Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Monit Assess ; 196(4): 405, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38561557

ABSTRACT

The development of deep-sea floating offshore wind power (FOWP) is the key to fully utilizing water resources to enhance wind resources in the years ahead, and then the project is still in its initial stage, and identifying risks is a crucial step before promoting a significant undertaking. This paper proposes a framework for identifying risks in deep-sea FOWP projects. First, this paper identifies 16 risk criteria and divides them into 5 groups to establish a criteria system. Second, hesitant fuzzy linguistic term set (HFLTS) and triangular fuzzy number (TFN) are utilized to gather and describe the criterion data to ensure the robustness and completeness of the criterion data. Third, extending the method for removal effects of criteria (MEREC) to the HFLTS environment through the conversion of TFNs, under the influence of subjective preference and objective fairness, a weighting method combining analytic network process (ANP) and MEREC is utilized to calculate criteria weights, and the trust relationship and consistency between experts are used to calculate the expert weights to avoid the subjective weighting given by experts arbitrariness. Fourth, the study's findings indicated that the overall risk level of the deep-sea FOWP projects is "medium." Fifth, sensitivity and comparative analyses were conducted to test the reliability of the assessment outcomes. lastly, this research proposes risk management measures for the deep-sea FOWP project's establishment from economic, policy, technology, environment, and management aspects.


Subject(s)
Fuzzy Logic , Wind , Trust , Reproducibility of Results , Environmental Monitoring , Risk Assessment , Linguistics
2.
Sci Rep ; 14(1): 8617, 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38616185

ABSTRACT

To reflect both fuzziness and hesitation in the evaluation of interactivity between attributes in the identification process of 2-order additive fuzzy measure, this work uses the hesitant fuzzy linguistic term set (HFLTS) to describe and depict the interactivity between attributes. Firstly, the interactivity between attributes is defined by the supermodular game theory. According to this definition, a linguistic term set is established to characterize the interactivity between attributes. Under the linguistic term set, the experts employ linguistic expressions generated by context-free grammar to qualitatively describe the interactivity between attributes. Secondly, through the conversion function, the linguistic expressions are transformed into the hesitant fuzzy linguistic term sets (HFLTSs). The individual evaluation results of all experts were further aggregated with the defined hesitant fuzzy linguistic weighted power average operator (HFLWPA). Thirdly, based on the standard Euclidean distance formula of the hesitant fuzzy linguistic elements (HFLEs), the hesitant fuzzy linguistic interaction degree (HFLID) between attributes is defined and calculated by constructing a piecewise function. As a result, a 2-order additive fuzzy measure identification method based on HFLID is proposed. Based on the proposed method, using the Choquet fuzzy integral as nonlinear integration operator, a multi-attribute decision making (MADM) process is then presented. Taking the credit assessment of the big data listed companies in China as an application example, the analysis results of application example prove the feasibility and effectiveness of the proposed method. This work successfully reflects both the fuzziness and hesitation in evaluating the interactivity between attributes in the identification process of 2-order additive fuzzy measure, enriches the theoretical framework of 2-order additive fuzzy measure, and expands the applicability and methodology of 2-order additive fuzzy measure in multi-attribute decision making.

3.
J Environ Manage ; 350: 119523, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37995483

ABSTRACT

Small hydropower (SHP) has made significant contributions to economic and social development in rural and remote mountainous regions. However, the adverse ecological-environmental impacts resulting from the SHP sector and challenges in hydropower management have become major areas of concern. From an Environmental, Social, and Governance (ESG) perspective and using three SHP stations (GXD, WZL, and SJB) in the Qin-Ba Mountains as case studies, we constructed a sustainability assessment system comprising 18 indicators across three dimensions. The hesitant fuzzy linguistic term sets (HFLTSs) and cloud models were employed to determine the sustainability level of SHP by characterizing the hesitancy of the evaluator and the uncertainty of the evaluated data. (1) The ecological-environmental protection (E) dimension was assigned the greatest weight, followed by the dimensions of social responsibility contribution (S) and corporate governance management (G). The weights of certain indicators, including the water qualification rate, river morphology maintenance, guaranteed rate of instream flow, comprehensive utilization, and production safety standardization grade were relatively high, conforming to the current context of green development prioritization in which ecological-environmental protection is of the utmost importance. (2) The overall sustainability levels of all three SHP stations were "good", with the E-dimension contributing the most and the G-dimension contributing the least to the sustainability goal. (3) The GXD, WZL, and SJB stations were ranked first, second, and third, respectively, in terms of their sustainability scores. This study provides an innovative perspective for the sustainability assessment of SHP. The evaluation method can be generalized to encompass multi-attribute decision-making problems. The findings of this study can aid in addressing the shortcomings associated with SHP development and promote sustainability within the SHP industry.


Subject(s)
Conservation of Natural Resources , Industry , Uncertainty , China , Rivers
4.
Comput Ind Eng ; 145: 106517, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32501363

ABSTRACT

Fuzzy set theory and a series of theories derived from it have been widely used to deal with uncertain phenomena in multi-criterion decision-making problems. However, few methods except the Z-number considered the reliability of information. In this paper, we propose a multi-criterion decision-making method based on the Dempster-Shafer (DS) theory and generalized Z-numbers. To do so, inspired by the concept of hesitant fuzzy linguistic term set, we extend the Z-number to a generalized form which is more in line with human expression habits. Afterwards, we make a bridge between the knowledge of Z-numbers and the DS evidence theory to integrate Z-valuations. The identification framework in the DS theory is used to describe the generalized Z-numbers to avoid ambiguity. Then, the knowledge of Z-numbers is used to derive the basic probability assignment of evidence and the synthetic rules in the DS theory are used to integrate evaluations. An illustrative example of medicine selection for the patients with mild symptoms of the COVID-19 is provided to show the effectiveness of the proposed method.

5.
Article in English | MEDLINE | ID: mdl-32210146

ABSTRACT

China is a developing country and with the speeding up of its industrialization, the environmental problems are becoming more serious, environmental pollution is a major environmental health problem in China. In order to have a more effective management and control of the significant growth issues of environment pollution, green supply chain incentives have started, which is kind of market incentive aiming to moderate the adverse effects of environmental pollution. Proper green chain supply selection and evaluation of companies is becoming very essential in sustainable green supply chain management. Generally speaking, decision-makers (DMs) prefer to provide a set of feasible and quantitative information for making performance evaluation, which motivates us to propose a framework using dual hesitant fuzzy linguistic term set (DHFLTS) and hesitant fuzzy linguistic term set (HFLTS) to select green suppliers. In this paper, group satisfaction and the regret theory are adopted for elicitation of preference information. The DHFLTS and HFLTS provide qualitative preferences of the DMs as well as reflect their hesitancy, inconsistency, and vagueness. Further, two new group satisfaction degrees are defined called the group satisfaction of hesitant fuzzy linguistic term set and dual hesitant fuzzy linguistic term set. Some properties of group satisfaction with DHFLST and HFL are also discussed. Unknown attribute weights are obtained to construct a novel Lagrange function optimization model to maximize the group satisfaction degree, which is an extension of general group satisfaction degree. A novel methodological approach based on two group satisfaction degrees framework and regret theory is developed to rank and select green chain suppliers focusing on specific selection objectives. The proposed model and method of this paper allow the DM to execute different fuzzy scenarios by changing importance weights attached to the triple-bottom-line areas. In the final part, the advantage of the proposed group satisfaction degree under DHFL and HFL background over the existing group satisfaction degree using examples have been presented with different computational combinations.


Subject(s)
Commerce , Decision Making , Fuzzy Logic , China , Linguistics , Sustainable Development
6.
Healthcare (Basel) ; 8(1)2019 Dec 25.
Article in English | MEDLINE | ID: mdl-31881773

ABSTRACT

Performance analysis is of great significance to increase the operational efficiency of healthcare organizations. Healthcare performance is influenced by numerous indicators, but it is unrealistic for administrators to improve all of them due to the restriction of resources. To solve this problem, we integrated double hierarchy hesitant fuzzy linguistic term sets (DHHFLTSs) with the decision-making trial and evaluation laboratory (DEMATEL) and proposed a DHHFL- DEMATEL method to identify key performance indicators (KPIs) in healthcare management. For the developed approach, the judgments of experts on the inter-relationships among indicators were represented by DHHFLTSs, and a novel combination weighting approach was proposed to obtain experts' weights in line with hesitant degree and consensus degree. Then, the normal DEMATEL method was extended and used for examining the cause and effect relationships between indicators; the technique for the order of preference by similarity to the ideal solution (TOPSIS) method was utilized to generate the ranking of performance indicators. Finally, the feasibility and effectiveness of the proposed DHHFL-DEMATEL approach were illustrated by a practical example in a rehabilitation hospital.

7.
Article in English | MEDLINE | ID: mdl-31731510

ABSTRACT

Outsourcing the hazardous materials (HazMat) transportation is an effective way for manufacturing enterprises to avoid risks and accidents as well as to retain sustainable development in economic growth and social inclusion while not bringing negative impacts on the public and the environment. It is imperative to develop viable and effective approaches to selecting the most appropriate HazMat transportation alternatives. This paper aims at proposing an integrated multi-criteria group decision making approach that combines proportional hesitant fuzzy linguistic term set (PHFLTS) and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to address the problem of HazMat transportation alternative evaluation and selection. PHFLTSs are adopted to represent the congregated individual evaluations in a bid to avoid information loss and increase the reliability of results. Two weight assignment models are then proposed to determine the comprehensive weights of experts and criteria. Furthermore, several novel manipulations of PHFLTS are also defined to enrich its applicability. The TOPSIS method is subsequently extended to the context of PHFLTSs to rank alternatives and choose the best one. Eventually, the feasibility and validity of the proposed approach are verified by a practical case study of a HazMat transportation alternative evaluation and selection decision and further comparison analyses.


Subject(s)
Hazardous Substances , Transportation , Commerce , Decision Making , Fuzzy Logic , Humans , Linguistics , Reproducibility of Results
8.
Article in English | MEDLINE | ID: mdl-29614019

ABSTRACT

Hesitant fuzzy linguistic term set provides an effective tool to represent uncertain decision information. However, the semantics corresponding to the linguistic terms in it cannot accurately reflect the decision-makers' subjective cognition. In general, different decision-makers' sensitivities towards the semantics are different. Such sensitivities can be represented by the cumulative prospect theory value function. Inspired by this, we propose a linguistic scale function to transform the semantics corresponding to linguistic terms into the linguistic preference values. Furthermore, we propose the hesitant fuzzy linguistic preference utility set, based on which, the decision-makers can flexibly express their distinct semantics and obtain the decision results that are consistent with their cognition. For calculations and comparisons over the hesitant fuzzy linguistic preference utility sets, we introduce some distance measures and comparison laws. Afterwards, to apply the hesitant fuzzy linguistic preference utility sets in emergency management, we develop a method to obtain objective weights of attributes and then propose a hesitant fuzzy linguistic preference utility-TOPSIS method to select the best fire rescue plan. Finally, the validity of the proposed method is verified by some comparisons of the method with other two representative methods including the hesitant fuzzy linguistic-TOPSIS method and the hesitant fuzzy linguistic-VIKOR method.


Subject(s)
Decision Making , Fires , Fuzzy Logic , Linguistics , Algorithms , Humans , Reproducibility of Results , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL