Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters











Publication year range
1.
Asian J Pharm Sci ; 19(4): 100938, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39253611

ABSTRACT

Alzheimer's disease is a neurodegenerative disease induced by multiple interconnected mechanisms. Peptide drug candidates with multi-modal efficacy generated from fusion strategy are suitable for addressing multi-facet pathology. However, clinical translation of peptide drugs is greatly hampered by their low permeability into brain. Herein, a hybrid peptide HNSS is generated by merging two therapeutic peptides (SS31 and S-14 G Humanin (HNG)), using a different approach from the classical shuttle-therapeutic peptide conjugate design. HNSS demonstrated increased bio-permeability, with a 2-fold improvement in brain distribution over HNG, thanks to its structure mimicking the design of signal peptide-derived cell-penetrating peptides. HNSS efficiently alleviated mitochondrial dysfunction through the combined effects of mitochondrial targeting, ROS scavenging and p-STAT3 activation. Meanwhile, HNSS with increased Aß affinity greatly inhibited Aß oligomerization/fibrillation, and interrupted Aß interaction with neuron/microglia by reducing neuronal mitochondrial Aß deposition and promoting microglial phagocytosis of Aß. In 3× Tg-AD transgenic mice, HNSS treatment efficiently inhibited brain neuron loss and improved the cognitive performance. This work validates the rational fusion design-based strategy for bio-permeability improvement and efficacy amplification, providing a paradigm for developing therapeutic peptide candidates against neurodegenerative disease.

2.
Bioorg Med Chem ; 111: 117869, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39126834

ABSTRACT

Recently, the sortilin receptor (SORT1) was found to be preferentially over-expressed on the surface of many cancer cells, which makes SORT1 a novel anticancer target. The SORT1 binding proprietary peptide TH19P01 could achieve the SORT1-mediated cancer cell binding and subsequent internalization. Inspired by the peptide-drug conjugate (PDC) strategy, the TH19P01-camptothecin (CPT) conjugates were designed, efficiently synthesized, and evaluated for their anticancer potential in this study. The water solubility, in vitro anticancer activity, time-kill kinetics, cellular uptake, anti-migration activity, and hemolysis effects were systematically estimated. Besides, in order to monitor the release of CPT from conjugates in real-time, the CPT/Dnp-based "turn on" hybrid peptide was designed, which indicted that CPT could be sustainably released from the hybrid peptide in both human serum and cancer cellular environments. Strikingly, compared with free CPT, the water solubility, cellular uptake, and selectivity towards cancer cells of hybrid peptide LYJ-2 have all been significantly enhanced. Moreover, unlike free CPT or TH19P01, LYJ-2 exhibited selective anti-proliferative and anti-migration effects against SORT1-positive MDA-MB-231 cells. Collectively, this study not only established efficient strategies to improve the solubility and anticancer potential of chemotherapeutic agent CPT, but also provided important references for the future development of TH19P01 based PDCs targeting SORT1.


Subject(s)
Adaptor Proteins, Vesicular Transport , Antineoplastic Agents , Camptothecin , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Humans , Camptothecin/pharmacology , Camptothecin/chemistry , Camptothecin/chemical synthesis , Adaptor Proteins, Vesicular Transport/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Peptides/chemistry , Peptides/pharmacology , Peptides/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Cell Line, Tumor , Dose-Response Relationship, Drug , Cell Movement/drug effects
3.
ACS Nano ; 18(22): 14348-14366, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38768086

ABSTRACT

Pericyte dysfunction severely undermines cerebrovascular integrity and exacerbates neurodegeneration in Alzheimer's disease (AD). However, pericyte-targeted therapy is a yet-untapped frontier for AD. Inspired by the elevation of vascular cell adhesion molecule-1 (VCAM-1) and reactive oxygen species (ROS) levels in pericyte lesions, we fabricated a multifunctional nanoprodrug by conjugating the hybrid peptide VLC, a fusion of the VCAM-1 high-affinity peptide VHS and the neuroprotective apolipoprotein mimetic peptide COG1410, to curcumin (Cur) through phenylboronic ester bond (VLC@Cur-NPs) to alleviate complex pericyte-related pathological changes. Importantly, VLC@Cur-NPs effectively homed to pericyte lesions via VLC and released their contents upon ROS stimulation to maximize their regulatory effects. Consequently, VLC@Cur-NPs markedly increased pericyte regeneration to form a positive feedback loop and thus improved neurovascular function and ultimately alleviated memory defects in APP/PS1 transgenic mice. We present a promising therapeutic strategy for AD that can precisely modulate pericytes and has the potential to treat other cerebrovascular diseases.


Subject(s)
Alzheimer Disease , Mice, Transgenic , Pericytes , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Pericytes/drug effects , Pericytes/metabolism , Pericytes/pathology , Mice , Reactive Oxygen Species/metabolism , Curcumin/pharmacology , Curcumin/chemistry , Prodrugs/pharmacology , Prodrugs/chemistry , Nanoparticles/chemistry , Vascular Cell Adhesion Molecule-1/metabolism , Humans , Peptides/chemistry , Peptides/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry
4.
iRadiology ; 2(2): 128-155, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38708130

ABSTRACT

Optimal therapeutic and diagnostic efficacy is essential for healthcare's global mission of advancing oncologic drug development. Accurate diagnosis and detection are crucial prerequisites for effective risk stratification and personalized patient care in clinical oncology. A paradigm shift is emerging with the promise of multi-receptor-targeting compounds. While existing detection and staging methods have demonstrated some success, the traditional approach of monotherapy is being reevaluated to enhance therapeutic effectiveness. Heterodimeric site-specific agents are a versatile solution by targeting two distinct biomarkers with a single theranostic agent. This review describes the innovation of dual-targeting compounds, examining their design strategies, therapeutic implications, and the promising path they present for addressing complex diseases.

5.
Chemistry ; 30(16): e202303757, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38165894

ABSTRACT

Fluorine, the tiny robust atom, with its unique features has captured the attention of scientists in recent times, especially in drug discovery with its integration in small molecules, peptides, and proteins. However, studies to understand the 'fluorine effects' on the conformation of molecules that follow 'beyond the rule of 5' are in the infancy yet significant in molecular design and function. For the first time, using short hybrid peptide sequence as an appropriate model, we examined the substitution effect (size, stereoelectronic effect, and hydrogen bonding) using X-ray diffraction, 2D-NMR, and CD studies. The comparative study on their folding patterns with hydrogen-substituted analogs can provide valuable insights into fluorinated substrates' design.


Subject(s)
Fluorine , Protein Folding , Fluorine/chemistry , Peptides/chemistry , Molecular Conformation , Amino Acid Sequence , Hydrogen Bonding
6.
Small ; 20(8): e2306358, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37822151

ABSTRACT

Hybrid organic-inorganic bio-inspired apatite nanoparticles (NPs) are attractive for biomedical applications and especially in nanomedicine. Unfortunately, their applications in nanomedicine are limited by their broad particle size distributions and uncontrolled drug loading due to their multistep synthesis process.  Besides, very few attempts at exposing bioactive peptides on apatite NPs are made. In this work, an original one-pot synthesis of well-defined bioactive hybrid NPs composed of a mineral core of bioinspired apatite surrounded by an organic corona of bioactive peptides is reported. Dual stabilizing-bioactive agents, phosphonated polyethylene glycol-peptide conjugates, are prepared and directly used during apatite precipitation i) to form the organic corona during apatite precipitation, driving the size and shape of resulting hybrid NPs with colloidal stabilization and ii) to expose peptide moieties (RGD or YIGSR sequences) at the NPs periphery in view of conferring additional surface properties to enhance their interaction with cells. Here, the success of this approach is demonstrated, the functionalized NPs are fully characterized by Fourier-transform infrared, Raman, X-ray diffraction, solid and liquid state NMR, transmission electron microscopy, and dynamic light scattering, and their interaction with fibroblast cells is followed, unveiling a synergistic proliferative effect.


Subject(s)
Nanomedicine , Nanoparticles , Apatites/chemistry , Nanoparticles/chemistry , Peptides/chemistry , Polyethylene Glycols/chemistry , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared
7.
Peptides ; 170: 171108, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37778465

ABSTRACT

Pain, a worldwide problem with a high incidence and complex pathogenesis, has attracted the attention of pharmaceutical enterprises for the development of safer and more effective drugs. Extensive experimental and clinical evidence has demonstrated the analgesic effects of two endogenous peptides: endomorphin-2 (EM-2) and salmon calcitonin (sCT). However, EM-2 has limitations, such as poor ability to cross the blood-brain barrier (BBB) and little therapeutic effect in chronic pain due to rapid in vivo proteolysis. Herein, we propose the design of a novel hybrid peptide TEM2CT by combining EM-2, sCT16-21, and the cell-penetrating peptide HIV-1 trans-activator protein (TAT) with the aim of enhancing their analgesic effects. TEM2CT treatment attenuated nociceptive behavior in both acute and chronic pain mouse models, exhibiting increased anti-allodynic and anti-anxiety effects compared to sCT treatment. Furthermore, TEM2CT also regulated the excitability of pyramidal neurons in the anterior cingulate cortex (ACC) in spared nerve injury (SNI) model mice. The improved efficacy of this hybrid peptide provides a promising strategy for developing analgesic drugs.


Subject(s)
Anti-Anxiety Agents , Cell-Penetrating Peptides , Chronic Pain , Mice , Animals , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Chronic Pain/drug therapy , Hyperalgesia/drug therapy , Analgesics/pharmacology , Analgesics/therapeutic use , Cell-Penetrating Peptides/pharmacology , Cell-Penetrating Peptides/therapeutic use
8.
Molecules ; 28(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37446618

ABSTRACT

Finding the ideal antimicrobial drug with improved efficacy and a safety profile that eliminates antibiotic resistance caused by pathogens remains a difficult task. Indeed, there is an urgent need for innovation in the design and development of a microbial inhibitor. Given that many promising antimicrobial peptides with excellent broad-spectrum antibacterial properties are secreted by some frog species (e.g., bombesins, opioids, temporins, etc.), our goal was to identify the antimicrobial properties of amphibian-derived dermorphin and ranatensin peptides, which were combined to produce a hybrid compound. This new chimera (named LENART01) was tested for its antimicrobial activity against E. coli strains K12 and R1-R4, which are characterized by differences in lipopolysaccharide (LPS) core oligosaccharide structure. The results showed that LENART01 had superior activity against the R2 and R4 strains compared with the effects of the clinically available antibiotics ciprofloxacin or bleomycin (MIC values). Importantly, the inhibitory effect was not concentration dependent; however, LENART01 showed a time- and dose-dependent hemolytic effect in hemolytic assays.


Subject(s)
Anti-Infective Agents , Escherichia coli , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Lipopolysaccharides/chemistry
9.
Bioorg Chem ; 138: 106674, 2023 09.
Article in English | MEDLINE | ID: mdl-37331169

ABSTRACT

Nitrogen mustards (NMs) are an important class of chemotherapeutic drugs and have been widely employed for the treatment of various cancers. However, due to the high reactivity of nitrogen mustard, most NMs react with proteins and phospholipids within the cell membrane. Therefore, only a very small fraction of NMs can reach the reach nucleus, alkylating and cross-linking DNA. To efficiently penetrate the cell membrane barrier, the hybridization of NMs with a membranolytic agent may be an effective strategy. Herein, the chlorambucil (CLB, a kind of NM) hybrids were first designed by conjugation with membranolytic peptide LTX-315. However, although LTX-315 could help large amounts of CLB penetrate the cytomembrane and enter the cytoplasm, CLB still did not readily reach the nucleus. Our previous work demonstrated that the hybrid peptide NTP-385 obtained by covalent conjugation of rhodamine B with LTX-315 could accumulate in the nucleus. Hence, the NTP-385-CLB conjugate, named FXY-3, was then designed and systematically evaluated both in vitro and in vivo. FXY-3 displayed prominent localization in the cancer cell nucleus and induced severe DNA double-strand breaks (DSBs) to trigger cell apoptosis. Especially, compared with CLB and LTX-315, FXY-3 exhibited significantly increased in vitro cytotoxicity against a panel of cancer cell lines. Moreover, FXY-3 showed superior in vivo anticancer efficiency in the mouse cancer model. Collectively, this study established an effective strategy to increase the anticancer activity and the nuclear accumulation of NMs, which will provide a valuable reference for future nucleus-targeting modification of nitrogen mustards.


Subject(s)
Neoplasms , Nitrogen Mustard Compounds , Animals , Mice , Chlorambucil/pharmacology , DNA/metabolism , Nitrogen , Nitrogen Mustard Compounds/pharmacology , Peptides/pharmacology
10.
Genes (Basel) ; 14(5)2023 05 17.
Article in English | MEDLINE | ID: mdl-37239456

ABSTRACT

Antimicrobial peptides (AMPs) from black solider flies (Hermetia illucens, BSF) exhibiting broad-spectrum antimicrobial activity are the most promising green substitutes for preventing the infection of phytopathogenic fungi; therefore, AMPs have been a focal topic of research. Recently, many studies have focused on the antibacterial activities of BSF AMPs against animal pathogens; however, currently, their antifungal activities against phytopathogenic fungi remain unclear. In this study, 7 AMPs selected from 34 predicted AMPs based on BSF metagenomics were artificially synthesized. When conidia from the hemibiotrophic phytopathogenic fungi Magnaporthe oryzae and Colletotrichum acutatum were treated with the selected AMPs, three selected AMPs-CAD1, CAD5, and CAD7-showed high appressorium formation inhibited by lengthened germ tubes. Additionally, the MIC50 concentrations of the inhibited appressorium formations were 40 µM, 43 µM, and 43 µM for M. oryzae, while 51 µM, 49 µM, and 44 µM were observed for C. acutatum, respectively. A tandem hybrid AMP named CAD-Con comprising CAD1, CAD5, and CAD7 significantly enhanced antifungal activities, and the MIC50 concentrations against M. oryzae and C. acutatum were 15 µM and 22 µM, respectively. In comparison with the wild type, they were both significantly reduced in terms of virulence when infection assays were performed using the treated conidia of M. oryzae or C. acutatum by CAD1, CAD5, CAD7, or CAD-Con. Meanwhile, their expression levels of CAD1, CAD5, and CAD7 could also be activated and significantly increased after the BSF larvae were treated with the conidia of M. oryzae or C. acutatum, respectively. To our knowledge, the antifungal activities of BSF AMPs against plant pathogenic fungi, which help us to seek potential AMPs with antifungal activities, provide proof of the effectiveness of green control strategies for crop production.


Subject(s)
Antifungal Agents , Diptera , Animals , Antifungal Agents/pharmacology , Antimicrobial Peptides , Fungi , Spores, Fungal , Peptides
11.
Microorganisms ; 11(1)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36677423

ABSTRACT

The aim of this study was to apply a strategy to express a recombinant CLP peptide and explore its application as a product derived from natural compounds. The amphiphilic CLP peptide was hybridized from three parent peptides (CM4, LL37, and TP5) and was considered to have potent endotoxin-neutralizing activity with minimal cytotoxic and hemolytic activity. To achieve high secretion expression, an expression vector of pPICZαA-HSA-CLP was constructed by the golden gate cloning strategy before being transformed into Pichia pastoris and integrated into the genome. The recombinant CLP was purified through the Ni-NTA affinity chromatography and analyzed by SDS-PAGE and mass spectrometry. The Limulus amebocyte lysate (LAL) test exhibited that the hybrid peptide CLP inhibited lipopolysaccharides (LPS) in a dose-dependent manner and was significantly (p < 0.05) more efficient compared to the parent peptides. In addition, it essentially diminished (p < 0.05) the levels of nitric oxide and pro-inflammatory cytokines (including TNF-α, IL6, and IL-1ß) in LPS-induced mouse RAW264.7 macrophages. As an attendant to the control and the parental peptide LL37, the number of LPS-induced apoptotic cells was diminished compared to the control parental peptide LL37 (p < 0.05) with the treatment of CLP. Consequently, we concluded that the hybrid peptide CLP might be used as a therapeutic agent.

12.
Front Bioeng Biotechnol ; 10: 888437, 2022.
Article in English | MEDLINE | ID: mdl-36304899

ABSTRACT

Physical hydrogels prepared from natural biopolymers are the most popular components for bioinks. However, to improve the mechanical properties of the network, in particular its durability for long-lasting tissue engineering applications or its stiffness for bone/cartilage applications, covalent chemical hydrogels have to be considered. For that purpose, biorthogonal reactions are required to allow the inclusion of living cells within the bioink reservoir before the 3D printing procedure. Interestingly, such reactions also unlock the possibility to further multifunctionalize the network, adding bioactive moieties to tune the biological properties of the resulting printed biomaterial. Surprisingly, compared to the huge number of studies disclosing novel bioink compositions, no extensive efforts have been made by the scientific community to develop new chemical reactions meeting the requirements of both cell encapsulation, chemical orthogonality and versatile enough to be applied to a wide range of molecular components, including fragile biomolecules. That could be explained by the domination of acrylate photocrosslinking in the bioprinting field. On the other hand, proceeding chemoselectively and allowing the polymerization of any type of silylated molecules, the sol-gel inorganic polymerization was used as a crosslinking reaction to prepare hydrogels. Recent development of this strategy includes the optimization of biocompatible catalytic conditions and the silylation of highly attractive biomolecules such as amino acids, bioactive peptides, proteins and oligosaccharides. When one combines the simplicity and the versatility of the process, with the ease of functionalization of any type of relevant silylated molecules that can be combined in an infinite manner, it was obvious that a family of bioinks could emerge quickly. This review presents the sol-gel process in biocompatible conditions and the various classes of relevant silylated molecules that can be used as bioink components. The preparation of hydrogels and the kinetic considerations of the sol-gel chemistry which at least allowed cell encapsulation and extrusion-based bioprinting are discussed.

13.
ACS Nano ; 16(7): 11455-11472, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35839463

ABSTRACT

Mitochondrial dysfunction in neurons has recently become a promising therapeutic target for Alzheimer's disease (AD). Regulation of dysfunctional mitochondria through multiple pathways rather than antioxidation monotherapy indicates synergistic therapeutic effects. Therefore, we developed a multifunctional hybrid peptide HNSS composed of antioxidant peptide SS31 and neuroprotective peptide S14G-Humanin. However, suitable peptide delivery systems with excellent loading capacity and effective at-site delivery are still absent. Herein, the nanoparticles made of citraconylation-modified poly(ethylene glycol)-poly(trimethylene carbonate) polymer (PEG-PTMC(Cit)) exhibited desirable loading of HNSS peptide through electrostatic interactions. Meanwhile, based on fibroblast growth factor receptor 1(FGFR1) overexpression in both the blood-brain barrier and cholinergic neuron, an FGFR1 ligand-FGL peptide was modified on the nanosystem (FGL-NP(Cit)/HNSS) to achieve 4.8-fold enhanced accumulation in brain with preferred distribution into cholinergic neurons in the diseased region. The acid-sensitive property of the nanosystem facilitated lysosomal escape and intracellular drug release by charge switching, resulting in HNSS enrichment in mitochondria through directing of the SS31 part. FGL-NP(Cit)/HNSS effectively rescued mitochondria dysfunction via the PGC-1α and STAT3 pathways, inhibited Aß deposition and tau hyperphosphorylation, and ameliorated memory defects and cholinergic neuronal damage in 3xTg-AD mice. The work provides a potential platform for targeted cationic peptide delivery, harboring utility for peptide therapy in other neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Animals , Mice , Alzheimer Disease/drug therapy , Peptides/chemistry , Brain/metabolism , Mitochondria , Cholinergic Neurons/metabolism , Amyloid beta-Peptides/metabolism
14.
Molecules ; 26(23)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34885732

ABSTRACT

CLP is a novel hybrid peptide derived from CM4, LL37 and TP5, with significantly reduced hemolytic activity and increased antibacterial activity than parental antimicrobial peptides. To avoid host toxicity and obtain high-level bio-production of CLP, we established a His-tagged SUMO fusion expression system in Escherichia coli. The fusion protein can be purified using a Nickel column, cleaved by TEV protease, and further purified in flow-through of the Nickel column. As a result, the recombinant CLP with a yield of 27.56 mg/L and a purity of 93.6% was obtained. The purified CLP exhibits potent antimicrobial activity against gram+ and gram- bacteria. Furthermore, the result of propidium iodide staining and scanning electron microscopy (SEM) showed that CLP can induce the membrane permeabilization and cell death of Enterotoxigenic Escherichia coli (ETEC) K88. The analysis of thermal stability results showed that the antibacterial activity of CLP decreases slightly below 70 °C for 30 min. However, when the temperature was above 70 °C, the antibacterial activity was significantly decreased. In addition, the antibacterial activity of CLP was stable in the pH range from 4.0 to 9.0; however, when pH was below 4.0 and over 9.0, the activity of CLP decreased significantly. In the presence of various proteases, such as pepsin, papain, trypsin and proteinase K, the antibacterial activity of CLP remained above 46.2%. In summary, this study not only provides an effective strategy for high-level production of antimicrobial peptides and evaluates the interference factors that affect the biological activity of hybrid peptide CLP, but also paves the way for further exploration of the treatment of multidrug-resistant bacterial infections.


Subject(s)
Anti-Bacterial Agents/chemistry , Antimicrobial Peptides/chemistry , Peptides/chemistry , Recombinant Fusion Proteins/genetics , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/genetics , Antimicrobial Peptides/biosynthesis , Antimicrobial Peptides/genetics , Antimicrobial Peptides/pharmacology , Bacteria/drug effects , Bacteria/pathogenicity , Cathelicidins/chemistry , Cathelicidins/genetics , Escherichia coli/genetics , Hemolysis/drug effects , Humans , Peptides/genetics , Peptides/pharmacology , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/pharmacology
15.
Front Pharmacol ; 12: 769739, 2021.
Article in English | MEDLINE | ID: mdl-34966279

ABSTRACT

Antimicrobial peptides (AMPs) are a promising class of compounds being developed against multi-drug resistant bacteria. Hybridization has been reported to increase antimicrobial activity. Here, two proline-rich peptides (consP1: VRKPPYLPRPRPRPL-CONH2 and Bac5-v291: RWRRPIRRRPIRPPFWR-CONH2) were combined with two arginine-isoleucine-rich peptides (optP1: KIILRIRWR-CONH2 and optP7: KRRVRWIIW-CONH2). Proline-rich antimicrobial peptides (PrAMPs) are known to inhibit the bacterial ribosome, shown also for Bac5-v291, whereas it is hypothesized a "dirty drug" model for the arginine-isoleucine-rich peptides. That hypothesis was underpinned by transmission electron microscopy and biological small-angle X-ray scattering (BioSAXS). The strength of BioSAXS is the power to detect ultrastructural changes in millions of cells in a short time (seconds) in a high-throughput manner. This information can be used to classify antimicrobial compounds into groups according to the ultrastructural changes they inflict on bacteria and how the bacteria react towards that assault. Based on previous studies, this correlates very well with different modes of action. Due to the novelty of this approach direct identification of the target of the antimicrobial compound is not yet fully established, more research is needed. More research is needed to address this limitation. The hybrid peptides showed a stronger antimicrobial activity compared to the proline-rich peptides, except when compared to Bac5-v291 against E. coli. The increase in activity compared to the arginine-isoleucine-rich peptides was up to 6-fold, however, it was not a general increase but was dependent on the combination of peptides and bacteria. BioSAXS experiments revealed that proline-rich peptides and arginine-isoleucine-rich peptides induce very different ultrastructural changes in E. coli, whereas a hybrid peptide (hyP7B5GK) shows changes, different to both parental peptides and the untreated control. These different ultrastructural changes indicated that the mode of action of the parental peptides might be different from each other as well as from the hybrid peptide hyP7B5GK. All peptides showed very low haemolytic activity, some of them showed a 100-fold or larger therapeutic window, demonstrating the potential for further drug development.

16.
Int J Mol Sci ; 22(16)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34445625

ABSTRACT

Arthropod antimicrobial peptides (AMPs) offer a promising source of new leads to address the declining number of novel antibiotics and the increasing prevalence of multidrug-resistant bacterial pathogens. AMPs with potent activity against Gram-negative bacteria and distinct modes of action have been identified in insects and scorpions, allowing the discovery of AMP combinations with additive and/or synergistic effects. Here, we tested the synergistic activity of two AMPs, from the dung beetle Copris tripartitus (CopA3) and the scorpion Heterometrus petersii (Hp1090), against two strains of Escherichia coli. We also tested the antibacterial activity of two hybrid peptides generated by joining CopA3 and Hp1090 with linkers comprising two (InSco2) or six (InSco6) glycine residues. We found that CopA3 and Hp1090 acted synergistically against both bacterial strains, and the hybrid peptide InSco2 showed more potent bactericidal activity than the parental AMPs or InSco6. Molecular dynamics simulations revealed that the short linker stabilizes an N-terminal 310-helix in the hybrid peptide InSco2. This secondary structure forms from a coil region that interacts with phosphatidylethanolamine in the membrane bilayer model. The highest concentration of the hybrid peptides used in this study was associated with stronger hemolytic activity than equivalent concentrations of the parental AMPs. As observed for CopA3, the increasing concentration of InSco2 was also cytotoxic to BHK-21 cells. We conclude that AMP hybrids linked by glycine spacers display potent antibacterial activity and that the cytotoxic activity can be modulated by adjusting the nature of the linker peptide, thus offering a strategy to produce hybrid peptides as safe replacements or adjuncts for conventional antibiotic therapy.


Subject(s)
Anti-Bacterial Agents/pharmacology , Arthropods/chemistry , Bacteria/drug effects , Glycine/chemistry , Hemolysis/drug effects , Kidney/drug effects , Pore Forming Cytotoxic Proteins/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Apoptosis , Cells, Cultured , Cricetinae , Mice , Pore Forming Cytotoxic Proteins/chemistry
17.
Probiotics Antimicrob Proteins ; 13(5): 1467-1480, 2021 10.
Article in English | MEDLINE | ID: mdl-34037941

ABSTRACT

Antimicrobial peptides (AMPs), which hold tremendous promise in overcoming the emergence of drug resistance, are limited in wide clinical applications due to their instability, especially against trypsin. Herein, we designed six peptide mutants based on the cathelicidin CATHPb2, followed by screening. Pb2-1, which showed the best activity against drug-resistant bacteria among these mutants, was selected to be combined with the trypsin inhibitory loop ORB-C to obtain two hybrid peptides: PCL-1 and Pb2-1TI. Notably, both of the hybrid peptides exhibited a remarkable enhancement in trypsin resistance compared with Pb2-1. The tests showed that PCL-1 displayed broad-spectrum antimicrobial activity that was superior to that of Pb2-1TI. In addition, PCL-1 had relatively lower cytotoxicity than Pb2-1TI towards the L02 and HaCaT cell lines and negligible hemolysis, as well as tolerance to high concentrations of salt, extreme pH, and temperature variations. In vivo, PCL-1 effectively improved the survival rate of mice that were systemically infected with drug-resistant Escherichia coli through efficient bacterial clearance from the blood and organs. With regard to mode of action, PCL-1 damaged the integrity of the bacterial cell membrane and attached to the membrane surface while bound to bacterial genomic DNA to eventually kill the bacteria. Altogether, the trypsin-resistant peptide PCL-1 is expected to be a candidate for the clinical treatment of bacterial infections.


Subject(s)
Antimicrobial Peptides , Bacteria/drug effects , Animals , Antimicrobial Peptides/pharmacology , Bacteria/genetics , Drug Resistance, Bacterial , Mice , Trypsin
18.
Clin Exp Pharmacol Physiol ; 48(8): 1162-1170, 2021 08.
Article in English | MEDLINE | ID: mdl-33851456

ABSTRACT

PK20 is an anti-inflammatory hybrid compound, composed of an endomorphin-2-like and neurotensin-like fragments. The aim of the present study is to assess the contribution of particular pharmacophores to the activity of the hybrid tested. For this purpose, airway hyperresponsiveness, accumulation of inflammatory cells in bronchoalveolar lavage fluid (BALF), concentration of mouse mast cell protease, malondialdehyde and secretory phospholipase 2 activity in lung tissue, as well as production of pro-inflammatory cytokines in BALF and lung were determined by using murine model of non-atopic asthma. Blocking either neurotensin receptors or mu opioid receptors did not alter the potential of PK20 in reducing airway hyperresponsiveness. In studies of inflammatory cells, the beneficial effect of the entire peptide occurs to be mediated by the stimulation of neurotensin receptors. However, regarding cytokine and biochemical assays, pretreatment with both receptor antagonists resulted in a different effect on its activity depending on the parameter studied. To conclude, the activation of both the opioid and neurotensin receptors seems to be necessary to induce the full anti-inflammatory activity of the hybrid compound.


Subject(s)
Analgesics, Opioid , Neurotensin , Receptors, Neurotensin , Animals , Anti-Inflammatory Agents , Mice
19.
EJNMMI Radiopharm Chem ; 6(1): 12, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33738611

ABSTRACT

BACKGROUND: There is a need to develop new and more potent radiofluorinated peptide and their hybrid conjugates for multiple-receptors targeting properties that overexpress on many cancers. METHODS: We have synthesized MUC1-[18F] SFB and MUC1-FA-[18F] SFB hybrid conjugates using a convenient and one-step nucleophilic displacement reaction. In vitro cell binding and in vivo evaluation in animals were performed to determine the potential of these radiolabeled compounds. RESULTS: Radiochemical yields for MUC1-[18F] SFB and MUC1-FA-[18F] SFB conjugates were greater than 70% in less than 30 min synthesis time. Radiochemical purities were greater than 97% without HPLC purification, which makes these approaches amenable to automation. In vitro studies on MCF7 breast cancer cells showed that the significant amounts of the radiofluorinated conjugates were associated with cell fractions and held good affinity and specificity for MCF7 cells. In vivo characterization in Balb/c mice revealed rapid blood clearance with excretion predominantly by urinary as well as hepatobiliary systems for MUC1-[18F] SFB and MUC1-FA-[18F] SFB, respectively. Biodistribution in SCID mice bearing MCF7 xenografts, demonstrated excellent tumor uptake (12% ID/g) and favorable kinetics for MUC1-FA-[18F] SFB over MUC1-[18F]SFB. The tumor uptake was blocked by the excess co-injection of cold peptides suggesting the receptor-mediated process. CONCLUSION: Initial PET/CT imaging of SCID mice with MCF7 xenografts, confirmed these observations. These results demonstrate that MUC1-FA-[18F] SFB may be a useful PET imaging probe for breast cancer detection and monitoring tumor response to the treatment.

20.
Biochem Biophys Res Commun ; 534: 680-686, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33208230

ABSTRACT

Type 1 diabetes (T1D) is an autoimmune disease caused by destruction of insulin-producing ß cells. The response of autoreactive T cells to ß cell antigens plays a central role in the development of T1D. Recently, fusion peptides composed by insulin C-peptide fragments and other proteins were reported as ß cell target antigens for diabetogenic CD4+ T cells in non-obese diabetic (NOD) mice. In this study, we generated a T cell-receptor (TCR)-like monoclonal antibody (mAb) against a fusion peptide bound to major histocompatibility complex (MHC) class II component to elucidate the function of the fusion peptides in T1D. In addition, we developed a novel NFAT-GFP TCR reporter system to evaluate the TCR-like mAb. The NFAT-GFP reporter T cells expressing the diabetogenic TCR were specifically activated by the fusion peptide presented on the MHC class II molecules. By using the NFAT-GFP reporter T cells, we showed that the TCR-like mAb blocks the diabetogenic T cell response against the fusion peptide presented on the MHC class II molecules. Furthermore, the development of T1D was ameliorated when pre-diabetic NOD mice were treated with this mAb. These findings suggest that NFAT-GFP reporter T cells are useful to assess the function of specific TCR and the recognition of fusion peptides by T cells is crucial for the pathogenesis of T1D.


Subject(s)
Antibodies, Monoclonal/pharmacology , Diabetes Mellitus, Type 1/prevention & control , Proinsulin/antagonists & inhibitors , Proinsulin/immunology , Receptors, Antigen, T-Cell/immunology , Animals , C-Peptide/antagonists & inhibitors , C-Peptide/genetics , C-Peptide/immunology , Diabetes Mellitus, Experimental/etiology , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/prevention & control , Diabetes Mellitus, Type 1/etiology , Diabetes Mellitus, Type 1/immunology , Disease Progression , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Mice , Mice, Inbred NOD , Proinsulin/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL