Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.523
Filter
1.
Int J Biol Macromol ; : 135871, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39357718

ABSTRACT

Histone modifications (HMs) play various roles in growth, development, and resistance to abiotic stress. However, HMs have been systematically identified in a few plants, and identification of HMs in medicinal plants is very rare. Aquilaria sinensis is a typical stress-induced medicinal plant, in which HMs remain unexplored. We conducted a comprehensive study to identify HMs and obtained 123 HMs. To conduct evolutionary analysis, we constructed phylogenetic trees and analyzed gene structures. To conduct functional analysis, we performed promoter, GO, and KEGG analyses and ortholog analyses against AtHMs. Based on the expression profiles of different tissues and different layers of Agar-Wit, some HMs of A. sinensis (AsHMs) were predicted to be involved in the formation of agarwood, and their response to MeJA and NaCl stress was tested by qRT-PCR analysis. By analyzing the enrichment of H3K4me3, H3K27me3, and H4K5ac in the promoter regions of two key sesquiterpene synthase genes, AsTPS13/18, we hypothesized that AsHMs play important roles in the synthesis of agarwood sesquiterpenes. We confirmed this hypothesis by conducting RNAi transgenic interference experiments. This study provided valuable information and important biological theories for studying epigenetic regulation in the formation of agarwood. It also provided a framework for conducting further studies on the biological functions of HMs.

2.
Proc Natl Acad Sci U S A ; 121(42): e2404058121, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39382996

ABSTRACT

The analysis of tissues of origin of cell-free DNA (cfDNA) is of research and diagnostic interest. Many studies focused on bisulfite treatment or immunoprecipitation protocols to assess the tissues of origin of cfDNA. DNA loss often occurs during such processes. Fragmentomics of cfDNA molecules has uncovered a wealth of information related to tissues of origin of cfDNA. There is still much room for the development of tools for assessing contributions from various tissues into plasma using fragmentomic features. Hence, we developed an approach to analyze the relative contributions of DNA from different tissues into plasma, by identifying characteristic fragmentation patterns associated with selected histone modifications. We named this technique as FRAGmentomics-based Histone modification Analysis (FRAGHA). Deduced placenta-specific histone H3 lysine 27 acetylation (H3K27ac)-associated signal correlated well with the fetal DNA fraction in maternal plasma (Pearson's r = 0.96). The deduced liver-specific H3K27ac-associated signal correlated with the donor-derived DNA fraction in liver transplantation recipients (Pearson's r = 0.92) and was significantly increased in patients with hepatocellular carcinoma (HCC) (P < 0.01, Wilcoxon rank-sum test). Significant elevations of erythroblasts-specific and colon-specific H3K27ac-associated signals were observed in patients with ß-thalassemia major and colorectal cancer, respectively. Furthermore, using the fragmentation patterns from tissue-specific H3K27ac regions, a machine learning algorithm was developed to enhance HCC detection, with an area under the curve (AUC) of up to 0.97. Finally, genomic regions with H3K27ac or histone H3 lysine 4 trimethylation (H3K4me3) were found to exhibit different fragmentomic patterns of cfDNA. This study has shed light on the relationship between cfDNA fragmentomics and histone modifications, thus expanding the armamentarium of liquid biopsy.


Subject(s)
Cell-Free Nucleic Acids , DNA Fragmentation , Histone Code , Histones , Nucleosomes , Humans , Nucleosomes/metabolism , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , Histones/metabolism , Histones/blood , Female , Liver Neoplasms/blood , Liver Neoplasms/genetics , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/genetics , Pregnancy , Acetylation , Placenta/metabolism , Male
3.
Cell Insight ; 3(6): 100195, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39391004

ABSTRACT

During the development of eukaryote, faithful inheritance of chromatin states is central to the maintenance of cell fate. DNA replication poses a significant challenge for chromatin state inheritance because every nucleosome in the genome is disrupted as the replication fork passes. It has been found that many factors including DNA polymerases, histone chaperones, as well as, RNA Pol II and histone modifying enzymes coordinate spatially and temporally to maintain the epigenome during this progress. In this review, we provide a summary of the detailed mechanisms of replication-coupled nucleosome assembly and post-replication chromatin maturation, highlight the inheritance of chromatin states and epigenome during these processes, and discuss the future directions and challenges in this field.

4.
Reprod Domest Anim ; 59(10): e14726, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39344426

ABSTRACT

Assisted reproductive technologies (ART) play a crucial role in conserving threatened wildlife species such as Bos gaurus. ART requires a large number of mature oocytes, and small antral follicles (SAFs) in the ovary are often used to obtain abundant sources of bovine oocytes. However, oocytes from SAFs often experience difficulty completing maturation and obtaining high quality and quantity of blastocyst formation compared to fully grown oocytes. This study aimed to increase the number of high-quality mature oocytes and improve their potential for ART applications in cloned and interspecies intracytoplasmic sperm injection (ICSI) embryos by utilising L-ascorbic acid (LAA) in pre in vitro maturation (pre-IVM) culture. First, oocytes isolated from SAFs were cultured with the duration of pre-IVM 0, 6, 8, 10 h and different concentrations of LAA to determine good conditions for oocyte maturation. Then, mature oocytes were assessed for their developmental competence through parthenogenesis, cloned and interspecies ICSI embryos. The results showed that 8-h pre-IVM with 50 µg/mL LAA improved the maturation rate and developmental competence of parthenogenetic and clone embryos, especially, improving the high blastocyst quality by increasing cell number and expression of histone acetylation at lysine 9 (H3K9ac). In addition, the culture process improved the nuclear reprogramming of somatic cells after nuclear transfer into mature oocytes, resulting in an increased hatching rate of cloned embryos. It also enhanced the activation and the pronuclear formation rate of Gaurus-Taurus zygotes. Overall, the established pre-IVM culture method enhanced the meiotic and developmental competence of embryos. This procedure opened hope for the preservation of endangered species and other applications.


Subject(s)
In Vitro Oocyte Maturation Techniques , Nuclear Transfer Techniques , Oocytes , Ovarian Follicle , Sperm Injections, Intracytoplasmic , Animals , Cattle/embryology , Nuclear Transfer Techniques/veterinary , Female , Sperm Injections, Intracytoplasmic/veterinary , Oocytes/physiology , In Vitro Oocyte Maturation Techniques/veterinary , In Vitro Oocyte Maturation Techniques/methods , Embryonic Development , Cloning, Organism/veterinary , Cloning, Organism/methods , Ascorbic Acid/pharmacology , Embryo Culture Techniques/veterinary , Blastocyst/physiology , Zygote , Parthenogenesis
5.
Mol Oncol ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39327672

ABSTRACT

Precise regulation of gene expression is essential for proper development and the maintenance of homeostasis in organisms. Studies have shown that some transcriptional regulatory proteins influence gene expression through the formation of dynamic, locally concentrated assemblies known as condensates, while dysregulation of transcriptional condensates was associated with several cancers, such as Ewing sarcoma and AML [Wang Y et al. (2023) Nat Chem Biol 19, 1223-1234; Chandra B et al. (2022) Cancer Discov 12, 1152-1169]. Mutations in the histone acetylation "reader" eleven-nineteen-leukemia (ENL) have been shown to form discrete condensates at endogenous genomic targets, but it remains unclear how ENL mutations drive tumorigenesis and whether it is correlated with their condensate formation property. Liu et al. now show, using a conditional knock-in mouse model, that ENL YEATS domain mutation is a bona fide oncogenic driver for AML. This mutant ENL forms condensates in hematopoietic stem/progenitor cells at the genomic loci of key leukemogenic genes, including Meis1 and Hoxa cluster genes, and disrupting condensate formation via mutagenesis impairs its chromatin and oncogenic function. Furthermore, they show that small-molecule inhibition of the acetyl-binding activity displaces ENL mutant condensates from oncogenic target loci, and this inhibitor significantly impairs the onset and progression of AML driven by mutant ENL in vivo.

6.
Neuropharmacology ; 261: 110164, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39307393

ABSTRACT

The management and treatment of bone cancer pain (BCP) remain significant clinical challenges, imposing substantial economic burdens on patients and society. Extensive research has demonstrated that BCP induces changes in the gene expression of peripheral sensory nerves and neurons, which play crucial roles in the onset and maintenance of BCP. However, our understanding of the epigenetic mechanisms of BCP underlying the transcriptional regulation of pro-nociceptive (such as inflammatory factors and the transient receptor potential family) and anti-nociceptive (such as potassium channels and opioid receptors) genes remains limited. This article reviews the epigenetic regulatory mechanisms in BCP, analyzing the roles of histone modifications, DNA methylation, and noncoding RNAs (ncRNAs) in the expression of pro-nociceptive and anti-nociceptive genes. Finally, we provide a comprehensive view of the functional mechanisms of epigenetic regulation in BCP and explore the potential of these epigenetic molecules as therapeutic targets for BCP.

7.
Front Mol Neurosci ; 17: 1417961, 2024.
Article in English | MEDLINE | ID: mdl-39290830

ABSTRACT

The progressive degeneration of motor neurons in amyotrophic lateral sclerosis (ALS) is accompanied by the formation of a broad array of cytoplasmic and nuclear neuronal inclusions (protein aggregates) largely containing RNA-binding proteins such as TAR DNA-binding protein 43 (TDP-43) or fused in sarcoma/translocated in liposarcoma (FUS/TLS). This process is driven by a liquid-to-solid phase separation generally from proteins in membrane-less organelles giving rise to pathological biomolecular condensates. The formation of these protein aggregates suggests a fundamental alteration in the mRNA expression or the levels of the proteins involved. Considering the role of the epigenome in gene expression, alterations in DNA methylation, histone modifications, chromatin remodeling, non-coding RNAs, and RNA modifications become highly relevant to understanding how this pathological process takes effect. In this review, we explore the evidence that links epigenetic mechanisms with the formation of protein aggregates in ALS. We propose that a greater understanding of the role of the epigenome and how this inter-relates with the formation of pathological LLPS in ALS will provide an attractive therapeutic target.

8.
New Phytol ; 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39279041

ABSTRACT

Chromatin immunoprecipitation and sequencing (vs ChIP-seq) is an essential tool for epigenetic and molecular genetic studies. Although being routinely used, ChIP-seq is expensive, requires grams of plant materials, and is challenging for samples that enrich fatty acids such as seeds. Here, we developed an Ultrasensitive Plant ChIP-seq (UP-ChIP) method based on native ChIP-seq combined with Tn5 tagmentation-based library construction strategy. UP-ChIP is generally applicable for profiling both histone modification and Pol II in a wide range of plant samples, such as a single Arabidopsis seedling, a few Arabidopsis seeds, and sorted nuclei. Compared with conventional ChIP-seq, UP-ChIP is much less labor intensive and only consumes 1 µg of antibody and 10 µl of Protein-A/G conjugated beads for each IP and can work effectively with the amount of starting material down to a few milligrams. By performing UP-ChIP in various conditions and genotypes, we showed that UP-ChIP is highly reliable, sensitive, and quantitative for studying histone modifications. Detailed UP-ChIP protocol is provided. We recommend UP-ChIP as an alternative to traditional ChIP-seq for profiling histone modifications and Pol II, offering the advantages of reduced labor intensity, decreased costs, and low-sample input.

9.
Crit Rev Oncol Hematol ; 204: 104498, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39244179

ABSTRACT

Hematologic malignancies are lethal diseases arising from accumulated leukemic cells with substantial genetic or epigenetic defects in their natural development. Epigenetic modifications, including DNA methylation and histone modifications, are critical in hematologic malignancy formation, propagation, and treatment response. Both mutations and aberrant recruitment of epigenetic modifiers are reported in different hematologic malignancies, which regarding the reversible nature of epigenetic regulations, make them a potential target for cancer treatment. Here, we have first outlined a comprehensive overview of current knowledge related to epigenetic regulation's impact on the development and prognosis of hematologic malignancies. Furthermore, we have presented an updated overview regarding the current status of epigenetic-based drugs in hematologic malignancies treatment. And finally, discuss current challenges and ongoing clinical trials based on the manipulation of epigenetic modifies in hematologic malignancies.

11.
Prog Mol Biol Transl Sci ; 208: 185-209, 2024.
Article in English | MEDLINE | ID: mdl-39266182

ABSTRACT

The CRISPR-Cas9 method has revolutionized the gene editing. Epigenetic changes, including DNA methylation, RNA modification, and changes in histone proteins, have been intensively studied and found to play a key role in the pathogenesis of human diseases. CRISPR-While the utility of DNA and chromatin modifications, known as epigenetics, is well understood, the functional significance of various alterations of RNA nucleotides has recently gained attention. Recent advancements in improving CRISPR-based epigenetic modifications has resulted in the availability of a powerful source that can selectively modify DNA, allowing for the maintenance of epigenetic memory over several cell divisions. Accurate identification of DNA methylation at specific locations is crucial for the prompt detection of cancer and other diseases, as DNA methylation is strongly correlated to the onset as well as the advancement of such conditions. Genetic or epigenetic perturbations can disrupt the regulation of imprinted genes, resulting in the development of diseases. When histone code editors and DNA de-/ methyltransferases are coupled with catalytically inactive Cas9 (dCas9), and CRISPRa and CRISPRi, they demonstrate excellent efficacy in editing the epigenome of eukaryotic cells. Advancing and optimizing the extracellular delivery platform can, hence, further facilitate the manipulation of CRISPR-Cas9 gene editing technique in upcoming clinical studies. The current chapter focuses on how the CRISP/ Cas9 system provides an avenue for the epigenetic modifications and its employability for human benefit.


Subject(s)
CRISPR-Cas Systems , Epigenesis, Genetic , Humans , CRISPR-Cas Systems/genetics , Animals , Gene Editing/methods , DNA Methylation/genetics
12.
Sci Rep ; 14(1): 21305, 2024 09 12.
Article in English | MEDLINE | ID: mdl-39266663

ABSTRACT

During the development of multicellular organisms and cell differentiation, the chromatin structure in the cell nucleus undergoes extensive changes, and the nucleosome structure is formed by a combination of various histone variants. Histone variants with diverse posttranslational modifications are known to play crucial roles in different regulatory functions. We have previously reported that H3t, a testis-specific histone variant, is essential for spermatogenesis. To elucidate the function of this chromatin molecule in vivo, we generated knock-in mice with a FLAG tag attached to the carboxyl terminus of H3t. In the present study, we evaluated the utility of the generated knock-in mice and comprehensively analyzed posttranslational modifications of canonical H3 and H3t using mass spectrometry. Herein, we found that H3t-FLAG was incorporated into spermatogonia and meiotic cells in the testes, as evidenced by immunostaining of testicular tissue. According to the mass spectrometry analysis, the overall pattern of H3t-FLAG posttranslational modification was comparable to that of the control H3, while the relative abundances of certain specific modifications differed between H3t-FLAG and the control bulk H3. The generated knock-in mice could be valuable for analyzing the function of histone variants in vivo.


Subject(s)
Gene Knock-In Techniques , Histones , Protein Processing, Post-Translational , Testis , Animals , Histones/metabolism , Histones/genetics , Male , Testis/metabolism , Mice , Spermatogenesis/genetics , Spermatogonia/metabolism
13.
Front Immunol ; 15: 1450440, 2024.
Article in English | MEDLINE | ID: mdl-39229271

ABSTRACT

Impaired wound healing is one of the main clinical complications of type 2 diabetes (T2D) and a major cause of lower limb amputation. Diabetic wounds exhibit a sustained inflammatory state, and reducing inflammation is crucial to diabetic wounds management. Macrophages are key regulators in wound healing, and their dysfunction would cause exacerbated inflammation and poor healing in diabetic wounds. Gene regulation caused by histone modifications can affect macrophage phenotype and function during diabetic wound healing. Recent studies have revealed that targeting histone-modifying enzymes in a local, macrophage-specific manner can reduce inflammatory responses and improve diabetic wound healing. This article will review the significance of macrophage phenotype and function in wound healing, as well as illustrate how histone modifications affect macrophage polarization in diabetic wounds. Targeting macrophage phenotype with histone-modifying enzymes may provide novel therapeutic strategies for the treatment of diabetic wound healing.


Subject(s)
Diabetes Mellitus, Type 2 , Inflammation , Macrophages , Wound Healing , Wound Healing/immunology , Humans , Macrophages/immunology , Macrophages/metabolism , Animals , Inflammation/immunology , Inflammation/metabolism , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/metabolism , Histone Code , Histones/metabolism
14.
Int J Mol Sci ; 25(18)2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39337298

ABSTRACT

The six PCGF proteins (PCGF1-6) define the biochemical identity of Polycomb repressor complex 1 (PRC1) subcomplexes. While structural and functional studies of PRC1 subcomplexes have revealed their specialized roles in distinct aspects of epigenetic regulation, our understanding of the variation in the protein interaction networks of distinct PCGF subunits in different PRC1 complexes is incomplete. We carried out an affinity purification mass spectrometry (AP-MS) screening of three PCGF subunits, PCGF1 (NSPC1), PCGF2 (MEL18), and PCGF4 (BMI1), to define their interactome and potential cellular function in pluripotent human embryonal carcinoma cell "NT2". The bioinformatic analysis revealed that these interacting proteins cover a range of functional pathways, often involved in cell biology and chromatin regulation. We also found evidence of mutual regulation (at mRNA and protein level) between three distinct PCGF subunits. Furthermore, we confirmed that the disruption of these subunits results in reduced cell proliferation ability. We reveal an interplay between the compositional diversity of the distinct PCGF containing PRC1 complex and the potential role of PCGF proteins within the wider cellular network.


Subject(s)
Polycomb Repressive Complex 1 , Protein Interaction Maps , Protein Subunits , Humans , Polycomb Repressive Complex 1/metabolism , Polycomb Repressive Complex 1/genetics , Protein Subunits/metabolism , Protein Subunits/genetics , Cell Proliferation , Cell Line, Tumor , Protein Binding , Mass Spectrometry
15.
Brief Bioinform ; 25(6)2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39316943

ABSTRACT

Histone modifications (HMs) are pivotal in various biological processes, including transcription, replication, and DNA repair, significantly impacting chromatin structure. These modifications underpin the molecular mechanisms of cell-type-specific gene expression and complex diseases. However, annotating HMs across different cell types solely using experimental approaches is impractical due to cost and time constraints. Herein, we present dHICA (deep histone imputation using chromatin accessibility), a novel deep learning framework that integrates DNA sequences and chromatin accessibility data to predict multiple HM tracks. Employing the transformer architecture alongside dilated convolutions, dHICA boasts an extensive receptive field and captures more cell-type-specific information. dHICA outperforms state-of-the-art baselines and achieves superior performance in cell-type-specific loci and gene elements, aligning with biological expectations. Furthermore, dHICA's imputations hold significant potential for downstream applications, including chromatin state segmentation and elucidating the functional implications of SNPs (Single Nucleotide Polymorphisms). In conclusion, dHICA serves as a valuable tool for advancing the understanding of chromatin dynamics, offering enhanced predictive capabilities and interpretability.


Subject(s)
Chromatin , Histones , Chromatin/metabolism , Chromatin/genetics , Histones/metabolism , Histones/genetics , Humans , Polymorphism, Single Nucleotide , Deep Learning , Computational Biology/methods , Histone Code
16.
Cell Rep ; 43(9): 114730, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39244754

ABSTRACT

The polymerase-associated factor 1 (Paf1) complex (Paf1C) is a conserved protein complex with critical functions during eukaryotic transcription. Previous studies showed that Paf1C is multi-functional, controlling specific aspects of transcription ranging from RNA polymerase II (RNAPII) processivity to histone modifications. However, it is unclear how specific Paf1C subunits directly impact transcription and coupled processes. We have compared conditional depletion to steady-state deletion for each Paf1C subunit to determine the direct and indirect contributions to gene expression in Saccharomyces cerevisiae. Using nascent transcript sequencing, RNAPII profiling, and modeling of transcription elongation dynamics, we have demonstrated direct effects of Paf1C subunits on RNAPII processivity and elongation rate and indirect effects on transcript splicing and repression of antisense transcripts. Further, our results suggest that the direct transcriptional effects of Paf1C cannot be readily assigned to any particular histone modification. This work comprehensively analyzes both the immediate and the extended roles of each Paf1C subunit in transcription elongation and transcript regulation.


Subject(s)
RNA Polymerase II , RNA Splicing , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Transcription Elongation, Genetic , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , RNA Splicing/genetics , RNA Polymerase II/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Gene Expression Regulation, Fungal , Histones/metabolism , Histone Code , Transcription, Genetic
17.
Mol Metab ; 90: 102032, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39305948

ABSTRACT

OBJECTIVES: Histone acetylation is an important epigenetic modification that regulates various biological processes and cell homeostasis. Acetyl-CoA, a hub molecule of metabolism, is the substrate for histone acetylation, thus linking metabolism with epigenetic regulation. However, still relatively little is known about the dynamics of histone acetylation and its dependence on metabolic processes, due to the lack of integrated methods that can capture site-specific histone acetylation and deacetylation reactions together with the dynamics of acetyl-CoA synthesis. METHODS: In this study, we present a novel proteo-metabo-flux approach that combines mass spectrometry-based metabolic flux analysis of acetyl-CoA and histone acetylation with computational modelling. We developed a mathematical model to describe metabolic label incorporation into acetyl-CoA and histone acetylation based on experimentally measured relative abundances. RESULTS: We demonstrate that our approach is able to determine acetyl-CoA synthesis dynamics and site-specific histone acetylation and deacetylation reaction rate constants, and that consideration of the metabolically labelled acetyl-CoA fraction is essential for accurate determination of histone acetylation dynamics. Furthermore, we show that without correction, changes in metabolic fluxes would be misinterpreted as changes in histone acetylation dynamics, whereas our proteo-metabo-flux approach allows to distinguish between the two processes. CONCLUSIONS: Our proteo-metabo-flux approach expands the repertoire of metabolic flux analysis and cross-omics and represents a valuable approach to study the regulatory interplay between metabolism and epigenetic regulation by histone acetylation.

18.
Diabetes Metab Syndr Obes ; 17: 3557-3576, 2024.
Article in English | MEDLINE | ID: mdl-39323929

ABSTRACT

Although genetic, environmental, and lifestyle factors largely contribute to type 2 diabetes mellitus (T2DM) risk, the role of epigenetics in its pathogenesis is now well established. The epigenetic mechanisms in T2DM mainly consist of DNA methylation, histone modifications and regulation by noncoding RNAs (ncRNAs). For instance, DNA methylation at CpG islands in the promoter regions of specific genes encoding insulin signaling and glucose metabolism suppresses these genes. Modulating the enzyme mediators of these epigenetic marks aims to restore standard gene expression patterns and improve glycemic control. In targeting these epigenetic marks, using epigenetic drugs such as DNA methyltransferase (DNAMT), histone deacetylase (HDAC) and histone acetyltransferase (HAT) inhibitors has led to variable success in humans and experimental murine models. Specifically, the United States' Food and Drug Administration (US FDA) has approved DNAMT inhibitors like 5-azacytidine and 5-aza-2'-deoxycytidine for use in diabetic retinopathy: a T2DM microvascular complication. These DNAMT inhibitors block the genes for methylation of mitochondrial superoxide dismutase 2 (SOD2) and matrix metallopeptidase 9 (MMP-9): the epigenetic marks in diabetic retinopathy. Traditional pharmacotherapy with metformin also have epigenetic effects in T2DM and positively alter disease outcomes when combined with epigenetic drugs like DNAMT and HDAC inhibitors, raising the prospect of using epigenetic therapy as a valuable adjunct to pharmacotherapy. However, introducing small interfering RNAs (siRNAs) in cells to silence specific target genes remains in the exploratory phase. Future research should focus on regulating gene expression in T2DM using long noncoding RNA (lncRNA) molecules, another type of ncRNA. This review discusses the epigenetics of T2DM and that of its macro- and microvascular complications, and the potential benefits of combining epigenetic therapy with pharmacotherapy for optimal results.

19.
Adv Sci (Weinh) ; : e2404608, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39250325

ABSTRACT

Post-translational modifications on the histone H3 tail regulate chromatin structure, impact epigenetics, and hence the gene expressions. Current chemical modulation tools, such as unnatural amino acid incorporation, protein splicing, and sortase-based editing, have allowed for the modification of histones with various PTMs in cellular contexts, but are not applicable for editing native chromatin. The use of small organic molecules to manipulate histone-modifying enzymes alters endogenous histone PTMs but lacks precise temporal and spatial control. To date, there has been no achievement in modulating histone methylation in living cells with spatiotemporal resolution. In this study, a new method is presented for temporally manipulating histone dimethylation H3K9me2 using a photo-responsive inhibitor that specifically targets the methyltransferase G9a on demand. The photo-caged molecule is stable under physiological conditions and cellular environments, but rapidly activated upon exposure to light, releasing the bioactive component that can immediately inhibit the catalytic ability of the G9a in vitro. Besides, this masked compound could also efficiently reactivate the inhibition of methyltransferase activity in living cells, subsequently suppress H3K9me2, a mark that regulates various chromatin functions. Therefore, the chemical system will be a valuable tool for manipulating the epigenome for therapeutic purposes and furthering the understanding of epigenetic mechanisms.

20.
MedComm (2020) ; 5(9): e670, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39184862

ABSTRACT

Gastrointestinal tumors, the second leading cause of human mortality, are characterized by their association with inflammation. Currently, progress in the early diagnosis and effective treatment of gastrointestinal tumors is limited. Recent whole-genome analyses have underscored their profound heterogeneity and extensive genetic and epigenetic reprogramming. Epigenetic reprogramming pertains to dynamic and hereditable alterations in epigenetic patterns, devoid of concurrent modifications in the underlying DNA sequence. Common epigenetic modifications encompass DNA methylation, histone modifications, noncoding RNA, RNA modifications, and chromatin remodeling. These modifications possess the potential to invoke or suppress a multitude of genes associated with cancer, thereby governing the establishment of chromatin configurations characterized by diverse levels of accessibility. This intricate interplay assumes a pivotal and indispensable role in governing the commencement and advancement of gastrointestinal cancer. This article focuses on the impact of epigenetic reprogramming in the initiation and progression of gastric cancer, esophageal cancer, and colorectal cancer, as well as other uncommon gastrointestinal tumors. We elucidate the epigenetic landscape of gastrointestinal tumors, encompassing DNA methylation, histone modifications, chromatin remodeling, and their interrelationships. Besides, this review summarizes the potential diagnostic, therapeutic, and prognostic targets in epigenetic reprogramming, with the aim of assisting clinical treatment strategies.

SELECTION OF CITATIONS
SEARCH DETAIL