Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 318
Filter
1.
Waste Manag ; 189: 364-388, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39236471

ABSTRACT

This review focuses on the recent advances in the sustainable conversion of biowaste to valuable carbonaceous materials. This study summarizes the significant progress in biowaste-derived carbon materials (BCMs) via a plasma hybrid system. This includes systematic studies like AI-based multi-coupling systems, promising synthesis strategies from an economic point of view, and their potential applications towards energy, environment, and biomedicine. Plasma modified BCM has a new transition lattice phase and exhibits high resilience, while fabrication and formation mechanisms of BCMs are reviewed in plasma hybrid system. A unique 2D structure can be designed and formulated from the biowaste with fascinating physicochemical properties like high surface area, unique defect sites, and excellent conductivity. The structure of BCMs offers various activated sites for element doping and it shows satisfactory adsorption capability, and dynamic performance in the field of electrochemistry. In recent years, many studies have been reported on the biowaste conversion into valuable materials for various applications. Synthesis methods are an indispensable factor that directly affects the structure and properties of BCMs. Therefore, it is imperative to review the facile synthesis methods and the mechanisms behind the formation of BCMs derived from the low-temperature plasma hybrid system, which is the necessity to obtain BCMs having desirable structure and properties by choosing a suitable synthesis process. Advanced carbon-neutral materials could be widely synthesized as catalysts for application in environmental remediation, energy conversion and storage, and biotechnology.

2.
J Biosci Bioeng ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39122620

ABSTRACT

Protein-based therapeutics, including antibodies and antibody-like-proteins, have increasingly attracted attention due to their high specificity compared to small-molecular drugs. The Gγ recruitment system, one of the in vivo yeast two-hybrid systems for detecting protein-protein interactions, has been previously developed using yeast signal transduction machinery. In this study, we modified the Gγ recruitment system to screen the protein mutants that efficiently bind to the intracellular domain of the epidermal growth factor receptor L858R mutant (cytoEGFRL858R). Using the modified platform, we performed in vivo directed evolution for growth factor receptor-bound protein 2 (Grb2) and its truncated variant containing only the Src-homology 2 (SH2) domain, successfully identifying several mutants that more strongly bound to cytoEGFRL858R than their parental proteins. Some of them contained novel beneficial mutations (F108Y and Q144H) and specifically bound to the recombinant cytosolic phosphorylated EGFR in vitro, highlighting the utility of the evolutionary platform.

3.
Int J Nanomedicine ; 19: 7927-7944, 2024.
Article in English | MEDLINE | ID: mdl-39114181

ABSTRACT

Background: Metastasis is a complex process involving multiple factors and stages, in which tumor cells and the tumor microenvironment (TME) play significant roles. A combination of orally bioavailable therapeutic agents that target both tumor cells and TME is conducive to prevent or impede the progression of metastasis, especially when undetectable. However, sequentially overcoming intestinal barriers, ensuring biodistribution in tumors and metastatic tissues, and enhancing therapeutic effects required for efficient therapy remain challenging. Methods: Inspired by the unique chemical features of natural herbs, we propose an oral herb-nanoparticle hybrid system (HNS) formed through the self-binding of Platycodon grandiflorum-Curcuma zedoaria (HG), a herb pair/group used in clinical practice to treat breast cancer metastasis, to lipid-polymer nanoparticles (LPNs) loaded with silibinin. The molecular structure responsible for HG association with LPNs was assessed using surface-enhanced Raman spectroscopy for HNS surface chemistry characterization. Moreover, the molecular class of HG was identified using UPLC-Orbitrap-MS/MS to further confirm the surface binding. Mucus diffusion and in vivo biodistribution were evaluated using in vitro multiple-particle tracking and environment-responsive fluorescence probe in 4T1 tumor-bearing mice, respectively. The alleviation of breast cancer metastasis was assessed in 4T1 tumor-bearing mice, and the underlying mechanism was investigated. Results: The HNS reduced particle-mucus interactions by altering hydrophilicity and surface characteristics compared to LPNs. The epithelium transportation of HNS and absorption through Peyer's patch in mice were improved, promoting their biodistribution in the lung and tumor tissues. Furthermore, the HNS alleviated lung metastasis by inducing cell apoptosis and regulating the expression of MMP-9 and TGF-ß1, which altered the TME in 4T1 tumor-bearing mice. Conclusion: HNS provides an appealing system with multi-component binding of herbal medicine to facilitate both oral nanoparticle delivery efficiency and the alleviation of lung metastasis. This strategy may potentially help improve treatment for patients with breast cancer.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Mice, Inbred BALB C , Nanoparticles , Animals , Female , Lung Neoplasms/drug therapy , Lung Neoplasms/secondary , Lung Neoplasms/metabolism , Administration, Oral , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Mice , Cell Line, Tumor , Tissue Distribution , Nanoparticles/chemistry , Nanoparticles/administration & dosage , Humans , Tumor Microenvironment/drug effects
4.
J Cardiothorac Surg ; 19(1): 495, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39192346

ABSTRACT

BACKGROUND: This case report documents the first worldwide use of the Hybrid System from Spectrum Medical in a heart transplant procedure, focusing on its safety and efficacy. Traditional cardiopulmonary bypass systems often use an open reservoir, which increases the blood's exposure to air, thereby heightening the risk of an inflammatory response and gas embolism. In contrast, the Hybrid System is designed to improve surgical outcomes by significantly reducing the blood-air interface. This system utilizes a dual-chamber cardiotomy-venous reservoir with a collapsible soft bag, effectively minimizing blood contact with air and foreign materials. However, it is important to note that there is currently no evidence supporting the use of this methodology specifically in heart transplants. CASE PRESENTATION: A 41-year-old male managed with a left ventricular assist device because of dilated cardiomyopathy underwent a heart transplant using the Hybrid System. The perioperative and postoperative data provided evidence of the system's effectiveness. The selection of this patient was due to the absence of significant comorbidities unrelated to his primary cardiac condition, making him an ideal candidate to evaluate the system's performance. CONCLUSION: The Hybrid System is safe and efficient. The successful implementation in this case highlights its advantages over traditional cardiopulmonary bypass systems, suggesting a promising future in cardiac surgery. Further studies with routine cardiac surgery patients are required to validate these findings.


Subject(s)
Extracorporeal Circulation , Heart Transplantation , Humans , Male , Heart Transplantation/methods , Adult , Extracorporeal Circulation/methods , Heart-Assist Devices , Cardiomyopathy, Dilated/surgery
5.
Biotechnol J ; 19(8): e2400325, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39167555

ABSTRACT

Microalgae are a group of microorganisms containing chlorophyll A, which are highly photosynthetic and rich in nutrients. And they can produce multiple bioactive substances (peptides, proteins, polysaccharides, and fatty acids) for biomedical applications. Despite the unique advantages of microalgae-based biotherapy, the insufficient treatment efficiency limits its further application. With the development of nanotechnology, the combination of microalgae and biomaterials can improve therapeutic efficacies, which has attracted increasing attention. In this microalgal-biomaterials hybrid system, biomaterials with excellent optical and magnetic properties play an important role in biological therapy. Microalgae, as a natural vehicle, can increase oxygen content and alleviate hypoxia in diseased areas, further enhancing therapeutic effects. In this review, the synergistic therapeutic effects of microalgal-biomaterials hybrid system in different diseases (cancer, myocardial infarction, ischemia stroke, chronic infection, and intestinal diseases) are comprehensively summarized.


Subject(s)
Biocompatible Materials , Microalgae , Biocompatible Materials/chemistry , Humans , Animals
6.
Adv Sci (Weinh) ; : e2401904, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007198

ABSTRACT

Quantum electronics operating in the microwave domain are burgeoning and becoming essential building blocks of quantum computers, sensors, and communication devices. However, the field of microwave quantum electronics has long been dominated by the need for cryogenic conditions to maintain delicate quantum characteristics. Here, a solid-state hybrid system, constituted by a photo-excited pentacene triplet spin ensemble coupled to a dielectric resonator, is reported for the first time capable of both coherent microwave quantum amplification and oscillation at X band via the masing process at room temperature. By incorporating external driving and active dissipation control into the hybrid system, efficient tuning of the maser emission characteristics at ≈9.4 GHz is achieved, which is key to optimizing the performance of the maser device. The work not only pushes the boundaries of the operating frequency and functionality of the existing pentacene masers but also demonstrates a universal route for controlling the masing process at room temperature, highlighting opportunities for optimizing emerging solid-state masers for quantum information processing and communication.

7.
Crit Rev Food Sci Nutr ; : 1-24, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007752

ABSTRACT

Inflammation bowel disease (IBD) has emerged as a public health challenge worldwide; with high incidence and rapid prevalence, it has troubled billions of people and further induced multitudinous systemic complications. Recent decade has witnessed the vigorous application of food-borne probiotics for IBD therapy; however, the complicated and changeable environments of digestive tract have forced probiotics to face multiple in vivo pressures, consequently causing unsatisfied prophylactic or therapeutic efficacy attributed to off-targeted arrival, damaged viability, insufficient colonization efficiency, etc. Fortunately, arisen hybrid technology has provided versatile breakthroughs for the targeted transplantation of probiotics. By ingeniously modifying probiotics to form probiotics hybrid systems (PHS), the biological behaviors of probiotics in vivo could be mediated, the interactions between probiotics with intestinal components can be facilitated, and diverse advanced probiotic-based therapies for IBD challenge can be developed, which attribute to the intelligent response to microenvironment of PHS, and intelligent design of PHS for multiple functions combination. In this review, various PHS were categorized and their intestinal behaviors were elucidated systematically, their therapeutic effects and intrinsic mechanism were further analyzed. Besides, shortages of present PHS and the corresponding solutions have been discussed, based on which the future perspectives of this field have also been proposed. The undeniable fact is that PHS show an incomparable future to bring the next generation of advanced food science.


Dressing probiotics with versatile outfits would impart them with extended functions, including elevated targeted efficiency to the nidi, controlled in situ release, enhance intestinal colonization, comprehensive microecology regulation, and so on. In this article, we systematically analyzed and categorized PHS for intelligent IBD therapy published in recent decade, and discussed their pros and cons to further raise the future orientation for PHS development.

8.
Water Res ; 261: 122037, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39003875

ABSTRACT

The renewable-energy-based water-energy nexus is a promising approach that contributes to climate change mitigation. Increasing concerns on GHG emission and energy demand, policies have been implemented in many countries to make use of renewable energy as much as possible. Renewable energy technologies can be directly employed in desalination processes, including membrane-based (e.g., reverse osmosis (RO) and membrane distillation (MD)) and thermal-based (e.g., multistage flash distillation (MSF) and multieffect distillation (MED)) technologies. Although the production capacities of fossil-based desalination processes (RO, MD, and MED) are higher than those of renewable-energy-based desalination processes, most latter desalination processes have lower specific energy consumption than conventional processes, which may offer potential for the implementation of renewable energy sources. In addition to the direct application of renewable energy technology to desalination, biofuels can be produced by converting algal lipids obtained from the growth of algae, which are associated with wastewater bioremediation and nitrogen and phosphorus removal during wastewater treatment. Salinity gradient power can be harvested from brine originating from desalination plants and freshwater driven by pressure-retarded osmosis or reverse electrodialysis. This study provides an overview of these approaches and discusses their effectiveness. It not only offers insights into the potential of applying renewable energy technologies to various water treatment processes but also suggests future directions for scientists to further enhance the efficiency of renewable energy production processes for possible implementation.


Subject(s)
Renewable Energy , Water Purification , Water Purification/methods , Biofuels , Osmosis , Salinity , Wastewater/chemistry
9.
Biosens Bioelectron ; 263: 116613, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39084044

ABSTRACT

The biomimetic enzyme cascade system plays a key role in biosensing as a sophisticated signal transduction and amplification strategy. However, constructing a regulated enzyme cascade sensing system remains challenging due to the mismatch of multiple enzyme activities and poor stability. Herein, we design an efficient dual-enhanced enzyme cascade hybrid system (UFD-DEC) containing DNA-controlled nanozymes (Fe-cdDNA) and enzyme (urease) via combining the electrostatic contact effect with the hydrogel-directed confinement effect. Precise modulation of Fe-cdDNA nanozyme by DNA offers a means to control its catalytic efficiency. This regulated UFD-DEC system accelerates the reaction rate and provides remarkable stability compared with the free enzyme system. Benefiting from the plasticity properties of hydrogels, a "lab-in-a-tube" platform was constructed by encapsulating UFD-DEC in a microcentrifuge tube. Such a UFD-DEC-based hydrogel tube exhibits sufficient adaptability to profile urea when used in conjunction with a smartphone-assisted image processing algorithm, which on-site delivers urea information with a detection limit of 0.12 mmol L-1. This customizable and inexpensive miniaturized biosensor platform for monitoring urea may facilitate point-of-care testing applications.


Subject(s)
Biosensing Techniques , Hydrogels , Limit of Detection , Urease , Biosensing Techniques/methods , Hydrogels/chemistry , Urease/chemistry , Urea/analysis , Urea/chemistry , DNA, Catalytic/chemistry , DNA/chemistry
10.
Microbiome ; 12(1): 134, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039555

ABSTRACT

BACKGROUND: Understanding the interactions and dynamics of microbiotas within biological wastewater treatment systems is essential for ensuring their stability and long-term sustainability. In this study, we developed a systematic framework employing multi-omics and Hi-C sequencing to extensively investigate prokaryotic and phage communities within a hybrid biofilm and activated sludge system. RESULTS: We uncovered distinct distribution patterns, metabolic capabilities, and activities of functional prokaryotes through the analysis of 454 reconstructed prokaryotic genomes. Additionally, we reconstructed a phage catalog comprising 18,645 viral operational taxonomic units (vOTUs) with high length and contiguity using hybrid assembly, and a distinct distribution of phages was depicted between activated sludge (AS) and biofilm. Importantly, 1340 host-phage pairs were established using Hi-C and conventional in silico methods, unveiling the host-determined phage prevalence. The majority of predicted hosts were found to be involved in various crucial metabolic processes, highlighting the potential vital roles of phages in influencing substance metabolism within this system. Moreover, auxiliary metabolic genes (AMGs) related to various categories (e.g., carbohydrate degradation, sulfur metabolism, transporter) were predicted. Subsequent activity analysis emphasized their potential ability to mediate host metabolism during infection. We also profiled the temporal dynamics of phages and their associated hosts using 13-month time-series metagenomic data, further demonstrating their tight interactions. Notably, we observed lineage-specific infection patterns, such as potentially host abundance- or phage/host ratio-driven phage population changes. CONCLUSIONS: The insights gained from this research contribute to the growing body of knowledge surrounding interactions and dynamics of host-phage and pave the way for further exploration and potential applications in the field of microbial ecology. Video Abstract.


Subject(s)
Bacteria , Bacteriophages , Sewage , Wastewater , Bacteriophages/genetics , Bacteriophages/classification , Bacteriophages/physiology , Bacteriophages/isolation & purification , Sewage/virology , Sewage/microbiology , Wastewater/virology , Wastewater/microbiology , Bacteria/virology , Bacteria/genetics , Bacteria/classification , Biofilms , Metagenomics , Water Purification/methods , Microbiota
11.
Adv Sci (Weinh) ; 11(31): e2403765, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38874072

ABSTRACT

Organic/inorganic hybrid systems offer great potential for novel solar cell design combining the tunability of organic chromophore absorption properties with high charge carrier mobilities of inorganic semiconductors. However, often such material combinations do not show the expected performance: while ZnO, for example, basically exhibits all necessary properties for a successful application in light-harvesting, it was clearly outpaced by TiO2 in terms of charge separation efficiency. The origin of this deficiency has long been debated. This study employs femtosecond time-resolved photoelectron spectroscopy and many-body ab initio calculations to identify and quantify all elementary steps leading to the suppression of charge separation at an exemplary organic/ZnO interface. It is demonstrated that charge separation indeed occurs efficiently on ultrafast (350 fs) timescales, but that electrons are recaptured at the interface on a 100 ps timescale and subsequently trapped in a strongly bound (0.7 eV) hybrid exciton state with a lifetime exceeding 5 µs. Thus, initially successful charge separation is followed by delayed electron capture at the interface, leading to apparently low charge separation efficiencies. This finding provides a sufficiently large time frame for counter-measures in device design to successfully implement specifically ZnO and, moreover, invites material scientists to revisit charge separation in various kinds of previously discarded hybrid systems.

12.
Drug Deliv Transl Res ; 14(10): 2598-2614, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38856952

ABSTRACT

The success of colon-targeted oral hybrid systems relies in the proper control over the release of the entrapped nanostructures at the colon. This work describes the design of hybrid systems for their colonic enzyme-triggered release. The hybrid systems were constituted by nanoemulsions, with adequate characteristics for the treatment of ulcerative colitis, included in a pectin hydrogel-like matrix. For that purpose, pectins with similar degrees of methylation (< 50%) and increasing degree of amidation, i.e. 0, 13 and 20%, were selected. Hybrid systems were formulated by a novel aggregation induced gelation method, using Ca2+, Ba2+ or Zn2+ as aggregating agents, as well as by a polyelectrolyte condensation approach, obtaining structures in the micrometric range (< 10 µm). Despite the resistance of pectins to the upper gastrointestinal tract stimuli, the analysis of the behaviour of the different prototypes showed that the non-covalent crosslinks that allow the formation of the hybrid structure may play a relevant role on the performance of the formulation.Our results indicated that the partial disassembling of the hybrid system's microstructure due to the intestinal conditions may facilitate the stimuli-triggered release of the nanoemulsions at the colon. More interestingly, the particle tracking experiments showed that the condensation process that occurs during the formation of the system may affect to the enzymatic degradation of pectin. In this sense, the effect of the high degree of amidation of pectin may be more prevalent as structural feature rather than as a promoter of the enzyme-triggered release.


Subject(s)
Colon , Pectins , Pectins/chemistry , Colon/metabolism , Hydrogels/chemistry , Hydrogels/administration & dosage , Drug Delivery Systems , Emulsions , Humans
13.
ACS Nano ; 18(22): 14546-14557, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38776420

ABSTRACT

Hydrogen production by photosynthetic hybrid systems (PBSs) offers a promising avenue for renewable energy. However, the light-harvesting efficiency of PBSs remains constrained due to unclear intracellular kinetic factors. Here, we present an operando elucidation of the sluggish light-harvesting behavior for existing PBSs and strategies to circumvent them. By quantifying the spectral shift in the structural color scattering of individual PBSs during the photosynthetic process, we observe the accumulation of product hydrogen bubbles on their outer membrane. These bubbles act as a sunshade and inhibit light absorption. This phenomenon elucidates the intrinsic constraints on the light-harvesting efficiency of PBSs. The introduction of a tension eliminator into the PBSs effectively improves the bubble sunshade effect and results in a 4.5-fold increase in the light-harvesting efficiency. This work provides valuable insights into the dynamics of transmembrane transport gas products and holds the potential to inspire innovative designs for improving the light-harvesting efficiency of PBSs.

14.
Water Sci Technol ; 89(7): 1831-1845, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619906

ABSTRACT

In this study, further treatment of coking wastewater treated in anoxic-oxic-membrane bioreactor (A2O-MBR) was investigated to meet the standards of the ministry by means of nanofiltration (NF) (with two different membranes and different pressures), microfiltration -powder activated carbon (MF-PAC) hybrid system and NF-PAC (with two different membranes and five different PAC concentrations) hybrid system. In addition to the parameters determined by the ministry, other parameters such as ammonium, thiocyanate (SCN-), hydrogen cyanide (HCN), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), color were also examined to evaluate the flux performance and treatment efficiency of the hybrid processes. According to the results, chemical oxygen demand (COD) in the NF process, COD and total cyanide (T-CN) in the MF-PAC process could not meet the discharge standards. As for the NF-PAC hybrid system, XN45 membrane met the discharge standards in all parameters (COD = 96±1.88 mg/L, T-CN =<0,02 mg/L, phenol =<0.05 mg/L), with a recovery rate of 78% at 0.5 g/L PAC concentration.


Subject(s)
Coke , Water Purification , Wastewater , Charcoal , Powders , Water Purification/methods , Membranes, Artificial , Bioreactors , Waste Disposal, Fluid/methods
15.
Int J Mol Sci ; 25(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38612457

ABSTRACT

The advancement of exosome studies has positioned engineered exosomes as crucial biomaterials for the development of advanced drug delivery systems. This study focuses on developing a hybrid exosome system by fusing mesenchymal stem cells (MSCs) exosomes with folate-targeted liposomes. The aim was to improve the drug loading capacity and target modification of exosome nanocarriers for delivering the first-line chemotherapy drug paclitaxel (PTX) and its effectiveness was assessed through cellular uptake studies to evaluate its ability to deliver drugs to tumor cells in vitro. Additionally, in vivo experiments were conducted using a CT26 tumor-bearing mouse model to assess the therapeutic efficacy of hybrid exosomes loaded with PTX (ELP). Cellular uptake studies demonstrated that ELP exhibited superior drug delivery capabilities to tumor cells in vitro. Moreover, in vivo experiments revealed that ELP significantly suppressed tumor growth in the CT26 tumor-bearing mouse model. Notably, for the first time, we examined the tumor microenvironment following intratumoral administration of ELP. We observed that ELP treatment activated CD4+ and CD8+ T cells, reduced the expression of M2 type tumor-associated macrophages (TAMs), polarized TAMs towards the M1 type, and decreased regulatory T cells (Tregs). Our research highlights the considerable therapeutic efficacy of ELP and its promising potential for future application in cancer therapy. The development of hybrid exosomes presents an innovative approach to enhance drug delivery and modulate the tumor microenvironment, offering exciting prospects for effective cancer treatment strategies.


Subject(s)
Exosomes , Neoplasms , Animals , Mice , CD8-Positive T-Lymphocytes , Drug Delivery Systems , Biocompatible Materials , Disease Models, Animal , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Neoplasms/drug therapy
16.
ACS Nano ; 18(16): 10840-10849, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38616401

ABSTRACT

External electric field has the potential to influence metabolic processes such as biological hydrogen production in microorganisms. Based on this concept, we designed and constructed an electroactive hybrid system for microbial biohydrogen production under an electric field comprised of polydopamine (PDA)-modified Escherichia coli (E. coli) and Ni foam (NF). In this system, electrons generated from NF directly migrate into E. coli cells to promote highly efficient biocatalytic hydrogen production. Compared to that generated in the absence of electric field stimulation, biohydrogen production by the PDA-modified E. coli-based system is significantly enhanced. This investigation has demonstrated the mechanism for electron transfer in a biohybrid system and gives insight into precise basis for the enhancement of hydrogen production by using the multifield coupling technology.


Subject(s)
Electrons , Escherichia coli , Hydrogen , Polymers , Escherichia coli/metabolism , Hydrogen/metabolism , Hydrogen/chemistry , Polymers/chemistry , Polymers/metabolism , Indoles/chemistry , Indoles/metabolism , Nickel/chemistry , Nickel/metabolism , Electron Transport
17.
Sensors (Basel) ; 24(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38676160

ABSTRACT

Optical Motion Capture Systems (OMCSs) are considered the gold standard for kinematic measurement of human movements. However, in situations such as measuring wrist kinematics during a hairdressing activity, markers can be obscured, resulting in a loss of data. Other measurement methods based on non-optical data can be considered, such as magneto-inertial measurement units (MIMUs). Their accuracy is generally lower than that of an OMCS. In this context, it may be worth considering a hybrid system [MIMU + OMCS] to take advantage of OMCS accuracy while limiting occultation problems. The aim of this work was (1) to propose a methodology for coupling a low-cost MIMU (BNO055) to an OMCS in order to evaluate wrist kinematics, and then (2) to evaluate the accuracy of this hybrid system [MIMU + OMCS] during a simple hairdressing gesture. During hair cutting gestures, the root mean square error compared with the OMCS was 4.53° (1.45°) for flexion/extension, 5.07° (1.30°) for adduction/abduction, and 3.65° (1.19°) for pronation/supination. During combing gestures, they were significantly higher, but remained below 10°. In conclusion, this system allows for maintaining wrist kinematics in case of the loss of hand markers while preserving an acceptable level of precision (<10°) for ergonomic measurement or entertainment purposes.


Subject(s)
Wrist , Humans , Biomechanical Phenomena/physiology , Wrist/physiology , Male , Range of Motion, Articular/physiology , Adult , Movement/physiology , Female
18.
J Imaging Inform Med ; 37(4): 1752-1766, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38429562

ABSTRACT

Breast cancer is recognized as a prominent cause of cancer-related mortality among women globally, emphasizing the critical need for early diagnosis resulting improvement in survival rates. Current breast cancer diagnostic procedures depend on manual assessments of pathological images by medical professionals. However, in remote or underserved regions, the scarcity of expert healthcare resources often compromised the diagnostic accuracy. Machine learning holds great promise for early detection, yet existing breast cancer screening algorithms are frequently characterized by significant computational demands, rendering them unsuitable for deployment on low-processing-power mobile devices. In this paper, a real-time automated system "Auto-BCS" is introduced that significantly enhances the efficiency of early breast cancer screening. The system is structured into three distinct phases. In the initial phase, images undergo a pre-processing stage aimed at noise reduction. Subsequently, feature extraction is carried out using a lightweight and optimized deep learning model followed by extreme gradient boosting classifier, strategically employed to optimize the overall performance and prevent overfitting in the deep learning model. The system's performance is gauged through essential metrics, including accuracy, precision, recall, F1 score, and inference time. Comparative evaluations against state-of-the-art algorithms affirm that Auto-BCS outperforms existing models, excelling in both efficiency and processing speed. Computational efficiency is prioritized by Auto-BCS, making it particularly adaptable to low-processing-power mobile devices. Comparative assessments confirm the superior performance of Auto-BCS, signifying its potential to advance breast cancer screening technology.


Subject(s)
Algorithms , Breast Neoplasms , Early Detection of Cancer , Humans , Breast Neoplasms/pathology , Breast Neoplasms/diagnosis , Breast Neoplasms/diagnostic imaging , Female , Early Detection of Cancer/methods , Image Interpretation, Computer-Assisted/methods , Deep Learning
19.
Chemosphere ; 353: 141540, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423144

ABSTRACT

The development of algae is seen as a potential and ecologically sound approach to address the increasing demands in multiple sectors. However, successful implementation of processes is highly dependent on effective growing and harvesting methods. The present study provides a complete examination of contemporary techniques employed in the production and harvesting of algae, with a particular emphasis on their sustainability. The review begins by examining several culture strategies, encompassing open ponds, closed photobioreactors, and raceway ponds. The analysis of each method is conducted in a systematic manner, with a particular focus on highlighting their advantages, limitations, and potential for expansion. This approach ensures that the conversation is in line with the objectives of sustainability. Moreover, this study explores essential elements of algae harvesting, including the processes of cell separation, dewatering, and biomass extraction. Traditional methods such as centrifugation, filtration, and sedimentation are examined in conjunction with novel, environmentally concerned strategies including flocculation, electro-coagulation, and membrane filtration. It evaluates the impacts on the environment that are caused by the cultivation process, including the usage of water and land, the use of energy, the production of carbon dioxide, and the runoff of nutrients. Furthermore, this study presents a thorough examination of the current body of research pertaining to Life Cycle Analysis (LCA) studies, presenting a perspective that emphasizes sustainability in the context of algae harvesting systems. In conclusion, the analysis ends up with an examination ahead at potential areas for future study in the cultivation and harvesting of algae. This review is an essential guide for scientists, policymakers, and industry experts associated with the advancement and implementation of algae-based technologies.


Subject(s)
Biofuels , Microalgae , Animals , Photobioreactors , Biomass , Life Cycle Stages
20.
Clin Oral Investig ; 28(1): 104, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38243032

ABSTRACT

OBJECTIVE: To evaluate the 5-year clinical performance of a glass hybrid restorative system and a nano-hybrid resin composite in moderate to large two-surface class II cavities. MATERIALS AND METHODS: This study was carried out by dental schools in Zagreb, Croatia; Izmir, Turkey; Belgrade, Serbia; and Milan, Italy. A total of 180 patients requiring two class-II two-surface restorations in the molars of the same jaw were recruited. The teeth were randomly restored with either a nano-hybrid resin composite (Tetric EvoCeram, Ivoclar Vivadent) or a glass-hybrid material (EQUIA Forte, GC). During the 5-year follow-up, two calibrated evaluators at each centre scored the restorations annually using the FDI-2 scoring system. The survival rates were calculated using the Kaplan-Meier method and compared using non-parametric matched pair tests (p < 0.05). RESULTS: There were no statistically significant differences between the overall survival and success rates of the two types of restorations (p>0.05). The success rates (FDI-2 scores 1-3) for EQUIA Forte were 81.9% (average annual failure rate: 3.9%) and 90.7% for Tetric EvoCeram (average annual failure rate: 1.9%). The survival rates (FDI-2 scores 1-4) for EQUIA Forte and Tetric EvoCeram were 94.5% and 94.4%, respectively, with an average annual failure rate of 1.1%. CONCLUSIONS: In terms of success and survival rates, both the glass-hybrid restorative system and the nano-hybrid resin composite have been shown to perform satisfactorily. CLINICAL RELEVANCE: The results of this study indicate that EQUIA Forte can be one of the therapeutic options for moderate to large two-surface class II restorations of posterior teeth.


Subject(s)
Dental Caries , Dental Restoration, Permanent , Humans , Dental Restoration, Permanent/methods , Composite Resins/therapeutic use , Dental Materials , Molar , Dental Caries/therapy , Glass , Glass Ionomer Cements/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL