Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Carbohydr Polym ; 299: 120174, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36876789

ABSTRACT

Corn cobs (CCs) are abundant xylan-rich agricultural wastes. Here, we compared CCs XOS yields obtained via two different pretreatment routs, alkali and hydrothermal, using a set of recombinant endo- and exo-acting enzymes from GH10 and GH11 families, which have different restrictions for xylan substitutions. Furthermore, impacts of the pretreatments on chemical composition and physical structure of the CCs samples were evaluated. We demonstrated that alkali pretreatment route rendered 59 mg of XOS per gram of initial biomass, while an overall XOS yield of 115 mg/g was achieved via hydrothermal pretreatment using a combination of GH10 and GH11 enzymes. These results hold a promise of ecologically sustainable enzymatic valorization of CCs via "green" and sustainable XOS production.


Subject(s)
Xylans , Zea mays , Humans , Agriculture , Alkalies
2.
Environ Sci Pollut Res Int ; 30(14): 42443-42455, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36648713

ABSTRACT

Hydrothermal pretreatment (HPT) followed by anaerobic digestion (AD) is an alternative for harvesting energy and removing organic contaminants from sewage sludge and animal manure. This study investigated the use, in an energetically sustainable way, of HPT and AD, alone or combined, to produce methane and remove tylosin and antimicrobial resistance genes (ARG) from poultry litter (PL). The results showed that HPT at 80 °C (HPT80), followed by single-stage AD (AD-1S), led to the production of 517.9 ± 4.7 NL CH4 kg VS-1, resulting in 0.11 kWh kg PL-1 of electrical energy and 0.75 MJ kg PL-1 of thermal energy, thus supplying 33.6% of the energy spent on burning firewood at a typical farm. In this best-case scenario, the use of HPT alone reduced tylosin concentration from PL by 23.6%, while the process involving HPT followed by AD-1S led to the removal of 91.6% of such antibiotic. The combined process (HPT80 + AD-1S), in addition to contributing to reduce the absolute and relative abundances of ARG ermB (2.13 logs), intI1 (0.39 logs), sul1 (0.63 logs), and tetA (0.74 logs), led to a significant removal in the relative abundance of tylosin-resistant bacteria present in the poultry litter.


Subject(s)
Poultry , Tylosin , Animals , Tylosin/pharmacology , Anaerobiosis , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Sewage
3.
Molecules ; 27(12)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35745010

ABSTRACT

The development of green technologies and bioprocesses such as solid-state fermentation (SSF) is important for the processing of macroalgae biomass and to reduce the negative effect of Sargassum spp. on marine ecosystems, as well as the production of compounds with high added value such as fungal proteins. In the present study, Sargassum spp. biomass was subjected to hydrothermal pretreatments at different operating temperatures (150, 170, and 190 °C) and pressures (3.75, 6.91, and 11.54 bar) for 50 min, obtaining a glucan-rich substrate (17.99, 23.86, and 25.38 g/100 g d.w., respectively). The results indicate that Sargassum pretreated at a pretreatment temperature of 170 °C was suitable for fungal growth. SSF was performed in packed-bed bioreactors, obtaining the highest protein content at 96 h (6.6%) and the lowest content at 72 h (4.6%). In contrast, it was observed that the production of fungal proteins is related to the concentration of sugars. Furthermore, fermentation results in a reduction in antinutritional elements, such as heavy metals (As, Cd, Pb, Hg, and Sn), and there is a decrease in ash content during fermentation kinetics. Finally, this work shows that Aspergillus oryzae can assimilate nutrients found in the pretreated Sargassum spp. to produce fungal proteins as a strategy for the food industry.


Subject(s)
Sargassum , Biomass , Bioreactors/microbiology , Ecosystem , Fermentation , Fungal Proteins
4.
Bioresour Technol ; 351: 127044, 2022 May.
Article in English | MEDLINE | ID: mdl-35337992

ABSTRACT

This review aims to present an analysis and discussion on the processing of lignocellulosic biomass in terms of biorefinery concept and circular bioeconomy operating at high solids lignocellulosic (above 15% [w/w]) at the pretreatment, enzymatic hydrolysis stage, and fermentation strategy for an integrated lignocellulosic bioprocessing. Studies suggest high solids concentration enzymatic hydrolysis for improved sugars yields and methods to overcome mass transport constraints. Rheological and computational fluid dynamics models of high solids operation through evaluation of mass and momentum transfer limitations are presented. Also, the review paper explores operational feeding strategies to obtain high ethanol concentration and conversion yield, from the hydrothermal pretreatment and investigates the impact of mass load over the operational techniques. Finally, this review contains a brief overview of some of the operations that have successfully scaled up and implemented high-solids enzymatic hydrolysis in terms of the biorefinery concept.


Subject(s)
Lignin , Biomass , Fermentation , Hydrolysis , Rheology
5.
Bioresour Technol ; 343: 126074, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34606920

ABSTRACT

The main purpose of this work was the development of a new citric acid assisted hydrothermal pretreatment of cocoa pod husks (CPH), which has not yet been exploited for pectin recovery. CPH́s pectin recovery was improved with concomitant production of xylooligosaccharides (XOS) through efficient enzymatic hydrolysis of the solid fraction. A central composite experimental design was planned to analyze the effect of pretreatment conditions. Under optimal conditions at 120 °C, 10 min and 2% w.v-1, the recovery of pectin accounted for 19.3% of the biomass submitted to pretreatment with 52.2% of methyl esterification degree. Additionally, 51.9 mg.g-1 of XOS were also produced. The enzymatic conversion efficiency of the cellulosic fraction was 58.9%, leading to a production of 92.4 kg of glucose per ton of CPH. Great perspectives were observed in the implementation of CPH hydrothermal pretreatment for the production of value-added biomolecules under a biorefinery concept.


Subject(s)
Citric Acid , Pectins , Glucuronates , Hydrolysis , Oligosaccharides , Research Design
6.
Bioresour Technol ; 346: 126635, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34971781

ABSTRACT

A biorefinery approach was applied for pectin extraction, xylooligosaccharides' (XOs) and bioethanol production from cocoa pod husk (CPH) using citric acid-assisted hydrothermal pretreatment. Under optimal conditions at 120° C, 10 min and 2% w.v-1 of citric acid a high pectin recovery (19.5%) with high content of uronic acids (41.9%) was obtained. In addition, the liquid fraction presented a XOs concentration of 50.4 mg.g-1 and 69.7 mg.g-1 of fermentable sugars. Enzymatic hydrolysis of solid fraction showed glucan conversion of 60%. Finally, the hydrothermal and enzymatic hydrolysates of CPH were used in bioethanol production by Candida tropicalis and Saccharomyces cerevisiae, reaching 30.9 g and 45.2 g of bioethanol per kg of CPH, respectively. An environmentally friendly and rapid pretreatment method was development for pectin extraction, XOS and second-generation bioethanol production from CPH with great perspectives for the application of these biomolecules in food and bioenergy industry.


Subject(s)
Cacao , Pectins , Food , Hydrolysis , Sugars
7.
Molecules ; 27(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35011258

ABSTRACT

Hydrothermal pretreatment (HP) is an eco-friendly process for deconstructing lignocellulosic biomass (LCB) that plays a key role in ensuring the profitability of producing biofuels or bioproducts in a biorefinery. At the laboratory scale, HP is usually carried out under non-isothermal regimes with poor temperature control. In contrast, HP is usually carried out under isothermal conditions at the commercial scale. Consequently, significant discrepancies in the values of polysaccharide releases are found in the literature. Therefore, laboratory-scale HP data are not trustworthy if scale-up or retrofitting of HP at larger scales is required. This contribution presents the results of laboratory-scale batch HP for wheat straw in terms of xylan and glucan release that were obtained with rigorous temperature control under isothermal conditions during the reaction stage. The heating and cooling stages were carried out with fast rates (43 and -40 °C/min, respectively), minimizing non-isothermal reaction periods. Therefore, the polysaccharide release results can be associated exclusively with the isothermic reaction stage and can be considered as a reliable source of information for HP at commercial scales. The highest amount of xylan release was 4.8 g/L or 43% obtained at 180 °C and 20 min, while the glucan release exhibited a maximum of 1.2 g/L or 5.5%. at 160 °C/180 °C and 30 min.


Subject(s)
Fermentation , Polysaccharides/biosynthesis , Temperature , Triticum/chemistry , Biomass , Cellulose/chemistry , Glucans/biosynthesis , Heating , Hydrolysis , Kinetics , Xylans/biosynthesis
8.
Bioresour Technol ; 313: 123637, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32535521

ABSTRACT

Sugarcane straw (SS) is a widely available agricultural processing feedstock with the potential to produce 2nd generation bioethanol and bioproducts, in addition to the more conventional use for heat and/or electrical power generation. In this study, we investigated the operational parameters to maximize the production of xylo-oligosaccharides (XOS) using mild deacetylation, followed by hydrothermal pretreatment. From the laboratory to the pilot-scale, the optimized two-stage pretreatment promoted 81.5% and 70.5% hemicellulose solubilization and led to XOS yields up to 9.8% and 9.1% (w/w of initial straw), respectively. Moreover, different fungal xylanases were also tested to hydrolyze XOS into xylobiose (X2) and xylotriose (X3). GH10 from Aspergillus nidulans performed better than GH11 xylanases and the ratio of the desired products (X2 + X3) increased to 72% due to minimal monomeric sugar formation. Furthermore, a cellulose-rich fraction was obtained, which can be used in other high value-added applications, such as for the production of cello-oligomers.


Subject(s)
Saccharum , Cellulose , Endo-1,4-beta Xylanases , Hydrolysis , Oligosaccharides
9.
Enzyme Microb Technol ; 135: 109490, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32146936

ABSTRACT

Bioproducts production using monomeric sugars derived from lignocellulosic biomass presents several challenges, such as to require a physicochemical pretreatment to improve its conversion yields. Hydrothermal lignocellulose pretreatment has several advantages and results in solid and liquid streams. The former is called hemicellulosic hydrolysate (HH), which contains inhibitory phenolic compounds and sugar degradation products that hinder microbial fermentation products from pentose sugars. Here, we developed and applied a novel enzyme process to detoxify HH. Initially, the design of experiments with different redox activities enzymes was carried out. The enzyme mixture containing the peroxidase (from Armoracia rusticana) together with superoxide dismutase (from Coptotermes gestroi) are the most effective to detoxify HH derived from sugarcane bagasse. Butanol fermentation by the bacteria Clostridium saccharoperbutylacetonicum and ethanol production by the yeast Scheffersomyces stipitis increased by 24.0× and 2.4×, respectively, relative to the untreated hemicellulosic hydrolysates. Detoxified HH was analyzed by chromatographic and spectrometric methods elucidating the mechanisms of phenolic compound modifications by enzymatic treatment. The enzyme mixture degraded and reduced the hydroxyphenyl- and feruloyl-derived units and polymerized the lignin fragments. This strategy uses biocatalysts under environmentally friendly conditions and could be applied in the fuel, food, and chemical industries.


Subject(s)
Clostridium/metabolism , Peroxidase/chemistry , Polysaccharides/chemistry , Saccharum/chemistry , Superoxide Dismutase/chemistry , Yeasts/metabolism , Biocatalysis , Butanols/metabolism , Cellulose/chemistry , Cellulose/metabolism , Fermentation , Industrial Microbiology , Peroxidase/metabolism , Polysaccharides/metabolism , Saccharum/microbiology , Superoxide Dismutase/metabolism
10.
Appl Biochem Biotechnol ; 190(1): 232-251, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31332677

ABSTRACT

The genera Dysgonomonas, Coprococcus, Sporomusa, Bacteroides, Sedimentibacter, Pseudomonas, Ruminococcus, and Clostridium predominate in compost residue, and vadimCA02, Anaerobaculum, Tatlockia, Caloramator, and Syntrophus prevail in soil used as inoculum in batch rectors. This mixed consortium was used as inoculum for biogas production using different concentrations of sugarcane bagasse (SCB) (from 1.58 to 4.42 g/L) and yeast extract (YE) (from 0.58 to 3.42 g/L) according to a composite central design. The maximum ethanol production (20.11 mg L-1) was observed using 2.0 and 3.0 g L-1 of YE and SCB, respectively (C6). Likewise, the highest hydrogen production (0.60 mmol L-1) was observed using 3.0 and 4.0 g L-1 of YE and SCB, respectively (C1). Methane was also observed, reaching the maximum production (1.44 mmol L-1) using 1.0 and 4.0 g L-1 of YE and SCB, respectively (C2). The archaeal similarity between these conditions was above 90%; however, the richness and diversity were higher in the C2 (12 and 2.42, respectively) than in C1 (5 and 1.43, respectively) and C6 (11 and 2.29, respectively). Equally, the bacterial similarity between C1 and C6 was 60% while richness of 24 and 17 and diversity of 3.13 and 2.81 were observed in C1 and C6, respectively.


Subject(s)
Bacteria, Anaerobic/metabolism , Biofuels , Bioprospecting , Saccharum/metabolism , Anaerobiosis , Fermentation
11.
Bioresour Technol ; 275: 321-327, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30594843

ABSTRACT

The recalcitrant structures of sugarcane straw and related lignocellulosic biomasses require a pretreatment step to enable a better enzymatic attack during the hydrolysis. Factors like the energy consumption and the formation of inhibitors require the optimization of the pretreatment step. Thus, the influence of different severity factors (SF) on hydrothermal (also called liquid hot water, LHW) pretreatment was evaluated using a factorial design 22 with central point. The obtained results showed that low values of SF (<3.39) did not promote reasonable alteration in the sugarcane straw structures, whereas high SF values (>4.70) resulted in loss of hydrolyzed sugars, generation of inhibitors such as furfural, and formation of pseudo-lignin structures, despite high hemicellulose removal (∼97%). The residence time exhibited low influence on LHW. An optimum condition was found for the process (10 min and 195 °C) with low cellulose solubilization (9.80%) and a reasonable hemicellulose removal (85.45%).


Subject(s)
Saccharum/chemistry , Cellulose/chemistry , Hydrolysis , Lignin/chemistry , Temperature
12.
Bioresour Technol ; 243: 273-283, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28675841

ABSTRACT

This work describes the application of two forms of heating for autohydrolysis pretreatment on isothermal regimen: conduction-convection heating and microwave heating processing using corn stover as raw material for bioethanol production. Pretreatments were performed using different operational conditions: residence time (10-50 min) and temperature (160-200°C) for both pretreatments. Subsequently, the susceptibility of pretreated solids was studied using low enzyme loads, and high substrate loads. The highest conversion was 95.1% for microwave pretreated solids. Also solids pretreated by microwave heating processing showed better ethanol conversion in simultaneous saccharification and fermentation process (92% corresponding to 33.8g/L). Therefore, microwave heating processing is a promising technology in the pretreatment of lignocellulosic materials.


Subject(s)
Biofuels , Heating , Microwaves , Convection , Ethanol , Fermentation
13.
Sci Total Environ ; 584-585: 1108-1113, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-28162762

ABSTRACT

In the context of a sugarcane biorefinery, sugarcane bagasse produced may be pretreated generating a solid and liquid fraction. The solid fraction may be used for 2G bioethanol production, while the liquid fraction may be used to produce biogas through anaerobic digestion. The aim of this study consisted in evaluating the anaerobic digestion performance of hemicellulose hydrolysate produced after hydrothermal pretreatment of sugarcane bagasse. For this, hydrothermal pretreatment was assessed in a continuous upflow anaerobic sludge blanket (UASB) reactor operated at a hydraulic retention time (HRT) of 18.4h. Process performance was investigated by varying the dilution of sugarcane bagasse hydrolysate with a solution containing xylose and the inlet organic loading rate (OLR). Experimental data showed that an increase in the proportion of hydrolysate in the feed resulted in better process performance for steps using 50% and 100% of real substrate. The best performance condition was achieved when increasing the organic loading rate (OLR) from 1.2 to 2.4gCOD/L·d, with an organic matter removal of 85.7%. During this period, the methane yield estimated by the COD removal would be 270LCH4/kg COD. Nonetheless, when further increasing the OLR to 4.8gCOD/L·d, the COD removal decreased to 74%, together with an increase in effluent concentrations of VFA (0.80gCOD/L) and furans (115.3mg/L), which might have inhibited the process performance. On the whole, the results showed that anaerobic digestion of sugarcane bagasse hydrolysate was feasible and may improve the net energy generation in a bioethanol plant, while enabling utilization of the surplus sugarcane bagasse in a sustainable manner.


Subject(s)
Bioreactors , Cellulose/chemistry , Polysaccharides/chemistry , Sewage/chemistry , Anaerobiosis , Methane , Saccharum , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL