aim to investigated the independent, combined, and interaction effects of the co-exposure of urine Cr (UCr) with cadmium (UCd), lead (UPb) and manganese (UMn) on body mass index (BMI), waist circumference, and the risk of overweight and abdominal obesity. METHOD: We enrolled 1187 participants from annual surveys between 2017 and 2019. Heavy metal concentrations in urine were standardized using covariate-adjusted urine creatinine levels. Multiple linear/logistic regression models were applied to measure the single effect of urine heavy metal concentration on the outcomes. The quantile-based g-computation (g-comp) model was used to evaluate the combined effect of metal mixture on the outcomes and to compare the contribution of each metal. Both additive and multiplicative interactions were measured for UCr with UCd, UPb, UMn on the outcomes. Analysis was performed on the overall population and stratified by smoking habit. RESULTS: For the overall study population, UCr was positively associated with BMI (p trend = 0.023) and waist circumference (p trend = 0.018). For smoking participants, the g-comp model demonstrated that the metal mixture was negatively associated with BMI, with UCr and UCd contributing the most in the positive and negative direction. A negative additive interaction was observed between UCr and UCd on BMI and abdominal obesity. We did not observe a significant interaction effect of UCr with UPb or UMn. CONCLUSION: Our study indicated that Cr and Cd exposure may be associated with BMI and waist circumference, with combined and interaction effects of the heavy metals noted. Further epidemiological and experimental researches could simultaneously consider single and complex mixed exposure to verify the findings and biological mechanisms.


Subject(s)
Cadmium , Metals, Heavy , Adult , Cadmium/toxicity , Chromium/toxicity , Chromium Alloys , Environmental Exposure/analysis , Humans , Obesity/chemically induced
11.
Environ Sci Pollut Res Int ; 28(21): 27006-27024, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33496951

ABSTRACT

The current study investigates the therapeutic and curative effect of Ulva lactuca polyphenolic extract (ULPE) in general and particularly polyphenolics compounds against heavy metal mixture (HME). The toxicity behind heavy metal is due to oxidative stress resulted from heavy metals pollution or administration through contaminated food (vegetables, water, and fish). Heavy metal toxicity plays a major role in different cardiovascular diseases. The objective of this study is aimed to examine the protective effect of ULPE against heavy metal mixture induced cardiovascular diseases through oxidative/antioxidant and inflammatory pathways. Sixty male rats (Sprague-Dawley) were assigned to six groups. Group I served as the control, group II served as the induced group receiving subcutaneously for 7 days 0.25 mg/100 gm body weight/day heavy metal mixtures (Equal concentration of Ni, Cd, Co and Hg chloride, and Pb acetate), group III received (i.p.) ULPE of dose 30 mg for 15 days, group IV served as the protected group pretreated with ULPE for 15 days as a protection dose, and then treated with the heavy metal-mixture, group V served as protected standard group pretreated with vitamin C (VitC ) (50 mg/Kg) and then treated with the heavy metal-mixture, and group VI served as standard group treated with VitC (50 mg/Kg). The main pathological changes within the heart revealed heart inflammation after heavy-metal mixtures administrations. On contrast to the protected group treated with ULPE (group IV), the protection group (group II) showed a significant increase in the antioxidant as well as anti-inflammatory biomarker. The cardiovascular biomarkers (Troponin T, CRP, and BNP) showed similar attitude elevations in induction group and decreased greatly in protection and VitC group. The antioxidant and the anti-inflammatory activities of ULPE are a consequence of their higher polyphenolic contents as well as marine secondary metabolites which are confirmed using qualitative and quantitative analysis. From the current result, we concluded that ULPE possesses a cardiovascular protective agent as a result of highly contents of different bioactive secondary metabolites which have antioxidant as well as free-radical scavenging and anti-inflammatory activates. Showed the mechanism of ULPE as cardioprotective against heavy metal mixture.


Subject(s)
Metals, Heavy , Ulva , Animals , Antioxidants , Biomarkers , Male , Oxidative Stress , Plant Extracts/pharmacology , Rats , Rats, Sprague-Dawley
12.
Ecotoxicol Environ Saf ; 206: 111363, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32977082

ABSTRACT

The exposure to combinations of heavy metals can affect the genes of vegetables and heavy metals would accumulate in vegetables and thereby indirectly affecting human health. Exploring the links between genetic changes and phenotypic changes of carrot under the combined pollution of Cd and Cu is of great significance for studying the mechanism of heavy metal pollution. Therefore, this study examined the effects of mixtures of cadmium (Cd) and copper (Cu) on physiological measures (malondialdehyde (MDA), proline, and antioxidant enzyme) and expression of growth-related genes (gibberellin gene, carotene gene, and glycogene) in carrot under greenhouse cultivation. The results showed in the additions with mixtures of Cd and Cu at higher concentration, the MDA content increased significantly (p < 0.05), whereas the proline content was not significantly different from those in the control. In the mixed treatments with high Cd concentrations, the activity of superoxide dismutase (SOD) was significantly lower than that in the control (p < 0.05); whereas the activity of peroxidase (POD) increased to different degrees compared to the control. In the additions with mixtures of Cd and Cu, compared with the control, the expression of the gibberellin gene was downregulated from 1.97 to 20.35 times (not including the 0.2 mg kg-1 Cd and 20 mg kg-1 Cu mixture, the expression of gibberellin gene in this treatment was upregulated 1.29 times), which lead to decreases in the length and dry weight of carrots. The expression of the carotene gene in mixed treatments downregulated more than that in single treatments, which could reduce the ability of carrots to resist oxidative damage, as suggested by the significant increase in the MDA content. In the addition with mixtures of Cd and Cu, compared with the control, the expression of the glycogene was downregulated by 1.42-59.40 times, which can cause a significant reduction in the sugar content in carrots and possibly further reduce their ability to resist heavy metal damage. A cluster analysis showed that in the additions with mixtures of Cd and Cu, the plant phenotype was affected first, and then with increases in the added concentration, the expression of genes was also affected. In summary, in the additions with mixtures of Cd and Cu, plants were damaged as Cd and Cu concentrations increased.


Subject(s)
Cadmium/toxicity , Copper/toxicity , Daucus carota/drug effects , Gene Expression Regulation, Plant/drug effects , Antioxidants/metabolism , Cadmium/analysis , Copper/analysis , Daucus carota/physiology , Malondialdehyde/metabolism , Metals, Heavy/analysis , Metals, Heavy/toxicity , Oxidative Stress/drug effects , Plant Development/genetics
13.
Ecotoxicol Environ Saf ; 202: 110900, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32593095

ABSTRACT

Heavy metals such as lead (Pb), cadmium (Cd), and mercury (Hg) are representative neurotoxicological contaminants that can evoke cognitive dysfunctions. Low levels of these contaminants can be detected simultaneously in the human blood. In our previous study, behavioral performances were markedly impaired by exposure to these heavy metal mixtures (MM) at low levels. However, the aspects of cognitive functions involved are not well understood. Here, we further analyzed search strategies using a new algorithm named Morris water maze-unbiased strategy classification (MUST-C). Rat pups were co-exposed to low doses of Pb, Cd, and Hg during the embryonic and lactation stage. MM exposure at low doses, similar to those found in the general population, impaired search strategies even though their latency and path length were not affected in the Morris water maze task. MM-exposed rats preferred to use more directionless repetition strategies and less target orientation strategies than did vehicle-exposed animals in a dose-dependent manner. In addition, thionine staining and electron microscopy further revealed that MM exposure induced dose-dependent search strategy related place cell injures in the hippocampal CA1 and CA3 regions. These results demonstrate that the use of suboptimal search strategies underlies the early cognitive deficits in rats exposed to low doses of MM. The current study determined that search strategy analysis might be a novel sensitive assessment method for evaluating in the neurobehavioral toxicity.


Subject(s)
Cognitive Dysfunction/chemically induced , Environmental Pollutants/toxicity , Metals, Heavy/toxicity , Animals , Cadmium/toxicity , Cognition , Female , Hippocampus , Humans , Juvenile Hormones , Lactation , Male , Mercury/toxicity , Rats
14.
Andrologia ; 52(9): e13697, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32542821

ABSTRACT

The study evaluated the protective effect of Costus afer on low-dose heavy metal mixture (LDHMM)-mediated effects in the testis of albino rats. The weight-matched animals were divided into six groups: normal control, metal mixture of (PbCl2  + CdCl2 + HgCl2 ), combination of metal mixture + Costus afer at 750 mg/kg, combination of metal mixture + Costus afer at 1,500 mg/kg, combination of metal mixture + Costus afer at 2,250 mg/kg and combination of metal mixture + (ZnCl2 ). LDHMM reduced (p < .05) the antioxidant biomarkers (superoxide dismutase, SOD; catalase, CAT; and glutathione, GSH) and increased (p < .05) the lipid peroxidation marker (malondialdehyde, MDA) and lead, cadmium and mercury concentrations in the testis. Treatment with LDHMM increased (p < .05) abnormal sperm morphology and plasma prolactin (PRL) level and decreased epididymal sperm count, viability, follicle-stimulating hormone (FSH), luteinising hormone (LH) and testosterone. LDHMM exposure caused deleterious changes in the testis. Treatment of rats with Costus afer (750, 1,500 and 2,250 mg/kg) dose-dependently reduced (p < .05) the LDHMM-mediated toxicity. Treatment with Costus afer also reversed the testicular weight and LDHMM decrease in antioxidant biomarkers. Costus afer may be a defensive modulator of LDHMM-mediated testicular lesions.


Subject(s)
Costus , Mercury , Animals , Antioxidants/pharmacology , Cadmium/toxicity , Humans , Male , Oxidative Stress , Plant Extracts , Plant Leaves , Rats , Rats, Wistar , Sperm Count , Spermatozoa/metabolism , Superoxide Dismutase/metabolism , Testis/metabolism , Zinc
15.
Article in English | MEDLINE | ID: mdl-32102388

ABSTRACT

To explore the joint toxicity and bio-accumulation of multi-heavy metals and potential chemoprevention strategies, Male Sprague Dawley (SD) rats (n = 30) were treated orally once a week for six months with 500mg/kg•bw of eight heavy metals which were commonly identified in aquatic products in the Ningbo area including chromium, manganese, nickel, copper, zinc, cadmium, mercury, and lead. At the same time, 200mg/kg•bw of epigallocatechin-3-gallate (EGCG), trisodium citrate dihydrate (TCD) or glutathione (GSH) were administered to evaluate their antagonistic effects against adverse effects of multi-heavy metal mixture. The Morris water maze test was used to evaluate spatial learning and memory in the treated rats. Then the rats were anesthetized by pentobarbital sodium (40 mg/kg•bw) to obtain blood samples for biochemical analysis and organs (heart, liver, spleen, lungs, kidneys, brain, testis) to be conducted for biopsy and organ coefficients. Inductively coupled plasma mass spectrometer (ICP-MS) was used to analyze the concentrations of heavy metals. Results indicated that six months of exposure to a multi-heavy metal mixture under this experimental dosage resulted in accumulation in organs and adverse effects on the blood, reproductive system, and liver function. EGCG, TCD or GSH all showed certain chemoprevention effects against the joint toxicity induced by the multi-heavy metal mixture and indicated alleviation and the potential mechanism that also included the promotion of excretion of metals to which animals were exposed.


Subject(s)
Bioaccumulation , Chemoprevention , Metals, Heavy/toxicity , Animals , Catechin/administration & dosage , Catechin/analogs & derivatives , Glutathione/administration & dosage , Male , Rats , Rats, Sprague-Dawley , Sodium Citrate/administration & dosage , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL