Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.040
Filter
1.
Sci Prog ; 107(3): 368504241269431, 2024.
Article in English | MEDLINE | ID: mdl-39090965

ABSTRACT

Pork is one type of the most frequently consumed meat with about 30% globally. Thus, the questions regarding to the health effects of diet with high fat content from lard are raised. Here, we developed a model of mice fed with high fat (HF) from lard to investigate and have more insights on the effects of long-time feeding with HF on health. The results showed that 66 days on HF induced a significant gain in the body weight of mice, and this weight gain was associated to the deposits in the white fat, but not brown fat. The glucose tolerance, not insulin resistance, in mice was decreased by the HF diet, and this was accompanied with significantly higher blood levels of total cholesterol and triglycerides. Furthermore, the weight gains in mice fed with HF seemed to link to increased mRNA levels of adipose biomarkers in lipogenesis, including Acly and Acaca genes, in white fat tissues. Thus, our study shows that a diet with high fat from lard induced the increase in body weight, white fat depots' expansion, disruption of glucose tolerance, blood dyslipidemia, and seemed to start affecting the mRNA expression of some adipose biomarkers in a murine model.


Subject(s)
Biomarkers , Diet, High-Fat , Dietary Fats , RNA, Messenger , Animals , Mice , Diet, High-Fat/adverse effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Biomarkers/metabolism , Biomarkers/blood , Male , Dietary Fats/metabolism , Insulin Resistance , Adipose Tissue/metabolism , Body Weight , Mice, Inbred C57BL , Weight Gain , Adipose Tissue, White/metabolism , Triglycerides/blood , Triglycerides/metabolism
2.
Drug Des Devel Ther ; 18: 3337-3360, 2024.
Article in English | MEDLINE | ID: mdl-39100221

ABSTRACT

Insulin resistance (IR) is a complex pathological condition central to metabolic diseases such as type 2 diabetes mellitus (T2DM), cardiovascular disease, non-alcoholic fatty liver disease, and polycystic ovary syndrome (PCOS). This review evaluates the impact of lipids on insulin resistance (IR) by analyzing findings from human and animal studies. The articles were searched on the PubMed database using two keywords: (1) "Role of Lipids AND Insulin Resistance AND Humans" and (2) "Role of Lipids AND Insulin Resistance AND Animal Models". Studies in humans revealed that elevated levels of free fatty acids (FFAs) and triglycerides (TGs) are closely associated with reduced insulin sensitivity, and interventions like metformin and omega-3 fatty acids show potential benefits. In animal models, high-fat diets disrupt insulin signaling and increase inflammation, with lipid mediators such as diacylglycerol (DAG) and ceramides playing significant roles. DAG activates protein kinase C, which eventually impairs insulin signaling, while ceramides inhibit Akt/PKB, further contributing to IR. Understanding these mechanisms is crucial for developing effective prevention and treatment strategies for IR-related diseases.


Subject(s)
Insulin Resistance , Humans , Animals , Lipids/blood , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Disease Models, Animal , Signal Transduction/drug effects
3.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(8): 159557, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39128539

ABSTRACT

Dysregulated lipid metabolism in obesity leads to adipose tissue expansion, a major contributor to metabolic dysfunction and chronic disease. Lipid metabolism and fatty acid changes play vital roles in the progression of obesity. In this proof-of-concept study, Raman techniques combined with histochemical imaging methods were utilized to analyze the impact of a high-fat diet (HFD) on different types of adipose tissue in mice, using a small sample size (n = 3 per group). After six weeks of high-fat diet (HFD) feeding, our findings showed hypertrophy, elevated collagen levels, and increased macrophage presence in the adipose tissues of the HFD group compared to the low-fat diet (LFD) group. Statistical analysis of Raman spectra revealed significantly lower unsaturated lipid levels and higher lipid to protein content in different fat pads (brown adipose tissue (BAT), subcutaneous white adipose tissue (SWAT), and visceral white adipose tissue (VWAT)) with HFD. Raman images of adipose tissues were analyzed using Empty modeling and DCLS methods to spatially profile unsaturated and saturated lipid species in the tissues. It revealed elevated levels of ω-3, ω-6, cholesterol, and triacylglycerols in BAT adipose tissues of HFD compared to LFD tissues. These findings indicated that while cholesterol, ω-6/ω-3 ratio, and triacylglycerol levels have risen in the SWAT and VWAT adipose tissues of the HFD group, the levels of ω-3 and ω-6 have decreased following the HFD. The study showed that Raman spectroscopy provided invaluable information at the molecular level for investigating lipid species remodeling and spatial mapping of adipose tissues during HFD.

4.
Reprod Biol Endocrinol ; 22(1): 105, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164729

ABSTRACT

BACKGROUND: Obesity is a global health issue with detrimental effects on various human organs, including the reproductive system. Observational human data and several lines of animal experimental data suggest that maternal obesity impairs ovarian function and early embryo development, but the precise pathogenesis remains unclear. METHODS: We established a high-fat diet (HFD)-induced obese female mouse model to assess systemic metabolism, ovarian morphology, and oocyte function in mice. For the first time, this study employed single-cell RNA sequencing to explore the altered transcriptomic landscape of preimplantation embryos at different stages in HFD-induced obese mice. Differential gene expression analysis, enrichment analysis and protein-protein interactions network analysis were performed. RESULTS: HFD-induced obese female mice exhibited impaired glucolipid metabolism and insulin resistance. The ovaries of HFD mice had a reduced total follicle number, an increased proportion of atretic follicles, and irregular granulosa cell arrangement. Furthermore, the maturation rate of embryonic development by in vitro fertilization of oocytes was significantly decreased in HFD mice. Additionally, the transcriptional landscapes of preimplantation embryos at different stages in mice induced by different diets were significantly distinguished. The maternal-to-zygotic transition was also affected by the failure to remove maternal RNAs and to turn off zygotic genome expression. CONCLUSIONS: HFD-induced obesity impaired ovarian morphology and oocyte function in female mice and further led to alterations in the transcriptional landscape of preimplantation embryos at different stages of HFD mice.


Subject(s)
Diet, High-Fat , Embryonic Development , Obesity , Oocytes , Sequence Analysis, RNA , Single-Cell Analysis , Animals , Female , Diet, High-Fat/adverse effects , Oocytes/metabolism , Mice , Embryonic Development/genetics , Embryonic Development/drug effects , Obesity/genetics , Obesity/metabolism , Mice, Inbred C57BL , Pregnancy , Blastocyst/metabolism
5.
Int J Biol Macromol ; : 134939, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39179066

ABSTRACT

Targeting the gut microbiota may be an emerging strategy for the prevention and treatment of Alzheimer's disease (AD). Macro-molecular yeast ß-glucan (BG), derived from the yeast of Saccharomyces cerevisiae, regulates the gut microbiota. This study aimed to investigate the effect and mechanism of long-term BG in high-fat diet (HFD)-induced AD-like pathologies from the perspective of the gut microbiota. Here, we found that 80 weeks of BG treatment ameliorated HFD-induced cognitive dysfunction in rats. In the hippocampus, BG alleviated HFD-induced the activation of astrocytes, microglia, NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome pathway, and AD-like pathologies. BG modulated gut dysbiosis through increasing the levels of beneficial bacteria and short-chain fatty acids (SCFAs). BG also attenuated HFD-induced gut barrier impairment. Correlation analysis revealed a close relationship among microbiota, SCFAs, and AD-like pathologies. Furthermore, the fecal microbiota of BG-treated rats and SCFAs treatment mitigated AD-like pathologies via the NLRP3 inflammasome pathway in HFD-fed aged rats. These results suggested that long-term BG promotes the production of SCFAs derived from gut microbiota, which further inhibits NLRP3 inflammasome-mediated neuroinflammation, thereby alleviating HFD-induced AD-like pathologies in rats. BG may become a new strategy for targeting neurodegenerative diseases.

6.
Sci Rep ; 14(1): 18641, 2024 08 11.
Article in English | MEDLINE | ID: mdl-39128931

ABSTRACT

There are genetic and environmental risk factors that contribute to the development of cognitive decline in Alzheimer's disease (AD). Some of these include the genetic predisposition of the apolipoprotein E4 genotype, consuming a high-fat diet (HFD), and the female sex. Brain insulin receptor resistance and deficiency have also been shown to be associated with AD and cognitive impairment. Intranasal (INL) insulin enhances cognition in AD, but the response varies due to genotype, diet, and sex. We investigated here the combination of these risk factors in a humanized mouse model, expressing E3 or E4, following a HFD in males and females on cognitive performance and the brain distribution of insulin following INL delivery. The HFD had a negative effect on survival in male mice only, requiring sex to be collapsed. We found many genotype, diet, and genotype x diet effects in anxiety-related tasks. We further found beneficial effects of INL insulin in our memory tests, with the most important findings showing a beneficial effect of INL insulin in mice on a HFD. We found insulin distribution throughout the brain after INL delivery was largely unaffected by diet and genotype, indicating these susceptible groups can still receive adequate levels of insulin following INL delivery. Our findings support the involvement of brain insulin signaling in cognition and highlight continuing efforts investigating mechanisms resulting from treatment with INL insulin.


Subject(s)
Administration, Intranasal , Brain , Cognition , Diet, High-Fat , Insulin , Animals , Female , Male , Insulin/metabolism , Diet, High-Fat/adverse effects , Brain/metabolism , Brain/drug effects , Cognition/drug effects , Mice , Humans , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Mice, Transgenic , Alzheimer Disease/metabolism , Disease Models, Animal
7.
Cells ; 13(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39120278

ABSTRACT

Sex differences may play a role in the etiopathogenesis and severity of metabolic dysfunction-associated steatotic liver disease (MASLD), a disorder characterized by excessive fat accumulation associated with increased inflammation and oxidative stress. We previously observed the development of steatosis specifically in female rats fed a high-fat diet enriched with liquid fructose (HFHFr) for 12 weeks. The aim of this study was to better characterize the observed sex differences by focusing on the antioxidant and cytoprotective pathways related to the KEAP1/NRF2 axis. The KEAP1/NRF2 signaling pathway, autophagy process (LC3B and LAMP2), and endoplasmic reticulum stress response (XBP1) were analyzed in liver homogenates in male and female rats that were fed a 12-week HFHFr diet. In females, the HFHFr diet resulted in the initial activation of the KEAP1/NRF2 pathway, which was not followed by the modulation of downstream molecular targets; this was possibly due to the increase in KEAP1 levels preventing the nuclear translocation of NRF2 despite its cytosolic increase. Interestingly, while in both sexes the HFHFr diet resulted in an increase in the levels of LC3BII/LC3BI, a marker of autophagosome formation, only males showed a significant upregulation of LAMP2 and XBP1s; this did not occur in females, suggesting impaired autophagic flux in this sex. Overall, our results suggest that males are characterized by a greater ability to cope with an HFHFr metabolic stimulus mainly through an autophagic-mediated proteostatic process while in females, this is impaired. This might depend at least in part upon the fine modulation of the cytoprotective and antioxidant KEAP1/NRF2 pathway resulting in sex differences in the occurrence and severity of MASLD. These results should be considered to design effective therapeutics for MASLD.


Subject(s)
Diet, High-Fat , Fructose , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Sex Characteristics , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , Female , Male , Diet, High-Fat/adverse effects , Signal Transduction/drug effects , Rats , Kelch-Like ECH-Associated Protein 1/metabolism , Autophagy/drug effects , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics , Disease Models, Animal , Fatty Liver/metabolism , Fatty Liver/pathology , Liver/metabolism , Liver/pathology , Liver/drug effects , Endoplasmic Reticulum Stress/drug effects , Rats, Wistar , Oxidative Stress/drug effects , Microtubule-Associated Proteins
8.
J Biochem Mol Toxicol ; 38(8): e23805, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39132811

ABSTRACT

The study aimed to investigate the potential of hesperetin-loaded chitosan nanoparticles (HSPCNPs) in alleviating hyperglycemia by modulating key enzymes in diabetic rats. Chitosan nanoparticles loaded with hesperetin were prepared using the ionic gelation method and characterized with Electron microscope (SEM), zeta potential, particle size analysis, Fourier-transform infrared (FT-IR), Energy dispersive spectroscopy (EDS) and Encapsulation efficiency and Loading efficiency. To induce diabetes, rats were fed a high-fat beef tallow diet for 28 days, then given a single dose of streptozotocin (STZ) at 35 mg/kg b.w in 0.1 M citrate buffer (pH 4.0). Rats were treated with HSPCNPs at doses of 10, 20, and 40 mg/kg b.w. The analyzed parameters included body weight, food and water intake, plasma glucose and insulin, liver and skeletal muscle glycogen levels, and carbohydrate metabolism. SEM imaging revealed dimensions between 124.2 and 251.6 nm and a mean particle size of 145.0 nm. FT-IR analysis confirmed the presence of functional groups in the chitosan nanoparticles, and the zeta potential was 35.5 mV. HSPCNP 40 mg/kg b.w significantly (p < 0.05) reduced blood glucose levels and glycosylated hemoglobin, improving body weight, food intake, and reducing water intake. In diabetic rats, enzymes for carbohydrate metabolism like fructose 1,6-bisphosphatase, phosphoenolpyruvate carboxykinase, and glucose 6-phosphatase are evaluated in the liver, while glucose 6 phosphate dehydrogenase and hexokinase activity were significantly lower. Additionally, plasma insulin levels increased, indicating enhanced insulin sensitivity. The results show that HSPCNPs at 40 mg/kg b.w. ameliorate hyperglycemia to provide robust protection against diabetic complications and significantly improve metabolic health.


Subject(s)
Chitosan , Diabetes Mellitus, Experimental , Hesperidin , Hyperglycemia , Nanoparticles , Animals , Chitosan/chemistry , Chitosan/pharmacology , Hesperidin/pharmacology , Hesperidin/administration & dosage , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Nanoparticles/chemistry , Rats , Male , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Carbohydrate Metabolism/drug effects , Rats, Wistar , Blood Glucose/metabolism
9.
Am J Chin Med ; : 1-28, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39164214

ABSTRACT

Astragaloside IV (AS-IV), a natural triterpenoid isolated from Astragalus membranaceus, has been used traditionally in Chinese medicine. Previous studies have highlighted its benefits against carcinoma, but its interaction with the gut microbiota and effects on adenomatous polyps are not well understood. This present study investigates the effects of AS-IV on colonic adenomatous polyp (CAP) development in high-fat-diet (HFD) fed [Formula: see text] mice. [Formula: see text] mice were fed an HFD with or without AS-IV or Naringin for 8 weeks. The study assessed CAP proliferation and employed 16S DNA-sequencing and untargeted metabolomics to explore correlations between microbiome and metabolome in CAP development. AS-IV was more effective than Naringin in reducing CAP development, inhibiting colonic proinflammatory cytokines (IL-1[Formula: see text], IL-6, and TNF-[Formula: see text]), tumor associated biomarkers (c-Myc, Cyclin D1), and Wnt/[Formula: see text]-catenin pathway proteins (Wnt3a, [Formula: see text]-catenin). AS-IV also inhibited the proliferative capabilities of human colon cancer cells (HT29, HCT116, and SW620). Multiomics analysis revealed AS-IV increased the abundance of beneficial genera such as Bifidobacterium pseudolongum and significantly modulated serum levels of certain metabolites including linoleate and 2-trans,6-trans-farnesal, which were significantly correlated with the number of CAP. Finally, the anti-adenoma efficacy of AS-IV alone was significantly suppressed post pseudoaseptic intervention in HFD-fed [Formula: see text] mice but could be reinstated following a combined with Bifidobacterium pseudolongum transplant. AS-IV attenuates CAP development in HFD-fed [Formula: see text] mice by regulating gut microbiota and metabolomics, impacting the Wnt3a/[Formula: see text]-catenin signaling pathway. This suggests a potential new strategy for the prevention of colorectal cancer, emphasizing the role of gut microbiota in AS-IV's antitumor effects.

10.
Mol Nutr Food Res ; : e2400297, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39165040

ABSTRACT

SCOPE: The prevalence of high-fat diet (HFD) consumption is increasing among middle-aged and older adults, which accelerates the aging process of this population and is more likely to induce lipid metabolism disorders. But the alleviation of ethanolic extract of propolis (EEP) on lipid metabolism disorders during aging remains unclear. METHODS AND RESULTS: This study assesseed the impact of EEP intervention (200 mg kg-1 bw) on aging and lipid metabolism disorders in HFD-fed senescence accelerate mouse prone 8 (SAMP8) mice. Findings indicate that EEP ameliorates hair luster degradation and weight gain, reduces systemic inflammation and metabolism levels, enhances hepatic antioxidant enzyme activities, and improves the hepatic expression of senescence-associated secretory phenotype and aging-related genes in HFD-fed SAMP8 mice. Histological staining demonstrates that EEP improves hepatic lipid deposition and inflammatory cell infiltration. Transcriptomic and lipidomic analysis reveal that EEP promotes fatty acid ß-oxidation by activating PPAR pathway, resulting in reduced hepatic lipid deposition, and attenuates bile acid (BA) accumulation by improving BA metabolism, which were ensured through qPCR validation of key genes and immunoblot validation of key proteins. CONCLUSIONS : EEP can regulate lipid metabolic dysregulation during aging accompanied by an HFD, potentially delaying the onset and progression of age-related diseases. This provides new approach for supporting healthy aging.

11.
Food Sci Nutr ; 12(8): 5824-5835, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39139941

ABSTRACT

Various metabolic diseases caused by a high-fat diet (HFD) are closely related to gut microbiota dysbiosis and epithelial barrier dysfunction. Polycan, a type of ß-glucan, is effective in treating anti-obesity and metabolic diseases caused by HFD. However, the effect of Polycan on dysbiosis and epithelial barrier damage is still unknown. In this study, the effects of Polycan on dysbiosis and intestinal barrier damage were investigated using HFD-induced obese model mice. C57BL/6 mice were fed a HFD for 12 weeks and treated with two different doses of Polycan (250 and 500 mg/kg) orally administered during weeks 9 to 12. Polycan supplementation increased the expression of tight junction genes (zonula occludens-1, occludin, and claudin-3) and short-chain fatty acid (SCFA) content while reducing toxic substances (phenol, p-cresol, and skatole). Most significantly, Polycan enriched SCFA-producing bacteria (i.e., Phocaeicola, Bacteroides, Faecalibaculum, Oscillibacter, Lachnospiraceae, and Muribaculaceae), and decreased the Firmicutes/Bacteroidetes ratio and toxic substances-producing bacteria (i.e., Olsenella, Clostridium XVIII, and Schaedlerella). Furthermore, microbial functional capacity prediction of the gut microbiota revealed that Polycan enriched many SCFA-related KEGG enzymes while toxic substance-related KEGG enzymes were depleted. These findings indicated that Polycan has the potential to alleviate HFD-induced intestinal barrier damage by modulating the function and composition of the gut microbiota.

12.
Cell Rep ; 43(8): 114636, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39154340

ABSTRACT

Inflammatory bowel disease (IBD) has high prevalence in Western counties. The high fat content in Western diets is one of the leading causes for this prevalence; however, the underlying mechanisms have not been fully defined. Here, we find that high-fat diet (HFD) induces ferroptosis of intestinal regulatory T (Treg) cells, which might be the key initiating step for the disruption of immunotolerance and the development of colitis. Compared with effector T cells, Treg cells favor lipid metabolism and prefer polyunsaturated fatty acids (PUFAs) for the synthesis of membrane phospholipids. Therefore, consumption of HFD, which has high content of PUFAs such as arachidonic acid, cultivates vulnerable Tregs that are fragile to lipid peroxidation and ferroptosis. Treg-cell-specific deficiency of GPX4, the key enzyme in maintaining cellular redox homeostasis and preventing ferroptosis, dramatically aggravates the pathogenesis of HFD-induced IBD. Taken together, these studies expand our understanding of IBD etiology.

13.
J Nutr ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39154866

ABSTRACT

BACKGROUND: Obesity is often associated with impaired immune responses, including enlarged spleen, increased inflammation, and impaired T cell-mediated function, which may lead to increased susceptibility to infections. Bioactive compounds found in various fruits and vegetables (F&V) have been shown to have strong anti-inflammatory effects. However, few prospective studies have examined the effects of F&V on preventing obesity-associated dysregulation of immune and inflammatory responses. OBJECTIVE: To determine the impact of different levels of a mixture of F&V incorporated in a high-fat diet (HFD) on immune function changes in a diet-induced obesity animal model. METHODS: Six-week-old male C57BL/6J mice were randomly assigned to one of five groups (n = 12/group): matched low-fat control (LF, 10% kcal fat) or high-fat diet (HFD, 45% kcal fat) supplemented with 0%, 5%, 10%, or 15% (wt/wt) freeze-dried powder of the most consumed F&V (human equivalent of 0, 3, 5-7, 8-9 servings/d, respectively) for 20 weeks. Spleen weight was recorded, and the immunophenotype of splenocytes was evaluated by flow cytometry. Ex vivo splenic lymphocyte proliferation was assessed by thymidine incorporation and serum cytokines were measured by Meso Scale Discovery. RESULTS: Mice fed the HFD had significantly higher spleen weight, decreased splenic CD8+ lymphocytes, suppressed T lymphocyte proliferation, and reduced serum IL-1ß and IFN-γ levels compared to those fed the LF diet. Feeding mice with the HFD supplemented with 10% or 15% F&V restored HFD-associated changes of these affected biomarkers compared to those fed HFD only. Further, a significant correlation was found between immunological markers and F&V level. CONCLUSIONS: These results suggest that increased consumption of F&V has beneficial effects in preventing HFD-associated dysregulation of immune function.

14.
Nutrients ; 16(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39125385

ABSTRACT

More effective treatments for hepatitis viral infections have led to a reduction in the incidence of liver cirrhosis. A high-fat diet can lead to chronic hepatitis and liver fibrosis, but the effects of lipid intake on liver disease status, including hepatitis C virus and alcohol, after elimination of the cause are unclear. To investigate the effects, we used a rat cirrhosis model and a high-fat diet in this study. Male Wistar rats were administered carbon tetrachloride for 5 weeks. At 12 weeks of age, one group was sacrificed. The remaining rats were divided into four groups according to whether or not they were administered carbon tetrachloride for 5 weeks, and whether they were fed a high-fat diet or control diet. At 12 weeks of age, liver fibrosis became apparent and then improved in the groups where carbon tetrachloride was discontinued, while it worsened in the groups where carbon tetrachloride was continued. Liver fibrosis was notable in both the carbon tetrachloride discontinuation and continuation groups due to the administration of a high-fat diet. In addition, liver precancerous lesions were observed in all groups, and tumor size and multiplicity were higher in the high-fat diet-fed groups. The expression of genes related to inflammation and lipogenesis were upregulated in rats fed a high-fat diet compared to their controls. The results suggest that a high-fat diet worsens liver fibrosis and promotes liver carcinogenesis, presumably through enhanced inflammation and lipogenesis, even after eliminating the underlying cause of liver cirrhosis.


Subject(s)
Carbon Tetrachloride , Diet, High-Fat , Disease Models, Animal , Liver Cirrhosis , Rats, Wistar , Animals , Diet, High-Fat/adverse effects , Male , Liver Cirrhosis/etiology , Rats , Liver/pathology , Liver/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/etiology , Carcinogenesis , Lipogenesis
15.
Nutr Res Pract ; 18(4): 498-510, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39109194

ABSTRACT

BACKGROUND/OBJECTIVES: Obesity, characterized by abnormal fat accumulation and metabolic disturbances, presents a significant health challenge. Opuntia humifusa Raf., commonly known as Korean Cheonnyuncho, is rich in various beneficial compounds and has demonstrated antioxidant and anti-inflammatory effects. However, its potential impact on glucose and lipid metabolism, particularly in obese rats, remains unexplored. We aimed to investigate whether O. humifusa stems and fruits could beneficially alter glucose metabolism and lipid profiles in a rat model of high-fat diet (HFD)-induced obesity. MATERIALS/METHODS: Thirty-two rats were allocated into 4 groups: normal diet (NF), HFD control (HF), HFD treated with 2% O. humifusa stems (HF-OS), and HFD treated with 2% O. humifusa fruits (HF-OF). Experimental diets were administered for 6 weeks. At the end of the treatment, liver and fat tissues were isolated, and serum was collected for biochemical analysis. The major flavonoid from O. humifusa stems and fruits was identified and quantified. RESULTS: After 6 weeks of treatment, the serum fasting glucose concentration in the HF-OS group was significantly lower than that in the HF group. Serum fasting insulin concentrations in both HF-OS and HF-OF groups tended to be lower than those in the HF group, indicating a significant improvement in insulin sensitivity in the HF-OS group. Additionally, the HF-OS group exhibited a tendency towards the restoration of adiponectin levels to that of the NF group. CONCLUSION: The 2% O. humifusa stems contain abundant quercetin and isorhamnetin, which alter fasting blood glucose levels in rats fed a HFD, leading to a favorable improvement in insulin resistance.

16.
Diabetes Obes Metab ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113250

ABSTRACT

AIM: To investigate the effect of G protein-coupled receptor 55 (GPR55) deletion on glucose homeostasis and islet function following diet-induced obesity. METHODS: GPR55-/- and wild-type (WT) mice were fed ad libitum either standard chow (SC) or a high-fat diet (HFD) for 20 weeks. Glucose and insulin tolerance tests were performed at 9/10 and 19/20 weeks of dietary intervention. Insulin secretion in vivo and dynamic insulin secretion following perifusion of isolated islets were also determined, as were islet caspase-3/7 activities and ß-cell 5-bromo-20-deoxyuridine (BrdU) incorporation. RESULTS: GPR55-/- mice fed a HFD were more susceptible to diet-induced obesity and were more glucose intolerant and insulin resistant than WT mice maintained on a HFD. Islets isolated from HFD-fed GPR55-/- mice showed impaired glucose- and pcacahorbol 12-myristate 13-acetate-stimulated insulin secretion, and they also displayed increased cytokine-induced apoptosis. While there was a 5.6 ± 1.6-fold increase in ß-cell BrdU incorporation in the pancreases of WT mice fed a HFD, this compensatory increase in ß-cell proliferation in response to the HFD was attenuated in GPR55-/- mice. CONCLUSIONS: Under conditions of diet-induced obesity, GPR55-/- mice show impaired glucose handling, which is associated with reduced insulin secretory capacity, increased islet cell apoptosis and insufficient compensatory increases in ß-cell proliferation. These observations support that GPR55 plays an important role in positively regulating islet function.

17.
bioRxiv ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39131361

ABSTRACT

The chronic inflammation present in type 2 diabetes causes many chronic inflammatory comorbidities, including cardiovascular, renal, and neuropathic complications. Type 2 diabetes is also associated with a number of spinal pathologies, including intervertebral disc (IVD) degeneration and chronic neck and back pain. Although confounding factors such as obesity are thought to increase the loads to the musculoskeletal system and subsequent degeneration, studies have shown that even after adjusting age, body mass index, and genetics (e.g. twins), patients with diabetes suffer from disproportionately more IVD degeneration and back pain. Yet the tissue-specific responses of the IVD during diabetes remains relatively unknown. We hypothesize that chronic diabetes fosters a proinflammatory microenvironment within the IVD that accelerates degeneration and increases susceptibility to painful disorders. To test this hypothesis, we evaluated two commonly used mouse models of diabetes - the leptin-receptor deficient mouse (db/db) and the chronic high-fat diet in mice with impaired beta-cell function (STZ-HFD). The db/db is a genetic model that spontaneous develop diabetes through hyperphagia, while the STZ-HFD mouse first exhibits rapid obesity development under HFD and pronounced insulin resistance following streptozotocin administration. Both animal models were allowed to develop sustained diabetes for at least twelve weeks, as defined by elevated hemoglobin A1C, hyperglycemia, and glucose intolerance. Following the twelve-week period, the IVDs were extracted in quantified in several measures including tissue-specific secreted cytokines, viscoelastic mechanical behavior, structural composition, and histopathologic degeneration. Although there were no differences in mechanical function or the overall structure of the IVD, the STZ-HFD IVDs were more degenerated. More notably, the STZ-HFD model shows a significantly higher fold increase for eight cytokines: CXCL2, CCL2, CCL3, CCL4, CCL12 (monocyte/macrophage associated), IL-2, CXCL9 (T-cell associated), and CCL5 (pleiotropic). Correlative network analyses revealed that the expression of cytokines differentially regulated between the db/db and the STZ-HFD models. Moreover, the STZ-HFD contained a fragmented and modular cytokine network, indicating greater complexities in the regulatory network. Taken together, the STZ-HFD model of type 2 diabetes may better recapitulate the complexities of the chronic inflammatory processes in the IVD during diabetes.

18.
Sci Rep ; 14(1): 19651, 2024 08 23.
Article in English | MEDLINE | ID: mdl-39179650

ABSTRACT

Metabolic disorders such as insulin resistance and type 2 diabetes are associated with brain dysfunction and cognitive deficits, although the underpinning molecular mechanisms remain elusive. Epigenetic factors, such as non-coding RNAs, have been reported to mediate the molecular effects of nutrient-related signals. Here, we investigated the changes of miRNA expression profile in the hippocampus of a well-established experimental model of metabolic disease induced by high fat diet (HFD). In comparison to the control group fed with standard diet, we observed 69 miRNAs exhibiting increased expression and 63 showing decreased expression in the HFD mice's hippocampus. Through bioinformatics analysis, we identified numerous potential targets of the dysregulated miRNAs, pinpointing a subset of genes regulating neuroplasticity that were targeted by multiple differentially modulated miRNAs. We also validated the expression of these synaptic and non-synaptic proteins, confirming the downregulation of Synaptotagmin 1 (SYT1), calcium/calmodulin dependent protein kinase I delta (CaMK1D), 2B subunit of N-methyl-D-aspartate glutamate receptor (GRIN2B), the DNA-binding protein Special AT-Rich Sequence-Binding Protein 2 (SATB2), and RNA-binding proteins Cytoplasmic polyadenylation element-binding protein 1 (CPEB1) and Neuro-oncological ventral antigen 1 (NOVA1) in the hippocampus of HFD mice. In summary, our study offers a snapshot of the HFD-related miRNA landscape potentially involved in the alterations of brain functions associated with metabolic disorders. By shedding light on the specific miRNA-mRNA interactions, our research contributes to a deeper understanding of the molecular mechanisms underlying the effects of HFD on the synaptic function.


Subject(s)
Diet, High-Fat , Hippocampus , MicroRNAs , Neuronal Plasticity , Animals , Hippocampus/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Diet, High-Fat/adverse effects , Neuronal Plasticity/genetics , Mice , Male , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Mice, Inbred C57BL , Gene Expression Regulation , Gene Expression Profiling , Synaptotagmin I
19.
Sci Rep ; 14(1): 19227, 2024 08 20.
Article in English | MEDLINE | ID: mdl-39164365

ABSTRACT

Maternal malnutrition has been associated with neurodevelopmental deficits and long-term implications on the offspring's health and behavior. Here, we investigated the effects of maternal low-protein diet (LPD) or obesity-inducing maternal high-fat diet (HFD) on dyadic social interactions, group organization and autism-related behaviors in mice. We found that maternal HFD induced an autism-related behavioral phenotype in the male offspring, including a robust decrease in sociability, increased aggression, cognitive rigidity and repetitive behaviors. Maternal LPD led to a milder yet significant effect on autism-related symptoms, with no effects on olfactory-mediated social behavior. Under naturalistic conditions in a group setting, this manifested in altered behavioral repertoires, increased magnitude in dominance relations, and reduced interactions with novel social stimuli in the HFD male offspring, but not in the LPD offspring. Finally, we found HFD-induced transcriptomic changes in the olfactory bulbs of the male offspring. Together, our findings show that maternal malnutrition induces long-lasting effects on aggression and autism-related behaviors in male offspring, and potential impairments in brain regions processing chemosensory signals.


Subject(s)
Autistic Disorder , Behavior, Animal , Diet, High-Fat , Diet, Protein-Restricted , Social Behavior , Animals , Diet, High-Fat/adverse effects , Female , Male , Mice , Autistic Disorder/etiology , Autistic Disorder/metabolism , Pregnancy , Diet, Protein-Restricted/adverse effects , Aggression , Prenatal Exposure Delayed Effects/metabolism , Mice, Inbred C57BL , Maternal Nutritional Physiological Phenomena , Olfactory Bulb/metabolism , Disease Models, Animal , Obesity/metabolism , Obesity/etiology
20.
J Family Community Med ; 31(3): 237-243, 2024.
Article in English | MEDLINE | ID: mdl-39176010

ABSTRACT

BACKGROUND: The benefits of dietary macronutrients for weight management depend on the integrity of gut hormones. The role of food temperature in the release of satiety hormones and satiety needs elucidation. We aimed to determine the impact of different food temperatures with varying macronutrient compositions on satiety-related gut hormones glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK) and find the correlation of satiety hormones with appetite scores and remainder-day food (energy) intake. MATERIALS AND METHODS: Thirteen healthy participants (eight males and five females) aged 25-35 years with body mass index 18.5-24.9 kg/m2 with no medical illnesses or eating disorders consumed three compositions of meals (high carbohydrate, high fat, and high protein meals) each at three temperatures (cold, warm, and hot) in a randomized, double-blinded, controlled crossover design. Plasma concentrations of peptide hormones were determined at 0, 30, and 240 minutes by enzyme-linked immunosorbent assay, and 24-hours food recall was used for remainder-day food intake (remainder energy). Data were analyzed using SPSS version 27.0. The change in plasma levels of gut hormones with time was assessed using Friedman test; Kruskal-Wallis test was employed to compare GLP-1 and CCK hormonal levels across nine meals. RESULTS: A comparison of the three meals at the three temperatures (total of nine groups), showed that the GLP-1 and CCK plasma concentrations were significantly different (P < 0.001). GLP-1 and CCK responses increased more after hot meals than cold meals. Overall, high-fat meals had more effective gut hormone secretions. The area under the curve was increased for GLP-1 in high-fat meals and for CCK in hot meals. The peptide hormones (GLP-1 and CCK) were positively correlated with satiety scores and inversely with remainder food intake. CONCLUSION: The temperature of food was found to be an effective stimulus for the regulation of CCK and GLP-1 secretion. Hot food temperature increased satiety hormones (CCK and GLP-1), independent of food macronutrient composition.

SELECTION OF CITATIONS
SEARCH DETAIL