Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30.708
Filter
1.
mBio ; : e0038424, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087767

ABSTRACT

Serine protease inhibitors (serpins) constitute the largest family of protease inhibitors expressed in humans, but their role in infection remains largely unexplored. In infected macrophages, the mycobacterial ESX-1 type VII secretion system permeabilizes internal host membranes and causes leakage into the cytosol of host DNA, which induces type I interferon (IFN) production via the cyclic GMP-AMP synthase (cGAS) and stimulator of IFN genes (STING) surveillance pathway, and promotes infection in vivo. Using the Mycobacterium marinum infection model, we show that ESX-1-mediated type I IFN signaling in macrophages selectively induces the expression of serpina3f and serpina3g, two cytosolic serpins of the clade A3. The membranolytic activity of ESX-1 also caused leakage of cathepsin B into the cytosol where it promoted cell death, suggesting that the induction of type I IFN comes at the cost of lysosomal rupture and toxicity. However, the production of cytosolic serpins suppressed the protease activity of cathepsin B in this compartment and thus limited cell death, a function that was associated with increased bacterial growth in infected mice. These results suggest that cytosolic serpins act in a type I IFN-dependent cytoprotective feedback loop to counteract the inevitable toxic effect of ESX-1-mediated host membrane rupture. IMPORTANCE: The ESX-1 type VII secretion system is a key virulence determinant of pathogenic mycobacteria. The ability to permeabilize host cell membranes is critical for several ESX-1-dependent virulence traits, including phagosomal escape and induction of the type I interferon (IFN) response. We find that it comes at the cost of lysosomal leakage and subsequent host cell death. However, our results suggest that ESX-1-mediated type I IFN signaling selectively upregulates serpina3f and serpina3g and that these cytosolic serpins limit cell death caused by cathepsin B that has leaked into the cytosol, a function that is associated with increased bacterial growth in vivo. The ability to rupture host membranes is widespread among bacterial pathogens, and it will be of interest to evaluate the role of cytosolic serpins and this type I IFN-dependent cytoprotective feedback loop in the context of human infection.

2.
Chemistry ; : e202402547, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087783

ABSTRACT

An adaptable Fe(II) tetrahedral cage, [Fe4L4][BF4]8 (L = tris(4-(((E)-pyridin-2-ylmethylene)amino)phenyl) phosphate), has been synthesised via self-assembly. By modulating the orientation of its pendant P=O groups, the cage was found to be capable of encapsulating anionic, neutral, and cationic guests, which was confirmed in the solid state via single-crystal X-ray diffraction (SCXRD) and in solution by high-resolution mass spectroscopy (HR-MS), as well as by NMR (1H, 19F, 31P) studies where possible.

3.
Article in English | MEDLINE | ID: mdl-39086612

ABSTRACT

The ubiquitin system has been shown to play an important role in regulation of immune responses during viral infection. In a recent article published in Science Signaling, Wu and colleagues revealed that transcriptional factor Miz1 plays a pro-viral role in influenza A virus (IAV) infection by suppressing type I interferons (IFNs) production through recruiting HDAC1 to ifnb1 promoter. They show that a series of E3 ligases combinatorially regulates Miz1 ubiquitination and degradation and modulates IFNs production and viral replication.

4.
Curr Res Microb Sci ; 7: 100241, 2024.
Article in English | MEDLINE | ID: mdl-39091295

ABSTRACT

Bacterial endophytes are a crucial component of the phytomicrobiome, playing an essential role in agriculture and industries. Endophytes are a rich source of bioactive compounds, serving as natural antibiotics that can be effective in combating antibiotic resistance in pathogens. These bacteria interact with host plants through various processes such as quorum sensing, chemotaxis, antibiosis, and enzymatic activity. The current paper focuses on how plants benefit extensively from endophytic bacteria and their symbiotic relationship in which the microbes enhance plant growth, nitrogen fixation, increase nutrient uptake, improve defense mechanisms, and act as antimicrobial agents against pathogens. Moreover, it highlights some of the bioactive compounds produced by endophytes.

5.
BMC Plant Biol ; 24(1): 736, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095719

ABSTRACT

BACKGROUND: Septoria tritici blotch (STB), caused by the foliar fungus Zymoseptoria tritici, is one of the most damaging disease of wheat in Europe. Genetic resistance against this fungus relies on different types of resistance from non-host resistance (NHR) and host species specific resistance (HSSR) to host resistance mediated by quantitative trait loci (QTLs) or major resistance genes (Stb). Characterizing the diversity of theses resistances is of great importance for breeding wheat cultivars with efficient and durable resistance. While the functional mechanisms underlying these resistance types are not well understood, increasing piece of evidence suggest that fungus stomatal penetration and early establishment in the apoplast are both crucial for the outcome of some interactions between Z. tritici and plants. To validate and extend these previous observations, we conducted quantitative comparative phenotypical and cytological analyses of the infection process corresponding to 22 different interactions between plant species and Z. tritici isolates. These interactions included four major bread wheat Stb genes, four bread wheat accessions with contrasting quantitative resistance, two species resistant to Z. tritici isolates from bread wheat (HSSR) and four plant species resistant to all Z. tritici isolates (NHR). RESULTS: Infiltration of Z. tritici spores into plant leaves allowed the partial bypass of all bread wheat resistances and durum wheat resistance, but not resistances from other plants species. Quantitative comparative cytological analysis showed that in the non-grass plant Nicotiana benthamiana, Z. tritici was stopped before stomatal penetration. By contrast, in all resistant grass plants, Z. tritici was stopped, at least partly, during stomatal penetration. The intensity of this early plant control process varied depending on resistance types, quantitative resistances being the least effective. These analyses also demonstrated that Stb-mediated resistances, HSSR and NHR, but not quantitative resistances, relied on the strong growth inhibition of the few Z. tritici penetrating hyphae at their entry point in the sub-stomatal cavity. CONCLUSIONS: In addition to furnishing a robust quantitative cytological assessment system, our study uncovered three stopping patterns of Z. tritici by plant resistances. Stomatal resistance was found important for most resistances to Z. tritici, independently of its type (Stb, HSSR, NHR). These results provided a basis for the functional analysis of wheat resistance to Z. tritici and its improvement.


Subject(s)
Ascomycota , Disease Resistance , Plant Diseases , Plant Stomata , Triticum , Ascomycota/physiology , Triticum/microbiology , Triticum/genetics , Triticum/immunology , Plant Stomata/physiology , Plant Stomata/microbiology , Plant Diseases/microbiology , Plant Diseases/immunology , Disease Resistance/genetics , Quantitative Trait Loci , Host-Pathogen Interactions
6.
Best Pract Res Clin Haematol ; 37(2): 101555, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39098803

ABSTRACT

Allogeneic hematopoietic cell transplantation (alloHCT) provides a potential curative treatment for haematological malignancies. The therapeutic Graft-versus-Leukaemia (GvL) effect is induced by donor T cells attacking patient hematopoietic (malignant) cells. However, if healthy non-hematopoietic tissues are targeted, Graft-versus-Disease (GvHD) may develop. After HLA-matched alloHCT, GvL and GvHD are induced by donor T cells recognizing polymorphic peptides presented by HLA on patient cells, so-called minor histocompatibility antigens (MiHAs). The balance between GvL and GvHD depends on the tissue distribution of MiHAs and T-cell frequencies targeting these MiHAs. T cells against broadly expressed MiHAs induce GvL and GvHD, whereas those targeting MiHAs with hematopoietic-restricted expression induce GvL without GvHD. Recently, the MiHA repertoire identified in natural immune responses after alloHCT was expanded to 159 total HLA-I-restricted MiHAs, including 14 hematopoietic-restricted MiHAs. This review explores their potential relevance to predict, monitor, and manipulate GvL and GvHD for improving clinical outcome after HLA-matched alloHCT.


Subject(s)
Graft vs Host Disease , Graft vs Leukemia Effect , Hematopoietic Stem Cell Transplantation , Minor Histocompatibility Antigens , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Graft vs Host Disease/immunology , Minor Histocompatibility Antigens/immunology , Minor Histocompatibility Antigens/genetics , Graft vs Leukemia Effect/immunology , Transplantation, Homologous , Hematologic Neoplasms/therapy , Hematologic Neoplasms/immunology , T-Lymphocytes/immunology , Allografts
7.
Small ; : e2406018, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101351

ABSTRACT

Although various electrocatalysts have been developed to ameliorate the shuttle effect and sluggish Li-S conversion kinetics, their electrochemical inertness limits the sufficient performance improvement of lithium-sulfur batteries (LSBs). In this work, an electrochemically active MoO3/TiN-based heterostructure (MOTN) is designed as an efficient sulfur host that can improve the overall electrochemical properties of LSBs via prominent lithiation behaviors. By accommodating Li ions into MoO3 nanoplates, the MOTN host can contribute its own capacity. Furthermore, the Li intercalation process dynamically affects the electronic interaction between MoO3 and TiN and thus significantly reinforces the built-in electric field, which further improves the comprehensive electrocatalytic abilities of the MOTN host. Because of these merits, the MOTN host-based sulfur cathode delivers an exceptional specific capacity of 2520 mA h g-1 at 0.1 C. Furthermore, the cathode exhibits superior rate capability (564 mA h g-1 at 5 C), excellent cycling stability (capacity fade rate of 0.034% per cycle for 1200 cycles at 2 C), and satisfactory areal capacity (6.6 mA h cm-2) under a high sulfur loading of 8.3 mg cm-2. This study provides a novel strategy to develop electrochemically active heterostructured electrocatalysts and rationally manipulate the built-in electric field for achieving high-performance LSBs.

8.
Chemistry ; : e202402294, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101875

ABSTRACT

In this work, we synthesize a series of push-pull compounds bearing naphthalimide as the electron acceptor and tetraphenylethylene (TPE)/triphenylamine (TPA)/phenothiazine (PTZ) as the electron rich/electron donor units. These moieties are arranged in highly conjugated quadrupolar structures. The structure-property relationships are investigated through a joint experimental time-resolved spectroscopic and computational TD-DFT study. The femtosecond transient absorption and fluorescence up-conversion experiments reveal ultrafast photoinduced intramolecular charge transfer. This is likely the key factor leading to efficient spin-orbit CT-induced intersystem crossing for the TPA- and PTZ-derivatives as well as to small singlet-to-triplet energy gap. Consequently, evidence for a delayed fluorescence component is found together with the main prompt emission in the fluorescence kinetics both in solution and in thin film. The weight of the Thermally Activated Delayed Fluorescence (TADF) is greatly enhanced when these fluorophores are used as guests in solid-state host matrices. TADF is interestingly revealed in the orange-red region of the visible. Such long wavelength emission is here observed with surprisingly large fluorescence quantum yields, thanks to the conjugation enhancement achieved in these newly synthesized structures relative to previous studies. Our findings may be thus promising for the future development of efficient third generation TADF-based OLEDs.

9.
Open Forum Infect Dis ; 11(8): ofae422, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39086466

ABSTRACT

Background: Patients with B-cell lymphoma and acute lymphoblastic leukemia (ALL) who receive chimeric antigen receptor T-cell (CAR-T) therapy may experience clinically significant cytomegalovirus infection (CS-CMVi). However, risk factors for CS-CMVi are not well defined. The aims of our study were to identify risk factors for CS-CMVi and the association between CS-CMVi and nonrelapse mortality (NRM) in lymphoma and ALL patients after CAR-T therapy. Methods: We performed a retrospective single-center cohort analysis of CAR-T recipients between January 2018 and February 2021 for treatment of lymphoma and ALL. We collected data on demographics, oncologic history, CAR-T therapy-related complications, and infectious complications within 1 year of therapy. Results: Of 230 patients identified, 22 (10%) had CS-CMVi. At 1 year following CAR-T therapy, 75 patients (33%) developed relapsed disease and 95 (41%) died; NRM at 1 year was 37%. On Cox regression analysis, Asian or Middle Eastern race (adjusted hazard ratio [aHR], 13.71 [95% confidence interval {CI}, 5.41-34.74]), treatment of cytokine release syndrome/immune effector cell-associated neurotoxicity syndrome with steroids (aHR, 6.25 [95% CI, 1.82-21.47]), lactate dehydrogenase at time of CAR-T therapy (aHR, 1.09 [95% CI, 1.02-1.16]), and CMV surveillance (aHR, 6.91 [95% CI, 2.77-17.25]) were independently associated with CS-CMVi. CS-CMVi was independently associated with NRM at 1 year after CAR-T therapy (odds ratio, 2.49 [95% CI, 1.29-4.82]). Conclusions: Further studies of immunologic correlatives and clinical trials to determine the efficacy of prophylactic strategies are needed to understand the role of CS-CMVi and post-CAR-T mortality.

10.
Front Immunol ; 15: 1402123, 2024.
Article in English | MEDLINE | ID: mdl-39086482

ABSTRACT

Background: Control of buffalo flies (Haematobia irritans exigua, BFs) relies mainly on chemical methods; however, resistance to insecticides is widespread in BF populations. Breeding for resistance to BFs represents a possible alternative, but direct phenotyping of animals is laborious and often inaccurate. The availability of reliable diagnostic biomarker(s) to identify low BF carrier cattle would facilitate rapid and accurate selection for genetic improvement. However, limited information is available regarding differences amongst cattle in host responses to BF infestation. Methods: This study investigated the variation in Brangus cattle serum proteomic profiles before (naïve) and after peak BF exposure, in low (LF) and high BF burden (HF) cattle. Cattle were phenotyped for susceptibility based on BF counts on multiple dates using visual and photographic techniques. The relative abundance of serum proteins in cattle before and after exposure to BFs was analysed using sequential window acquisition of all theoretical fragment ion mass spectrometry (SWATH-MS). Results: Exposure to BFs elicited similar responses in HF and LF cattle, with 79 and 70 proteins, respectively, showing significantly different abundances post exposure as compared to their relevant naïve groups. The comparison of serum samples from naïve HF and LF cattle identified 44 significantly differentially abundant (DA) proteins, while 37 significantly DA proteins were identified from the comparison between HF and LF cattle post-exposure to BFs. Proteins with higher abundance in naïve LF cattle were enriched in blood coagulation mechanisms that were sustained after exposure to BFs. Strong immune response mechanisms were also identified in naïve LF cattle, whereas these responses developed in HF cattle only after exposure to BF. High BF cattle also showed active anticoagulation mechanisms in response to BF exposure, including downregulation of coagulation factor IX and upregulation of antithrombin-III, which might facilitate BF feeding. Conclusion: Underlying differences in the abundance of proteins related to blood coagulation and immune response pathways could potentially provide indirect indicators of susceptibility to BF infestation and biomarkers for selecting more BF-resistant cattle.


Subject(s)
Proteomics , Animals , Cattle , Proteomics/methods , Disease Susceptibility , Cattle Diseases/immunology , Cattle Diseases/blood , Cattle Diseases/parasitology , Biomarkers/blood , Myiasis/veterinary , Myiasis/immunology , Host-Parasite Interactions/immunology , Blood Proteins/metabolism , Blood Proteins/analysis , Proteome
11.
J Anus Rectum Colon ; 8(3): 137-149, 2024.
Article in English | MEDLINE | ID: mdl-39086873

ABSTRACT

Numerous biomarkers that reflect host status have been identified for patients with metastatic colorectal cancer (mCRC). However, there has been a paucity of biomarker studies that comprehensively indicate body composition, nutritional assessment, and systemic inflammation status. The advanced lung cancer inflammation index (ALI), initially introduced as a screening tool for patients with non-small-cell lung cancer in 2013, emerges as a holistic marker encompassing all body composition, nutritional status, and systemic inflammation status. The index is calculated by the simple formula: body mass index × albumin value / neutrophil-to-lymphocyte ratio. Given its accessibility in routine clinical practice, the ALI has exhibited promising clinical utility in prognosticating outcomes for patients with multiple types of cancer. In this review, we focus on the significance of host status and the clinical applicability of the ALI in the treatment and management of patients with malignancies, including mCRC. We also suggest its potential in guiding the formulation of treatment strategies against mCRC and outline future perspectives.

12.
Euro Surveill ; 29(31)2024 Aug.
Article in English | MEDLINE | ID: mdl-39092530

ABSTRACT

BackgroundShigella is a leading cause of moderate-to-severe diarrhoea worldwide and diarrhoeal deaths in children in low- and-middle-income countries.AimWe investigated trends and characteristics of shigellosis and antimicrobial resistance of Shigella sonnei in Israel.MethodsWe analysed data generated by the Sentinel Laboratory-Based Surveillance Network for Enteric Pathogens that systematically collects data on detection of Shigella at sentinel laboratories, along with the characterisation of the isolates at the Shigella National Reference Laboratory. Trends in the shigellosis incidence were assessed using Joinpoint regression and interrupted time-series analyses.ResultsThe average incidence of culture-confirmed shigellosis in Israel declined from 114 per 100,000 population (95% confidence interval (CI): 112-115) 1998-2004 to 80 per 100,000 population (95% CI: 79-82) 2005-2011. This rate remained stable 2012-2019, being 18-32 times higher than that reported from the United States or European high-income countries. After decreasing to its lowest values during the COVID-19 pandemic years (19/100,000 in 2020 and 5/100,000 in 2021), the incidence of culture-confirmed shigellosis increased to 39 per 100,000 population in 2022. Shigella sonnei is the most common serogroup, responsible for a cyclic occurrence of propagated epidemics, and the proportion of Shigella flexneri has decreased. Simultaneous resistance of S. sonnei to ceftriaxone, ampicillin and sulphamethoxazole-trimethoprim increased from 8.5% (34/402) in 2020 to 92.0% (801/876) in 2022.ConclusionsThese findings reinforce the need for continuous laboratory-based surveillance and inform the primary and secondary prevention strategies for shigellosis in Israel and other endemic high-income countries or communities.


Subject(s)
Anti-Bacterial Agents , Dysentery, Bacillary , Sentinel Surveillance , Shigella sonnei , Humans , Dysentery, Bacillary/epidemiology , Dysentery, Bacillary/microbiology , Dysentery, Bacillary/diagnosis , Israel/epidemiology , Child , Child, Preschool , Incidence , Adolescent , Infant , Male , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Female , Shigella sonnei/isolation & purification , Shigella sonnei/drug effects , Adult , Middle Aged , Young Adult , COVID-19/epidemiology , SARS-CoV-2 , Microbial Sensitivity Tests , Aged , Diarrhea/epidemiology , Diarrhea/microbiology , Infant, Newborn , Drug Resistance, Bacterial
13.
J Nephrol ; 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39097561

ABSTRACT

Chronic graft-versus-host disease (GvHD) is the leading cause of late death in allogenic hematopoietic stem cell transplantation recipients, of which the kidney is a potential target. In this article, we report an extremely rare case of chronic GvHD, characterized by immune complex-mediated diffuse proliferative glomerulonephritis and various autoantibodies detected in the serum; it is the first case of lupus-like chronic GvHD reported to date. The patient responded well to intensive immunosuppressive therapy and reached complete remission. Mycophenolate mofetil was more effective than tacrolimus in this case, suggesting that treatment of kidney diseases associated with chronic GvHD should be based on pathogenesis and pathological patterns.

14.
Cureus ; 16(7): e64111, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39114192

ABSTRACT

We present the case of a patient who underwent human leukocyte antigen-haploidentical transplantation for T-cell acute lymphoblastic leukemia. Seven weeks after transplantation, the patient developed intestinal transplant-associated microangiopathy (iTAM). Although the iTAM was resolved temporarily, it recurred. Video capsule enteroscopy revealed multiple erosions and shallow ulcers in the jejunum and ileum. To the best of our knowledge, this is the first report to present images of possible small intestinal lesions in iTAM. The small intestinal mucosal images presented herein may potentially aid in the management of similar patients.

15.
Vet Parasitol ; 331: 110273, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39116549

ABSTRACT

Echinococcus species (spp.) are regarded as neglected cestodes causing several potential zoonoses of global public health. This systematic review critically appraises the worldwide distribution of Echinococcus spp. and genotypes (Echinococcus spp.: recognized species in the genus; genotypes: variants identified within E. granulosus sensu lato.) in definitive hosts. We analyzed 82 studies from major databases, comprising 24 individual host species, including canids, felids, and a hyenid species. Canids, particularly dogs, were the most studied group among the host species, with E. granulosus sensu stricto (G1-G3) being the most frequently reported. E. granulosus s.s. was distributed across five major continents, while other Echinococcus spp. and genotypes exhibited an uneven continental distribution. The highest overlap of species existed among Asia, Europe, and Africa. Among the reported host species, 4.2 % were endangered (e.g. Lycaon pictus), 12.5 % species were vulnerable (e.g. Panthera leo, Panthera pardus, and Acinonyx jubatus), and 4.2 % were near threatened (e.g. Speothos venaticus). Overall, our review highlights the significance of canids, particularly dogs, as the core focus of scientific investigations, with E. granulosus s.s. being the most widely distributed species across five major continents, emphasizing the urgent need for continued research and public health efforts.

16.
Vet Parasitol ; 331: 110280, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39116550

ABSTRACT

Due to the negative impact of Haemonchus contortus in the tropics and subtropics, the detection of serum protein profiles that occur in infected sheep is of high relevance for targeted selective treatment strategies (TST). Herein, we integrated proteomics with phenotypic traits to elucidate physiological mechanisms associated to H. contortus infection in susceptible (Dorper - D) and resistant (Santa Inês - S) sheep breeds. Naïve female lambs were infected with H. contortus third-stage larvae on day zero (D0), and samples were collected weekly, for 28 days. Feces were used for individual fecal egg counts (FEC) blood for packed cell volume (PCV) and serum for specific antibody quantification through ELISA. Sera was collected on D0 (-) and D21 (+), and analyzed using a LC-MS/MS based proteomics approach. FEC, PCV, and anti-H. contortus antibody levels confirmed the absence of infection on D0. On D28 there was a significant difference between the two breeds for logFEC means (D = 3774 and S = 3141, p=0.033) and PCV means (D = 16.3 % and S = 24.3 %, p=0.038). From a total of 754 proteins identified, 68 differentially abundant proteins (DAPs) were noted. Phosphopyruvate hydratase (ENO3) was a DAP in all comparisons, while S+ vs D+ and S- vs D- shared the highest number of DAPs (8). Each of the four experimental groups clustered separately in a principal component analysis (PCA) of protein profile. Among the DAPs, proteins associated with the innate and adaptive immune system were detected when comparing S- vs D- and S+ vs D+. In D-, some proteins were linked to stress response to handling, sampling and heat. Focusing on the consequences of infection in each breed, in the D+ vs D- comparison, upregulated proteins were associated with inflammation control and immune response, where downregulated proteins pointed to a negative impact of infection on tissue anabolism, compromising muscle growth and fat deposition. In the S+ vs S- comparison, upregulated proteins were related to immune response, while the downregulated proteins were possibly linked to muscular development and growth, impaired by infection. Collectively, it can be concluded that ENO3 regulation emerges as a potential factor underlying the differential immune response observed between Santa Inês and Dorper sheep infected with H. contortus. In turn, detected acute phase proteins (APPs) reinforce their relation with infection, inflammation and stress conditions, whereas THEMIS-like may contribute to the immune system in Dorper. GSDMD, Guanylate-binding protein and ACAN warrant further investigation as possible biomarkers for TST strategy development.

17.
Transpl Immunol ; : 102099, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39111366

ABSTRACT

Immune reconstitution after human leukocyte antigen (HLA)-mismatched (haploidentical) hematopoietic stem cell transplantation (haplo-HCT) can significantly influence long-term outcomes. The three possible HLA haplotypes after transplantation are: one carried by both the patient and the donor (shared HLA), one by donor only (donor-specific HLA), and one by patient only (host-specific HLA), and the donor T cells remain restricted to one of these three haplotypes. Understanding the presence of donor T cells restricted to each haplotype may provide more detailed insights into post-transplant immune response and potentially provide valuable information for the development of chimeric antigen receptor T cell or T cell receptor T cell constructs. In this study, patients or donors with HLA-A24 or HLA-A2 were tested with HLA-A*24:02- and A*02:01-restricted cytomegalovirus (CMV)-specific tetramers for detecting the respective HLA-restricted T cells. Sixty-four samples from 40 patients were assayed. More than half of the patients at day 90 and all patients by day 900 had shared HLA-restricted T cells. After day 90, half of the patients had donor-specific HLA-restricted T cells, but no host-specific HLA-restricted T cells were found. In the comparative analysis of the transplant types, shared HLA-restricted T cells were positive in all three categories: haplo-HCT (50%), 2-haplo-mis-HCT (75%), and spousal HCT (67%). Furthermore, donor-specific HLA-restricted T cells demonstrated positivity in haplo-HCT at 57% and in 2-haplo-mis-HCT at 60%, with a threshold of 0.01%. Donor-specific HLA-restricted T cells for spousal HCT were not examined due to the lack of an appropriate HLA combination for the tetramers. The presence of shared HLA-restricted T cells explains the host defense after HLA-haploidentical transplantation, while the presence of donor-specific HLA-restricted T cells may account for host defense against hematotropic viruses, such as CMV. However, this study failed to detect host-specific HLA-restricted T cells, leaving the host defense against epitheliotropic viruses unresolved, thus requiring further investigation.

18.
Insect Sci ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39114883

ABSTRACT

Aphids are sap-feeding plant pests that depend on their symbiotic relationships with the primary endosymbiont Buchnera aphidicola to adapt to impoverished diets. However, how the host plant affects the aphid primary symbiont and aphid adaptation to host plant transfer are poorly known. In this study, aphid symbiont screening and genotype identification were used to establish 2 aphid strains (Rhopalosiphum maidis [Rm] and Rhopalosiphum padi [Rp] strains) containing only Buchnera without any secondary symbionts for both wheat aphid species (R. maidis and R. padi). Aphid fitness and Buchnera titers were unstable on some of these host plants after transferring to novel host plants (G1-G5), which were influenced by host plant species and generations; however, they stabilized after prolonged feeding on the same plants for 10 generations. The electropenetrography (EPG) records showed that the allocation of aphid feeding time was significantly distinct in the 6 host plants; aphids had more intracellular punctures and spent more nonprobing time on green bristlegrass which was not conducive to its growth compared with other plants. The content of soluble sugar, soluble protein, and amino acid in the leaves of the 6 host plants were also clearly separated. The correlation coefficient analysis showed that the nutrient contents of host plants had significant correlations with aphid feeding behaviors, fitness, and Buchnera titers. In the meantime, aphid fitness, and Buchnera titers were also affected by aphid feeding behaviors. Also, Buchnera titers of aphid natural populations on 6 host plants showed a visible difference. Our study deepened our understanding of the interaction among aphids, endosymbionts, and host plants, indicating that the host plant nutrient content is a predominant factor affecting aphid adaptation to their diet, initially affecting aphid feeding behaviors, and further affecting aphid fitness and Buchnera titers, which would further contribute to exploiting new available strategies for aphid control.

19.
J Hered ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39114995

ABSTRACT

Pathogen species are experiencing strong joint demographic and selective events, especially when they adapt to a new host, for example through overcoming plant resistance. Stochasticity in the founding event and the associated demographic variations hinder our understanding of the expected evolutionary trajectories and the genetic structure emerging at both neutral and selected loci. What would be the typical genetic signatures of such a rapid adaptation event is not elucidated. Here, we build a demogenetic model to monitor pathogen population dynamics and genetic evolution on two host compartments (susceptible and resistant). We design our model to fit two plant pathogen life cycles, 'with' and 'without' host alternation. Our aim is to draw a typology of eco-evolutionary dynamics. Using time-series clustering, we identify three main scenarios: 1) small variations in the pathogen population size and small changes in genetic structure, 2) a strong founder event on the resistant host that in turn leads to the emergence of genetic structure on the susceptible host, and 3) evolutionary rescue that results in a strong founder event on the resistant host, preceded by a bot- tleneck on the susceptible host. We pinpoint differences between life cycles with notably more evolutionary rescue 'with' host alternation. Beyond the selective event itself, the demographic trajectory imposes specific changes in the genetic structure of the pathogen population. Most of these genetic changes are transient, with a signature of resistance overcoming that vanishes within a few years only. Considering time-series is therefore of utmost importance to accurately decipher pathogen evolution.

20.
Angew Chem Int Ed Engl ; : e202409098, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-39115086

ABSTRACT

Conversion-type anode materials with high theoretical capacities play a pivotal role in developing future aqueous rechargeable batteries (ARBs). However, their sustainable applications have long been impeded by the poor cycling stability and sluggish redox kinetics. Here we show that confining conversion chemistry in intercalation host could overcome the above challenges. Using sodium titanates as a model intercalation host, an integrated layered anode material of iron oxide hydroxide-pillared titanate (FeNTO) is demonstrated. The conversion reaction is spatially and kinetically confined within sub-nano interlayer, enabling superlow redox polarization (ca. 4-6 times reduced), ultralong lifespan (up to 8700 cycles) and excellent rate performance. Notably, the charge compensation of interlayer via universal cation intercalation into host endows FeNTO with the capability of operating well in a broad range of aqueous electrolytes (Li+, Na+, K+, Mg2+, Ca2+, etc.). We further demonstrate the large-scale synthesis of FeNTO thin film and powder, and rational design of quasi-solid-state high-voltage ARB pouch cells powering wearable electronics against extreme mechanical abuse. This work demonstrates a powerful confinement means to access disruptive electrode materials for next-generation energy devices.

SELECTION OF CITATIONS
SEARCH DETAIL