Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Microorganisms ; 11(5)2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37317069

ABSTRACT

Seasonal influenza A and B viruses may cause severe infections requiring therapeutic interventions. Baloxavir, the latest antiviral drug approved against those infections, targets the endonuclease activity encoded by the polymerase acidic (PA) protein. While appearing effective at cessation of viral shedding, baloxavir demonstrated a low barrier of resistance. Herein, we aimed to assess the impact of PA-I38T substitution, a major marker of baloxavir-resistance, on the fitness of contemporary influenza B viruses. Recombinant wild-type (WT) influenza B/Phuket/2073/13 (B/Yamagata/16/88-like) and B/Washington/02/19 (B/Victoria/2/87-like) viruses and their respective PA-I38T mutants were used to evaluate replication kinetics in vitro, using A549 and Calu3 cells, and ex vivo, using nasal human airway epithelium (HAE) cells. Infectivity was also assessed in guinea pigs. In the B/Washington/02/19 background, there were no major differences between the recombinant WT virus and its I38T mutant when viral replication kinetics were evaluated in human lung cell lines and HAE as well as in nasal washes of experimentally infected guinea pigs. By contrast, the I38T mutation moderately impacted the B/Phuket/2073/13 viral fitness. In conclusion, contemporary influenza B viruses that may acquire baloxavir-resistance through the PA-I38T substitution could retain a significant level of fitness, highlighting the importance of monitoring the emergence of such variant.

2.
Viruses ; 15(5)2023 05 11.
Article in English | MEDLINE | ID: mdl-37243240

ABSTRACT

Although the prevalence of polymerase acidic (PA)/I38T strains of influenza virus with reduced susceptibility to baloxavir acid is low, there is a possibility of emergence under selective pressure. Furthermore, the virus may be transmitted between humans. We investigated the in vivo efficacy of baloxavir acid and oseltamivir phosphate against influenza A subtypes H1N1, H1N1pdm09, and H3N2, with PA/I38T substitution, at doses simulating human plasma concentrations. A pharmacokinetic/pharmacodynamic analysis was performed to strengthen the validity of the findings and the applicability in a clinical setting. Although the antiviral effect of baloxavir acid was attenuated in mice infected with PA/I38T-substituted viral strains compared with the wild type (WT), baloxavir acid significantly reduced virus titers at higher-but clinically relevant-doses. The virus titer reduction with baloxavir acid (30 mg/kg subcutaneous single dose) was comparable to that of oseltamivir phosphate (5 mg/kg orally twice daily) against H1N1 and H1N1pdm09 PA/I38T strains in mice, as well as the H3N2 PA/I38T strain in hamsters. Baloxavir acid demonstrated an antiviral effect against PA/I38T-substituted strains, at day 6, with no further viral rebound. In conclusion, baloxavir acid demonstrated dose-dependent antiviral effects comparable to that of oseltamivir phosphate, even though the degree of lung virus titer reduction was diminished in animal models infected with PA/I38T-substituted strains.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Thiepins , Humans , Animals , Mice , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Oseltamivir/pharmacology , Oseltamivir/therapeutic use , Oxazines/pharmacology , Pyridines/pharmacology , Influenza A Virus, H3N2 Subtype , Thiepins/pharmacology , Thiepins/therapeutic use , Drug Resistance, Viral , Nucleotidyltransferases , Phosphates
3.
Pathogens ; 11(9)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36145480

ABSTRACT

Baloxavir marboxil (BXM) is an antiviral drug that targets the endonuclease of the influenza polymerase acidic (PA) protein. Antiviral resistance, mainly mediated by the I38T PA substitution, readily occurs in both A(H1N1) and A(H3N2) viruses following a single dose of BXM. Influenza B resistance to BXM remains poorly documented. We aimed to generate baloxavir-resistant contemporary influenza B/Yamagata/16/1988- and B/Victoria/2/1987-like viruses by in vitro passages under baloxavir acid (BXA) pressure to identify resistance mutations and to characterize the fitness of drug-resistant variants. Influenza B/Phuket/3073/2013 recombinant virus (rg-PKT13, a B/Yamagata/16/1988-like virus) and B/Quebec/MCV-11/2019 (MCV19, a B/Victoria/2/1987-like isolate) were passaged in ST6GalI-MDCK cells in the presence of increasing concentrations of BXA. At defined passages, viral RNA was extracted for sequencing the PA gene. The I38T PA substitution was selected in MCV19 after six passages in presence of BXA whereas no PA change was detected in rg-PKT13. The I38T substitution increased the BXA IC50 value by 13.7-fold in the MCV19 background and resulted in reduced viral titers compared to the wild type (WT) at early time points in ST6GalI-MDCK and at all time-points in human epithelial cells. By contrast, the I38T substitution had no impact on MCV19 polymerase activity, and this mutation was genetically stable over four passages. In conclusion, our results show a similar pathway of resistance to BXA in influenza B viruses highlighting the major role of the I38T PA substitution and suggest that I38T may differently impact the fitness of influenza variants depending on the viral type, subtype, or lineage.

4.
J Gen Virol ; 102(10)2021 10.
Article in English | MEDLINE | ID: mdl-34661516

ABSTRACT

The polymerase acidic (PA) I38T substitution is a dominant marker of resistance to baloxavir. We evaluated the impact of I38T on the fitness of a contemporary influenza A(H3N2) virus. Influenza A/Switzerland/9715293/2013 (H3N2) wild-type (WT) virus and its I38T mutant were rescued by reverse genetics. Replication kinetics were compared using ST6GalI-MDCK and A549 cells and infectivity/contact transmissibility were evaluated in guinea pigs. Nasal wash (NW) viral titres were determined by TCID50 ml-1 in ST6GalI-MDCK cells. Competition experiments were performed and the evolution of viral population was assessed by droplet digital RT-PCR. I38T did not alter in vitro replication. I38T induced comparable titres vs the WT in guinea pigs NWs and the two viruses transmitted equally by direct contact. However, a 50 %:50 % mixture inoculum evolved to mean WT/I38T ratios of 71 %:29 % and 66.4 %:33.6 % on days 4 and 6 p.i., respectively. Contemporary influenza A(H3N2)-I38T PA variants may conserve a significant level of viral fitness.


Subject(s)
Influenza A Virus, H3N2 Subtype/physiology , Orthomyxoviridae Infections/virology , RNA-Dependent RNA Polymerase/genetics , Viral Proteins/genetics , A549 Cells , Amino Acid Substitution , Animals , Antiviral Agents/pharmacology , Dibenzothiepins/pharmacology , Dogs , Drug Resistance, Viral , Guinea Pigs , Humans , Influenza A Virus, H3N2 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/pathogenicity , Madin Darby Canine Kidney Cells , Morpholines/pharmacology , Nose/virology , Orthomyxoviridae Infections/transmission , Pyridones/pharmacology , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , Reverse Genetics , Triazines/pharmacology , Viral Load , Viral Proteins/chemistry , Viral Proteins/metabolism , Virus Replication
5.
J Infect Dis ; 224(10): 1735-1741, 2021 11 22.
Article in English | MEDLINE | ID: mdl-33837427

ABSTRACT

BACKGROUND: We aimed to detect influenza variants with reduced susceptibility to baloxavir marboxil (baloxavir) and oseltamivir and identify differences in the clinical course between children with and without these variants after antiviral treatment. METHODS: During the 2019-2020 influenza season, we enrolled children with confirmed influenza A (20 treated with baloxavir and 16 with oseltamivir). We analyzed patients' sequential viral RNA loads and infectious virus titers, the drug susceptibilities of clinical isolates, and amino acid substitutions in the viral polymerase acidic protein subunits or neuraminidase. We assessed patients' clinical information using questionnaires. RESULTS: All viral RNA loads and virus titers were significantly decreased after treatment, but we detected baloxavir-resistant and oseltamivir-resistant variants in 5 of 20 and 3 of 16 patients, respectively. The duration of fever was similar between patients with and without the variants, but infectious viral shedding lasted 3 days longer in patients with baloxavir-resistant variants. In addition, the duration to improvement of clinical symptoms was longer in these patients (75.0 vs 29.5 hours; P = .106). CONCLUSIONS: After antiviral treatment, the emergence of baloxavir-resistant variants may affect the patients' clinical course, but oseltamivir-resistant variants had no clinical impact.


Subject(s)
Influenza, Human , Thiepins , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Child , Dibenzothiepins , Drug Resistance, Viral/genetics , Humans , Influenza, Human/drug therapy , Morpholines , Neuraminidase , Oseltamivir/pharmacology , Oseltamivir/therapeutic use , Oxazines/pharmacology , Protein Subunits/pharmacology , Protein Subunits/therapeutic use , Pyridines/pharmacology , Pyridones/therapeutic use , RNA, Viral , Seasons , Thiepins/pharmacology , Thiepins/therapeutic use , Triazines/pharmacology , Triazines/therapeutic use
6.
Antiviral Res ; 188: 105036, 2021 04.
Article in English | MEDLINE | ID: mdl-33577807

ABSTRACT

Baloxavir marboxil has been used for influenza treatment since March 2018 in Japan. After baloxavir treatment, the most frequently detected substitution is Ile38Thr in polymerase acidic protein (PA/I38T), and this substitution reduces baloxavir susceptibility in influenza A viruses. To rapidly investigate the frequency of PA/I38T in influenza A (H1N1)pdm09 and A (H3N2) viruses in clinical samples, we established a rapid real-time system to detect single nucleotide polymorphisms in PA, using cycling probe real-time PCR. We designed two sets of probes that were labeled with either 6-carboxyfluorescein (FAM) or 6-carboxy-X-rhodamine (ROX) to identify PA/I38 (wild type strain) or PA/I38T, respectively. The established cycling probe real-time PCR system showed a dynamic linear range of 101 to 106 copies with high sensitivity in plasmid DNA controls. This real-time PCR system discriminated between PA/I38T and wild type viruses well. During the 2018/19 season, 377 influenza A-positive clinical samples were collected in Japan before antiviral treatment. Using our cycling probe real-time PCR system, we detected no (0/129, 0.0%) influenza A (H1N1)pdm09 viruses with PA/I38T substitutions and four A (H3N2) (4/229, 1.7%) with PA/I38T substitution prior to treatment. In addition, we found PA/I38T variant in siblings who did not received baloxavir treatment during an infection caused by A (H3N2) that afflicted the entire family. Although human-to-human transmission of PA/I38T variant may have occurred in a closed environment, the prevalence of this variant in influenza A viruses was still limited. Our cycling probe-PCR system is thus useful for antiviral surveillance of influenza A viruses possessing PA/I38T.


Subject(s)
Antiviral Agents/pharmacology , Dibenzothiepins/pharmacology , Influenza A virus/drug effects , Influenza A virus/genetics , Morpholines/pharmacology , Pyridones/pharmacology , RNA-Dependent RNA Polymerase/genetics , Real-Time Polymerase Chain Reaction/methods , Triazines/pharmacology , Viral Proteins/genetics , Amino Acid Substitution , Animals , Cell Line , Humans , Influenza A virus/enzymology , Influenza A virus/isolation & purification , Microbial Sensitivity Tests , RNA, Viral/biosynthesis , Virus Replication/drug effects
8.
Antiviral Res ; 179: 104807, 2020 07.
Article in English | MEDLINE | ID: mdl-32343991

ABSTRACT

Baloxavir marboxil (BXM) is a potent inhibitor of the polymerase acidic (PA) protein of influenza viruses. However, clinical trials predominantly involving influenza A(H1N1) and A(H3N2) infections showed that BXM exhibited a low barrier of resistance. Contrasting with influenza A viruses, BXM-resistant influenza B variants remain poorly documented. We evaluated the impact of I38 T/M and E23K PA substitutions, previously reported in influenza A viruses, on in vitro properties and virulence of contemporary influenza B recombinant viruses. Influenza B/Phuket/3073/2013 recombinant wild-type (WT) virus and the I38T, I38M and E23K PA mutants were assessed for their susceptibility to baloxavir acid (BXA), the active metabolite of BXM, by plaque reduction assays in ST6GalI-MDCK cells. Luciferase-based minigenome tests were performed to determine polymerase activity. Replication kinetics and genetic stability were evaluated in ST6GalI-MDCK cells. Virulence was evaluated in BALB/c mice. The I38T, I38M and E23K substitutions increased BXA IC50s values by 12.6-, 5.5-, and 2.6-fold, respectively, compared to the WT. Minigenome assays revealed a 46% loss of polymerase activity for the E23K substitution vs the WT while the I38T and I38M PA variants retained ≈80% of activity. Peak viral titers were comparable for the WT, I38T and I38M recombinants (7.95 ± 0.5, 7.45 ± 0.25 and 8.11 ± 0.28 logTCID50/mL), respectively, whereas it was significantly lower for the E23K mutant (6.28 ± 0.28 logTCID50/mL;P < 0.05 vs the WT). In mice, the WT, I38T and I38M recombinants induced mortality rates of 60%, 40% and 100%, respectively and similar lung viral titers were obtained for the three groups at days 3 and 6 p.i. In conclusion, the fitness of BXA-resistant I38T and I38M PA mutants appears unaltered in contemporary influenza B viruses warranting surveillance for their emergence.


Subject(s)
Antiviral Agents/pharmacology , Dibenzothiepins/pharmacology , Drug Resistance, Viral/genetics , Influenza B virus/drug effects , Influenza B virus/genetics , Morpholines/pharmacology , Pyridones/pharmacology , Triazines/pharmacology , Animals , Clinical Trials as Topic , Dogs , Female , Genome, Viral , Inhibitory Concentration 50 , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Mutation , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology , Reassortant Viruses/drug effects , Recombination, Genetic , Virus Replication
9.
Proc Natl Acad Sci U S A ; 117(15): 8593-8601, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32217734

ABSTRACT

Baloxavir marboxil (BXM) was approved in 2018 for treating influenza A and B virus infections. It is a first-in-class inhibitor targeting the endonuclease activity of the virus polymerase acidic (PA) protein. Clinical trial data revealed that PA amino acid substitutions at residue 38 (I38T/F/M) reduced BXM potency and caused virus rebound in treated patients, although the fitness characteristics of the mutant viruses were not fully defined. To determine the fitness impact of the I38T/F/M substitutions, we generated recombinant A/California/04/2009 (H1N1)pdm09, A/Texas/71/2017 (H3N2), and B/Brisbane/60/2008 viruses with I38T/F/M and examined drug susceptibility in vitro, enzymatic properties, replication efficiency, and transmissibility in ferrets. Influenza viruses with I38T/F/M substitutions exhibited reduced baloxavir susceptibility, with 38T causing the greatest reduction. The I38T/F/M substitutions impaired PA endonuclease activity as compared to that of wild-type (I38-WT) PA. However, only 38T/F A(H3N2) substitutions had a negative effect on polymerase complex activity. The 38T/F substitutions decreased replication in cells among all viruses, whereas 38M had minimal impact. Despite variable fitness consequences in vitro, all 38T/M viruses disseminated to naive ferrets by contact and airborne transmission, while 38F-containing A(H3N2) and B viruses failed to transmit via the airborne route. Reversion of 38T/F/M to I38-WT was rare among influenza A viruses in this study, suggesting stable retention of 38T/F/M genotypes during these transmission events. BXM reduced susceptibility-associated mutations had variable effects on in vitro fitness of influenza A and B viruses, but the ability of these viruses to transmit in vivo indicates a risk of their spreading from BXM-treated individuals.


Subject(s)
Drug Resistance, Viral , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/drug effects , Influenza B virus/drug effects , Orthomyxoviridae Infections/transmission , Oxazines/pharmacology , Pyridines/pharmacology , Thiepins/pharmacology , Triazines/pharmacology , Virus Replication , Amino Acid Substitution , Animals , Antiviral Agents/pharmacology , Dibenzothiepins , Ferrets , Male , Microbial Sensitivity Tests , Morpholines , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Pyridones , Viral Proteins/genetics , Viral Proteins/metabolism
10.
Influenza Other Respir Viruses ; 14(4): 460-464, 2020 07.
Article in English | MEDLINE | ID: mdl-32045100

ABSTRACT

Baloxavir marboxil is a novel endonuclease inhibitor licensed for treatment of otherwise healthy or high-risk individuals infected with influenza. Viruses with reduced baloxavir susceptibility due to amino acid substitutions at residue 38 of the PA have been detected in some individuals following treatment. Here, we describe a genotypic pyrosequencing method that can be used to rapidly screen circulating influenza A and B viruses for substitutions in the PA/I38 codon and to quantify mixed viral populations. This method is suitable for surveillance of baloxavir susceptibility and to analyse samples from hospitalised patients undergoing baloxavir treatment to aid in clinical decision making.


Subject(s)
Amino Acid Substitution/genetics , Antiviral Agents/pharmacology , Dibenzothiepins/pharmacology , Drug Resistance, Viral/genetics , High-Throughput Nucleotide Sequencing/methods , Morpholines/pharmacology , Orthomyxoviridae/genetics , Pyridones/pharmacology , Triazines/pharmacology , Genotype , Humans , Orthomyxoviridae/classification , Orthomyxoviridae/drug effects , Reproducibility of Results , Viral Proteins/genetics
11.
J Infect Dis ; 221(1): 63-70, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31419295

ABSTRACT

BACKGROUND: Baloxavir is a cap-dependent inhibitor of the polymerase acid (PA) protein of influenza viruses. While appearing virologically superior to oseltamivir, baloxavir exhibits a low barrier of resistance. We sought to assess the impact of the common baloxavir-resistant I38T PA substitution on in vitro properties and virulence. METHODS: Influenza A/Quebec/144147/2009 (H1N1)pdm09 and A/Switzerland/9715293/2013 (H3N2) recombinant viruses and their I38T PA mutants were compared in single and competitive infection experiments in ST6GalI-MDCK cells and C57/BL6 mice. Virus titers in cell culture supernatants and lung homogenates were determined by virus yield assays. Ratios of wild-type (WT) and I38T mutant were assessed by digital RT-PCR. RESULTS: I38T substitution did not alter the replication kinetics of A(H1N1)pdm09 and A(H3N2) viruses. In competition experiments, a 50%:50% mixture evolved to 70%:30% (WT/mutant) for A(H1N1) and 88%:12% for A(H3N2) viruses after a single cell passage. The I38T substitution remained stable after 4 passages in vitro. In mice, the WT and its I38T mutant induced similar weight loss with comparable lung titers in both viral subtypes. The mutant virus tended to predominate over the WT in mouse competition experiments. CONCLUSION: The fitness of baloxavir-resistant I38T PA mutants appears relatively unaltered in seasonal subtypes warranting surveillance for its dissemination.


Subject(s)
Antiviral Agents/pharmacology , Drug Resistance, Viral/genetics , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Orthomyxoviridae Infections/drug therapy , Oxazines/pharmacology , Pyridines/pharmacology , RNA-Dependent RNA Polymerase/genetics , Thiepins/pharmacology , Triazines/pharmacology , Viral Proteins/genetics , Amino Acid Substitution , Animals , Antiviral Agents/therapeutic use , Dibenzothiepins , Dogs , Female , Influenza A Virus, H1N1 Subtype/enzymology , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A Virus, H3N2 Subtype/enzymology , Influenza A Virus, H3N2 Subtype/pathogenicity , Inhibitory Concentration 50 , Lung/virology , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred C57BL , Morpholines , Mutation , Orthomyxoviridae Infections/virology , Oxazines/therapeutic use , Phenotype , Pyridines/therapeutic use , Pyridones , RNA-Dependent RNA Polymerase/metabolism , Thiepins/therapeutic use , Triazines/therapeutic use , Viral Load/drug effects , Viral Proteins/metabolism , Virus Replication/drug effects
12.
J Gen Virol ; 100(11): 1471-1477, 2019 11.
Article in English | MEDLINE | ID: mdl-31526451

ABSTRACT

Baloxavir marboxil (BXM), an inhibitor of the cap-dependent endonuclease of the influenza virus polymerase acidic protein (PA), exerts an antiviral effect against influenza A virus. It has been available in Japan since March 2018. This study evaluated the antiviral efficacy of BXM against equine influenza A virus (EIV) by an experimental challenge study using horses. Six horses were experimentally inoculated with EIV, and BXM was administered to the three horses at 2 days post inoculation. Horses treated with BXM showed milder clinical signs than horses without treatment and shed less virus. These results suggest that BXM is effective against EIV. The PA gene of viruses present in the nasopharyngeal swabs collected from horses treated with BXM was sequenced. Two mutations have been detected in viruses recovered from horses treated with BXM. These mutations were the substitution of isoleucine with threonine at position 38 (PA-I38T) and that of asparagine with aspartic acid at position 675 in PA (PA-N675D). A mutated virus with PA-I38T was less susceptible to BXM than viruses with PA-N675D or without mutation. A PA-I38T mutation has also been detected in viruses recovered from humans treated with BXM and is responsible for the reduction in susceptibility to BXM. This suggests that we should not unthinkingly use BXM for the treatment of EI. BXM is likely to easily induce resistance in influenza A viruses, not only in humans but also in horses.


Subject(s)
Antiviral Agents/therapeutic use , Drug Resistance, Viral , Horse Diseases/virology , Influenza A Virus, H3N8 Subtype/drug effects , Orthomyxoviridae Infections/veterinary , Oxazines/therapeutic use , Pyridines/therapeutic use , Thiepins/therapeutic use , Triazines/therapeutic use , Amino Acid Substitution , Animals , Antiviral Agents/pharmacology , Dibenzothiepins , Horse Diseases/drug therapy , Horse Diseases/pathology , Horses , Influenza A Virus, H3N8 Subtype/isolation & purification , Japan , Morpholines , Mutation, Missense , Nasopharynx/virology , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , Oxazines/pharmacology , Pyridines/pharmacology , Pyridones , RNA-Dependent RNA Polymerase/genetics , Sequence Analysis, DNA , Thiepins/pharmacology , Treatment Outcome , Triazines/pharmacology , Viral Proteins/genetics
13.
Emerg Infect Dis ; 25(11): 2108-2111, 2019 11.
Article in English | MEDLINE | ID: mdl-31436527

ABSTRACT

In 2019, influenza A(H3N2) viruses carrying an I38T substitution in the polymerase acidic gene, which confers reduced susceptibility to baloxavir, were detected in Japan in an infant without baloxavir exposure and a baloxavir-treated sibling. These viruses' whole-genome sequences were identical, indicating human-to-human transmission. Influenza virus isolates should be monitored for baloxavir susceptibility.


Subject(s)
Antiviral Agents/pharmacology , Disease Susceptibility , Influenza A Virus, H3N2 Subtype/drug effects , Influenza, Human/transmission , Influenza, Human/virology , Oxazines/pharmacology , Pyridines/pharmacology , Thiepins/pharmacology , Triazines/pharmacology , Adolescent , Adult , Antiviral Agents/therapeutic use , Child , Dibenzothiepins , Humans , Infant , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/drug therapy , Influenza, Human/epidemiology , Japan/epidemiology , Middle Aged , Morpholines , Mutation , Oxazines/therapeutic use , Pyridines/therapeutic use , Pyridones , Thiepins/therapeutic use , Triazines/therapeutic use , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL