Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Type of study
Language
Publication year range
1.
Trop Med Infect Dis ; 5(4)2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33260771

ABSTRACT

Leptospirosis is a zoonosis caused by the pathogenic bacteria of the genus Leptospira. The identification of conserved outer membrane proteins among pathogenic strains is a major research target in elucidating mechanisms of pathogenicity. Surface-exposed proteins are most probably the ones involved in the interaction of leptospires with the environment. Some spirochetes use outer membrane proteases as a way to penetrate host tissues. HtrA is a family of proteins found in various cell types, from prokaryotes to primates. They are a set of proteases usually composed of a serine protease and PDZ domains, and they are generally transported to the periplasm. Here, we identified four genes-annotated as HtrA, LIC11111, LIC20143, LIC20144 and LIC11037-and another one annotated as a serine protease, LIC11112. It is believed that the last forms a functional heterodimer with LIC11111, since they are organized in one operon. Our analyses showed that these proteins are highly conserved among pathogenic strains. LIC11112, LIC20143, and LIC11037 have the serine protease domain with the conserved catalytic triad His-Asp-Ser. This is the first bioinformatics analysis of HtrA proteins from Leptospira that suggests their proteolytic activity potential. Experimental studies are warranted to elucidate this possibility.

2.
Trop Med Infect Dis, v. 5, n. 4, 179, nov. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3376

ABSTRACT

Leptospirosis is a zoonosis caused by the pathogenic bacteria of the genus Leptospira. The identification of conserved outer membrane proteins among pathogenic strains is a major research target in elucidating mechanisms of pathogenicity. Surface-exposed proteins are most probably the ones involved in the interaction of leptospires with the environment. Some spirochetes use outer membrane proteases as a way to penetrate host tissues. HtrA is a family of proteins found in various cell types, from prokaryotes to primates. They are a set of proteases usually composed of a serine protease and PDZ domains, and they are generally transported to the periplasm. Here, we identified four genes—annotated as HtrA, LIC11111, LIC20143, LIC20144 and LIC11037—and another one annotated as a serine protease, LIC11112. It is believed that the last forms a functional heterodimer with LIC11111, since they are organized in one operon. Our analyses showed that these proteins are highly conserved among pathogenic strains. LIC11112, LIC20143, and LIC11037 have the serine protease domain with the conserved catalytic triad His-Asp-Ser. This is the first bioinformatics analysis of HtrA proteins from Leptospira that suggests their proteolytic activity potential. Experimental studies are warranted to elucidate this possibility.

3.
Emerg Infect Dis ; 25(12): 2315-2317, 2019 12.
Article in English | MEDLINE | ID: mdl-31742525

ABSTRACT

We found Rickettsia parkeri in Amblyomma ovale ticks collected in Veracruz, Mexico, in 2018. We sequenced gene segments of gltA, htrA, sca0, and sca5; phylogenetic reconstruction revealed near-complete identity with R. parkeri strain Atlantic Rainforest. Enhanced surveillance is needed in Mexico to determine the public health relevance of this bacterium.


Subject(s)
Rickettsia/classification , Rickettsia/genetics , Tick Infestations/epidemiology , Ticks/microbiology , Animals , Female , Genes, Bacterial , Male , Mexico/epidemiology , Phylogeny , Public Health Surveillance
4.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;52(1): e7718, 2019. graf
Article in English | LILACS | ID: biblio-974272

ABSTRACT

Pancreatic cancer is well known to be the most deadly malignancy with the worst survival rate of all cancers. High temperature requirement factor A1 (HtrA1) plays an important role in cancer cell proliferation, migration, apoptosis, and differentiation. This study aimed to explore the function of HtrA1 in pancreatic cancer cell growth and its underlying mechanism. We found that the expression of HtrA1 was lower in pancreatic cancer tissue compared to the adjacent normal tissue. Consistently, HtrA1 levels were also decreased in two human pancreatic cancer cell lines, PANC-1 and BXPC-3. Moreover, enforced expression of HtrA1 inhibited cell viability and colony formation of PANC-1 and BXPC-3 cells. Overexpression of HtrA1 promoted apoptosis and suppressed migratory ability of tumor cells. On the contrary, siRNA-mediated knockdown of HtrA1 promoted the growth potential of pancreatic cancer cells. In addition, we found that up-regulation of HtrA1 reduced the expression of Notch-1 in pancreatic cancer cells. On the contrary, knockdown of HtrA1 increased the expression levels of Notch-1. Furthermore, overexpression of Notch-1 abolished the anti-proliferative effect of HtrA1 on pancreatic cancer cells. Taken together, our findings demonstrated that HtrA1 could inhibit pancreatic cancer cell growth via regulating Notch-1 expression, which implied that HtrA1 might be developed as a novel molecular target for pancreatic cancer therapy.


Subject(s)
Humans , Pancreatic Neoplasms/metabolism , Gene Expression Regulation, Neoplastic/genetics , Receptor, Notch1/metabolism , High-Temperature Requirement A Serine Peptidase 1/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Signal Transduction , Cell Differentiation , Up-Regulation , Apoptosis , Cell Line, Tumor , Cell Proliferation , Receptor, Notch1/genetics , High-Temperature Requirement A Serine Peptidase 1/genetics
5.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;51(5): e6632, 2018. graf
Article in English | LILACS | ID: biblio-889075

ABSTRACT

The aim of this study was to find related pathogenic genes in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy in (CADASIL)-like patients. The direct sequencing and high-throughput multiplex polymerase chain reaction (PCR) was performed to screen for related genes. The clinical and imaging data of a CADASIL-like patient (the pro-band) and his family members were collected. At first, the known hereditary cerebral vascular genes of the pro-band were screened with direct sequencing to find candidate gene mutations. High-throughput multiplex PCR was then used to analyze the single nucleotide polymorphism of the candidate gene in the family members. The results showed that there was missense mutation of the high temperature requirement protease A1 (HTRA1) gene in the pro-band, which may be a pathogenic factor according to the biological software analysis. The following SNP results revealed that the other family members also had the HTRA1 gene mutation. Thus, the CADASIL-like family disease may be caused by heterozygous HTRA1 gene mutation, which leads to autosomal dominant hereditary cerebral small vessel disease.


Subject(s)
Humans , Male , Female , Adult , Mutation, Missense/genetics , CADASIL/genetics , High-Temperature Requirement A Serine Peptidase 1/genetics , Pedigree , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Multiplex Polymerase Chain Reaction , Genotype , Heterozygote
6.
BMC Cancer ; 16(1): 840, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27809811

ABSTRACT

BACKGROUND: High-risk human papillomaviruses (HPVs) are strongly associated with the development of some malignancies. The E6 and E7 viral oncoproteins are the primary proteins responsible for cell homeostasis alteration and immortalization. Furthermore, the E6 protein from high-risk HPVs can interact with the PDZ (PSD-90/Dlg/ZO-1) domains of cellular proteins, triggering cell transformation. One protein that is associated with pathological conditions and has a PDZ domain is the protease HTRA1 (high temperature requirement 1). This protein is poorly expressed in some cancers, suggesting a tumor suppressor role. The aim of this study was to evaluate the effect of HTRA1 overexpression in HPV16-positive (CasKi) and HPV-negative (C33) cervical cell lines. METHODS: The cells were transfected with a vector containing the HTRA1 ORF or an empty vector. HTRA1 overexpression was confirmed by qRT-PCR. The cells were subjected to cell proliferation, colony formation, apoptosis and cell cycle assays. RESULTS: C33 cells expressing HTRA1 grew significantly fewer colonies and showed less proliferation than cells without HTRA1 expression. In contrast, in the CasKi cells overexpressing HTRA1, there was an increase in the cell growth rate and in the colonies density compared to cells expressing low levels of HTRA1. An apoptosis assay showed that HTRA1 does not interfere with the apoptosis rate in these cells. A cell cycle immunofluorescence assay revealed more CasKi cells overexpressing HTRA1 in the S phase and more C33 HTRA1-transfected cells in the G0/G1 phase, suggesting that HTRA1 plays different roles in the cell cycle progression of these cells. CONCLUSIONS: HTRA1 overexpression prevents cell proliferation in the HPV-negative cell line and increases cell proliferation in the HPV-positive cell line. Although the E6/HTRA1 interaction has already been described in the literature, more studies are required to confirm whether the present functional findings are a result of this interaction.


Subject(s)
Cell Proliferation , Cell Transformation, Neoplastic/pathology , Papillomaviridae/pathogenicity , Papillomavirus Infections/pathology , Serine Endopeptidases/metabolism , Uterine Cervical Neoplasms/pathology , Apoptosis , Cell Cycle , Cell Transformation, Neoplastic/metabolism , Female , High-Temperature Requirement A Serine Peptidase 1 , Humans , Papillomavirus Infections/metabolism , Papillomavirus Infections/virology , Tumor Cells, Cultured , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/virology
7.
Mem. Inst. Oswaldo Cruz ; 104(8): 1132-1138, Dec. 2009. tab, ilus
Article in English | LILACS | ID: lil-538173

ABSTRACT

Members of the high temperature requirement A (HtrA) family of chaperone proteases have been shown to play a role in bacterial pathogenesis. In a recent report, we demonstrated that the gene ML0176, which codes for a predicted HtrA-like protease, a gene conserved in other species of mycobacteria, is transcribed by Mycobacterium leprae in human leprosy lesions. In the present study, the recombinant ML0176 protein was produced and its enzymatic properties investigated. M. lepraerecombinant ML0176 was able to hydrolyse a variety of synthetic and natural peptides. Similar to other HtrA proteins, this enzyme displayed maximum proteolytic activity at temperatures above 40°C and was completely inactivated by aprotinin, a protease inhibitor with high selectivity for serine proteases. Finally, analysis of M. leprae ML0176 specificity suggested a broader cleavage preference than that of previously described HtrAs homologues. In summary, we have identified an HtrA-like protease in M. lepraethat may constitute a potential new target for the development of novel prophylactic and/or therapeutic strategies against mycobacterial infections.


Subject(s)
Humans , Mycobacterium leprae/enzymology , Serine Endopeptidases/biosynthesis , Base Sequence , Cloning, Molecular , Gene Expression Regulation, Bacterial/genetics , Gene Expression Regulation, Bacterial/physiology , Molecular Sequence Data , Mycobacterium leprae/genetics , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL