ABSTRACT
DENV infection outcomes depend on the host's variable expression of immune receptors and mediators, leading to either resolution or exacerbation. While the NS3 protein is known to induce robust immune responses, the specific impact of its protease region epitopes remains unclear. This study investigated the effect of recombinant NS3 protease region proteins from all four DENV serotypes on splenocyte activation in BALB/c mice (n = 5/group). Mice were immunized with each protein, and their splenocytes were subsequently stimulated with homologous antigens. We measured the expression of costimulatory molecules (CD28, CD80, CD86, CD152) by flow cytometry, along with IL-2 production, CD25 expression, and examined the antigen-specific activation of CD4 + and CD8 + T cells. Additionally, the expression of IL-1, IL-10, and TGF-ß1 in splenocytes from immunized animals was assessed. Apoptosis was evaluated using Annexin V/PI staining and DNA fragmentation analysis. Stimulation of splenocytes from immunized mice triggered apoptosis (phosphatidylserine exposure and caspase 3/7 activation) and increased costimulatory molecule expression, particularly CD152. Low IL-2 production and low CD25 expression, as well as sustained expression of the IL-10 gene. These results suggest that these molecules might be involved in mechanisms by which the NS3 protein contributes to viral persistence and disease pathogenesis.
Subject(s)
Apoptosis , CTLA-4 Antigen , Dengue Virus , Mice, Inbred BALB C , Spleen , Viral Nonstructural Proteins , Animals , Mice , Spleen/immunology , Spleen/virology , Dengue Virus/immunology , Dengue Virus/genetics , CTLA-4 Antigen/genetics , CTLA-4 Antigen/immunology , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Immunization , Dengue/immunology , Dengue/virology , Cytokines/metabolism , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunologyABSTRACT
The tumor cells reprogram their metabolism to cover their high bioenergetic demands for maintaining uncontrolled growth. This response can be mediated by cytokines such as IL-2, which binds to its receptor and activates the JAK/STAT pathway. Some reports show a correlation between the JAK/STAT pathway and cellular metabolism, since the constitutive activation of STAT proteins promotes glycolysis through the transcriptional activation of genes related to energetic metabolism. However, the role of STAT proteins in the metabolic switch induced by cytokines in cervical cancer remains poorly understood. In this study, we analyzed the effect of IL-2 on the metabolic switch and the role of STAT5 in this response. Our results show that IL-2 induces cervical cancer cell proliferation and the tyrosine phosphorylation of STAT5. Also, it induces an increase in lactate secretion and the ratio of NAD+/NADH, which suggest a metabolic reprogramming of their metabolism. When STAT5 was silenced, the lactate secretion and the NAD+/NADH ratio decreased. Also, the expression of HIF1α and GLUT1 decreased. These results indicate that STAT5 regulates IL-2-induced cell proliferation and the metabolic shift to aerobic glycolysis by regulating genes related to energy metabolism. Our results suggest that STAT proteins modulate the metabolic switch in cervical cancer cells to attend to their high demand of energy required for cell growth and proliferation.
Subject(s)
Cell Proliferation , Interleukin-2 , STAT5 Transcription Factor , Uterine Cervical Neoplasms , Humans , STAT5 Transcription Factor/metabolism , STAT5 Transcription Factor/genetics , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/genetics , Female , Cell Proliferation/drug effects , Cell Line, Tumor , Interleukin-2/metabolism , Interleukin-2/pharmacology , Glycolysis/drug effects , Energy Metabolism/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Phosphorylation/drug effects , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 1/genetics , NAD/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Signal Transduction/drug effects , Lactic Acid/metabolismABSTRACT
BACKGROUND: In a previous work, an IL-2Rßγ biased mutant derived from human IL-2 and called IL-2noα, was designed and developed. Greater antitumor effects and lower toxicity were observed compared to native IL-2. Nevertheless, mutein has some disadvantages, such as a very short half-life of about 9-12 min, propensity for aggregation, and solubility problems. OBJECTIVE: In this study, PEGylation was employed to improve the pharmacokinetic and antitumoral properties of the novel protein. METHODS: Pegylated IL-2noα was characterized by polyacrylamide gel electrophoresis, size exclusion chromatography, in vitro cell proliferation and in vivo cell expansion bioassays, and pharmacokinetic and antitumor studies. RESULTS: IL-2noα-conjugates with polyethylene glycol (PEG) of 1.2 kDa, 20 kDa, and 40 kDa were obtained by classical acylation. No significant changes in the secondary and tertiary structures of the modified protein were detected. A decrease in biological activity in vitro and a significant improvement in half-life were observed, especially for IL-2noα-PEG20K. PEGylation of IL-2noα with PEG20K did not affect the capacity of the mutant to induce preferential expansion of T effector cells over Treg cells. This pegylated IL-2noα exhibited a higher antimetastatic effect compared to unmodified IL-2noα in the B16F0 experimental metastases model, even when administered at lower doses and less frequently. CONCLUSION: PEG20K was selected as the best modification strategy, to improve the blood circulation time of the IL-2noα with a superior antimetastatic effect achieved with lower doses.
Subject(s)
Interleukin-2 , Proteins , Humans , Polyethylene Glycols/chemistryABSTRACT
The pathogenesis of Dengue virus (DENV) infection is complex and involves viral replication that may trigger an inflammatory response leading to severe disease. Here, we investigated the correlation between viremia and cytokine levels in the serum of DENV-infected patients. Between 2013 and 2014, 138 patients with a diagnosis of acute-phase DENV infection and 22 patients with a non-dengue acute febrile illness (AFI) were enrolled. Through a focus-forming assay (FFU), we determined the viremia levels in DENV-infected patients and observed a peak in the first two days after the onset of symptoms. A higher level of viremia was observed in primary versus secondary DENV-infected patients. Furthermore, no correlation was observed between viremia and inflammatory cytokine levels in DENV-infected patients. Receiver operating characteristic (ROC) curve analysis revealed that IL-2 has the potential to act as a marker to distinguish dengue from other febrile illnesses and is positively correlated with Th1 cytokines. IFN-α and IFN-γ appear to be potential markers of primary versus secondary infection in DENV-infected patients, respectively. The results also indicate that viremia levels are not the main driving force behind inflammation in dengue and that cytokines could be used as infection biomarkers and for differentiation between primary versus secondary infection.
ABSTRACT
Malaria is the most lethal parasitic disease worldwide; the severity of symptoms and mortality are higher in men than in women, exhibiting an evident sexual dimorphism in the immune response; therefore, the contribution of 17ß-estradiol and testosterone to this phenomenon has been studied. Both hormones differentially affect several aspects of innate and adaptive immunity. Dehydroepiandrosterone (DHEA) is the precursor of both hormones and is the sexual steroid in higher concentrations in humans, with immunomodulatory properties in different parasitic diseases; however, the involvement of DHEA in this sexual dimorphism has not been studied. In the case of malaria, the only information is that higher levels of DHEA are associated with reduced Plasmodium falciparum parasitemia. Therefore, this work aims to analyze the DHEA contribution to the sexual dimorphism of the immune response in malaria. We assessed the effect of modifying the concentration of DHEA on parasitemia, the number of immune cells in the spleen, cytokines, and antibody levels in plasma of CBA/Ca mice infected with Plasmodium berghei ANKA (P. berghei ANKA). DHEA differentially affected the immune response in males and females: it decreased IFN-γ, IL-2 and IL-4 concentrations only in females, whereas in gonadectomized males, it increased IgG2a and IgG3 antibodies. The results presented here show that DHEA modulates the immune response against Plasmodium differently in each sex, which helps to explain the sexual dimorphism present in malaria.
Subject(s)
Cytokines , Plasmodium berghei , Male , Humans , Mice , Female , Animals , Mice, Inbred CBA , Parasitemia , DehydroepiandrosteroneABSTRACT
Introduction: The anti-CD20 antibody rituximab (RTX) has substantially improved outcomes of patients with B-cell lymphomas, although more efficient therapies are needed for refractory or relapsing lymphomas. An approach to increase the clinical effectiveness of anti-tumor therapy is the use of antibody-cytokine fusion proteins (immunocytokines (ICKs)) to deliver at the tumor site the antibody effector functions and cytokines that trigger anti-tumor activities. In particular, IL-2-based ICKs have shown significant results in preclinical studies but not in clinical trials due to the toxicity profile associated to high doses IL-2 and the undesired expansion of Tregs. Methods: To improve the efficacy of RTX therapy, we fused a murine (mIgG2a) or a human (hIgG1) version of RTX to a mutated IL-2 (no-alpha mutein), which has a disrupted affinity for the high affinity IL-2 receptor (IL-2R) to prevent the stimulation of Tregs and reduce the binding to endothelial cells expressing CD25, the α chain of high affinity IL-2R. Characterization of anti-CD20-IL2no-alpha ICKs was performed by SDS-PAGE, Western-blotting and SEC-HPLC and also by several functional in vitro techniques like T-cell proliferation assays, apoptosis, CDC and ADCC assays. The in vivo activity was assessed by using murine tumor cells expressing huCD20 in C57/Bl6 mice. Results: Both ICKs exhibited similar in vitro specific activity of their IL2no-alpha mutein moieties and kept CD20-binding capacity. Anti-CD20-IL2no-alpha (hIgG1) retained antibody effector functions as complement-dependent cytotoxicity and enhanced direct apoptosis, NK cell activation and antibody-dependent cellular cytotoxicity relative to RTX. In addition, both ICKs demonstrated a higher antitumor efficacy than parental molecules or their combination in an EL4-huCD20 tumor model in immunocompetent mice. Anti-CD20-IL2no-alpha (hIgG1) strongly expanded NK and CD8+ T cells but not Tregs in tumor-bearing mice. Discussion: These findings suggest that anti-CD20-IL2no-alpha could represent an alternative treatment for B cell lymphoma patients, mainly those refractory to RTX therapy.
Subject(s)
Interleukin-2 , Lymphoma, B-Cell , Humans , Mice , Animals , Endothelial Cells/pathology , Neoplasm Recurrence, Local , Rituximab/pharmacology , Rituximab/therapeutic use , Antibodies/therapeutic useABSTRACT
High doses of interleukin-2 (IL-2) have been used for the treatment of melanoma and renal cell carcinoma, but this therapy has limited efficacy, with a ~15% response rate. Remarkably, 7%-9% of patients achieve complete or long-lasting responses. Many patients treated with IL-2 experienced an expansion of regulatory T cells (Tregs), specifically the expansion of ICOS+ highly suppressive Tregs, which correlate with worse clinical outcomes. This partial efficacy together with the high toxicity associated with the therapy has limited the use of IL-2-based therapy. Taking into account the understanding of IL-2 structure, signaling, and in vivo functions, some efforts to improve the cytokine properties are currently under study. In previous work, we described an IL-2 mutein with higher antitumor activity and less toxicity than wtIL-2. Mutein was in silico designed for losing the binding capacity to CD25 and for preferential stimulation of effector cells CD8+ and NK cells but not Tregs. Mutein induces a higher anti-metastatic effect than wtIL-2, but the extent of the in vivo antitumor activity was still unexplored. In this work, it is shown that mutein induces a strong antitumor effect on four primary tumor models, being effective even in those models where wtIL-2 does not work. Furthermore, mutein can change the in vivo balance between Tregs and T CD8+ memory/activated cells toward immune activation, in both healthy and tumor-bearing mice. This change reaches the tumor microenvironment and seems to be the major explanation for mutein efficacy in vivo.
Subject(s)
CD8-Positive T-Lymphocytes , Interleukin-2 , Neoplasms , T-Lymphocytes, Regulatory , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , CD8-Positive T-Lymphocytes/immunology , Immunotherapy , Interleukin-2/genetics , Interleukin-2/immunology , Melanoma , Mice , Mutation , Neoplasms/drug therapy , T-Lymphocytes, Regulatory/immunology , Tumor MicroenvironmentABSTRACT
The contribution of the cellular immune response to the severity of coronavirus disease 2019 (COVID-19) is still uncertain because most evidence comes from patients receiving multiple drugs able to change immune function. Herein, we conducted a prospective cohort study and obtained blood samples from 128 unvaccinated healthy volunteers to examine the in vitro response pattern of CD4+ and CD8+ T cells and monocyte subsets to polyclonal stimuli, including anti-CD3, anti-CD28, poly I:C, severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) recombinant spike S1 protein, and lipopolysaccharide. Then, we started a six-month follow-up and registered 12 participants who got SARS-CoV-2 infection, from whom we retrospectively analyzed the basal immune response pattern of T cells and monocytes. Of the 12 participants infected, six participants developed mild COVID-19 with self-limiting symptoms such as fever, headache, and anosmia. Conversely, six other participants developed severe COVID-19 with pneumonia, respiratory distress, and hypoxia. Two severe COVID-19 cases required invasive mechanical ventilation. There were no differences between mild and severe cases for demographic, clinical, and biochemical baseline characteristics. In response to polyclonal stimuli, basal production of interleukin-2 (IL-2) and interferon (IFN-) gamma significantly decreased, and the programmed cell death protein 1 (PD-1) increased in CD4+ and CD8+ T cells from participants who posteriorly developed severe COVID-19 compared to mild cases. Likewise, CD14++CD16- classical and CD14+CD16+ non-classical monocytes lost their ability to produce IFN-alpha in response to polyclonal stimuli in participants who developed severe COVID-19 compared to mild cases. Of note, neither the total immunoglobulin G serum titers against the virus nor their neutralizing ability differed between mild and severe cases after a month of clinical recovery. In conclusion, using in vitro polyclonal stimuli, we found a basal immune response pattern associated with a predisposition to developing severe COVID-19, where high PD-1 expression and low IL-2 and IFN-gamma production in CD4+ and CD8+ T cells, and poor IFN-alpha expression in classical and non-classical monocytes are linked to disease worsening. Since antibody titers did not differ between mild and severe cases, these findings suggest cellular immunity may play a more crucial role than humoral immunity in preventing COVID-19 progression.
Subject(s)
COVID-19 , Humans , Immunity, Cellular , Interleukin-2 , Monocytes , Programmed Cell Death 1 Receptor , Prospective Studies , Retrospective Studies , SARS-CoV-2 , T-LymphocytesABSTRACT
OBJECTIVES: In this report, we attempt to clarify the immune modulatory effects of Brazilian green propolis (BGP) and its major component, artepillin C, on the cytokine production of anti-CD3 antibody-stimulated mouse spleen cells. We also estimate the physiological mechanism affecting artepillin C's upon the cells. METHODS: Male C3H/HeN mouse spleen cells stimulated by antiCD3 monoclonal antibody were co-cultured with BGP, artepillin C, and HC030031, a transient receptor potential ankyrin 1 (TRPA1) Ca2+ channel antagonist. The synthesis of interferon (IFN)-γ, interleukin (IL)-6, IL-17, IL-4, IL-10, and IL-2 was assayed by enzyme-linked immunoassay. The expression of IL-2 mRNA and the protein product were examined by reverse transcription-quantitative polymerase chain reaction and Western blot analyses, respectively. RESULTS: The production of IL-2 was markedly enhanced, while that of IL-4 and IL-10 was not significantly affected; by contrast, the production of IFN-γ, IL-6, and IL-17 was significantly reduced in the antibody-stimulated spleen cells treated with BGP at a non-cytostatic concentration. These effects were reproduced in the cells treated with artepillin C. The expression of IL-2 mRNA was unaffected; however, that of the protein was significantly enhanced in the artepillin C-treated cells compared to untreated control cells. The enhancement of protein expression and the production of IL-2 by artepillin C was significantly alleviated by adding HC030031. CONCLUSIONS: Artepillin C is an important regulator of cytokine synthesis from activated spleen cells. The agent specifically augmented the expression of IL-2 via the Ca2+-permeable cation channel, TRPA1, at least in part, at the translational or secretion levels.
Subject(s)
Propolis , Acetanilides , Animals , Ankyrins , Antibodies, Monoclonal , Brazil , Interferons , Interleukin-17 , Interleukin-2 , Interleukin-4 , Interleukin-6 , Male , Mice , Mice, Inbred C3H , Phenylpropionates , Propolis/pharmacology , Purines , RNA, Messenger , Spleen , TRPA1 Cation ChannelABSTRACT
Snakebite envenomings are considered a global health problem. The specific therapy for these envenomings consists of administering animal-derived antivenoms aiming to neutralize the venom toxins. Antivenoms have been used effectively to treat snakebites for more than a century; however, their administration may result in early and/or late adverse reactions. The present study presents the prevalence of early adverse reactions (EARs) towards Bothrops antivenom therapy in a health tertiary unit in the Brazilian Amazon and explores if specific plasma cytokines and chemokines from envenomed patients could be used as predictors of EARs. A cohort of patients bitten by Bothrops atrox was followed-up at the Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), from 2014 to 2016. Patients were treated with the Brazilian Bothrops antivenom and CXCL-8, CCL-5, CXCL-9, CCL-2, CXCL-10, IL-6, TNF, IL-2, IL-10, IFN-y, IL-4, and IL-17A were evaluated in patients' plasma samples before and after antivenom administration. From the total of patients (n = 186), mostly were male (82.3%), inhabiting rural areas (87.1%), with an average age of 35 years. Most of the patients (83.8%) were admitted to the hospital within 6 h after the accident, 26 (14%) reported having suffered a previous snakebite, and 97 (52.1%) received between 7 and 9 antivenom vials. The frequency of antivenom-induced EARs was 11.8% (22), resulting mostly of mild reactions. Urticaria was the major EAR manifestation (46.4%). Interestingly, CXCL-8 and IL-2 showed significantly lower levels in patients who progressed to EARs, although IL-2 levels might not represent biological relevance due the small magnitude difference between groups. This study reveals that CXCL-8 and IL-2 could play a role in the onset of EARs in pit viper envenomings.
Subject(s)
Bothrops , Crotalid Venoms , Snake Bites , Animals , Antivenins/adverse effects , Brazil , Female , Humans , Interleukin-2 , Male , Snake Bites/chemically induced , Snake Bites/drug therapyABSTRACT
OBJECTIVE: The mainstay of treatment for patients with malignant pleural disease is fluid drainage and systemic therapy. A tumor-specific oncolytic virus or T-cell-activating interleukin-2 immunotherapy may provide an opportunity for local control. We previously developed a vaccinia virus-expressing interleukin-2, an oncolytic virus that mediated tumor regression in preclinical peritoneal tumor models with expansion of tumor-infiltrating lymphocytes. We evaluated the antitumor efficacy and immune modulatory effects of vaccinia virus-expressing interleukin-2 in malignant pleural disease. METHODS: A murine model of malignant pleural disease was established with percutaneous intrapleural deposition of the Lewis lung carcinoma cell line and monitored with bioluminescent imaging. After intrapleural or systemic administration of vaccinia viruses (vaccinia virus yellow fluorescent protein control, vaccinia virus-expressing interleukin-2), systemic anti-programmed cell death-1 antibody, or combination therapy (vaccinia virus-expressing interleukin-2 and anti-programmed cell death-1), tumor mass, immune cell infiltration, T-cell receptor diversity, and survival were assessed. RESULTS: Intrapleural vaccinia virus resulted in significant tumor regression compared with phosphate-buffered saline control (P < .05). Inclusion of the interleukin-2 transgene further increased intratumoral CD8+ T cells (P < .01) and programmed cell death-1 expression on CD8+ tumor-infiltrating lymphocytes (P < .001). Intrapleural vaccinia virus-expressing interleukin-2 was superior to systemic vaccinia virus-expressing interleukin-2, with reduced tumor burden (P < .0001) and improved survival (P < .05). Intrapleural vaccinia virus-expressing interleukin-2 alone or combined treatment with systemic anti-programmed cell death-1 reduced tumor burden (P < .01), improved survival (P < .01), and increased intratumoral αß T-cell receptor diversity (P < .05) compared with systemic anti-programmed cell death-1 monotherapy. CONCLUSIONS: Intrapleural vaccinia virus-expressing interleukin-2 reduced tumor burden and enhanced survival in a murine malignant pleural disease model. Increased CD8+ tumor-infiltrating lymphocytes and αß T-cell receptor diversity are associated with enhanced response. Clinical trials will enable assessment of intrapleural vaccinia virus-expressing interleukin-2 therapy in patients with malignant pleural disease.
Subject(s)
Interleukin-2/metabolism , Lung Neoplasms/immunology , Oncolytic Virotherapy , Receptors, Antigen, T-Cell/metabolism , Animals , CD8-Positive T-Lymphocytes/metabolism , Disease Models, Animal , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/metabolism , Vaccinia virusABSTRACT
Tobacco combustion exposure worsens rheumatoid arthritis (RA). Non-combustible tobacco devices, as heat-not-burn tobacco (HNBT), are emerging as harm reduction to smokers by releasing nicotine and lower combustible tobacco products. Nevertheless, HNBT toxicity remains unclear. Hence, here we investigated the impacts of the tobacco combustible product (cigarette smoke; CS) or HNBT vapor exposures on antigen-induced arthritis (AIA) in C57BL/6 mice. Animals were exposed to airflow, HNBT vapor, or CS during 1 h/twice a day, under the Health Canada Intense (HCI) smoking regime, between days 14 to 20 after the first immunization. At day 21, 16 h after the last exposures, mice were i.a. challenged and the AIA effects were evaluated 24 h later. CS- or HNBT-exposed mice presented equivalent blood nicotine levels. CS exposure worsened articular symptoms, pulmonary inflammation, and expression of lung metallothioneins. Nevertheless, CS or HNBT exposures reduced lymphoid organs' cellularity, splenocyte proliferation and IL-2 secretion. Additional in vitro CS or HNBT exposures confirmed the harmful effects on splenocytes, which were partially mediated by the activation of nicotine/α7nAchR pathway. Associated, data demonstrate the toxic mechanisms of CS or HNBT inhalation at HCI regime on RA, and highlight that further investigations are fundamental to assure the toxicity of emerging tobacco products on the immune system during specific challenges.
Subject(s)
Arthritis, Rheumatoid , Electronic Nicotine Delivery Systems , Tobacco Products , Aerosols , Animals , Hot Temperature , Inhalation Exposure , Mice , Mice, Inbred C57BL , Smoke , Smoking , Nicotiana , Tobacco Products/toxicityABSTRACT
Snakebite envenomings are considered a global health problem. The specific therapy for these envenomings consists of administering animal-derived antivenoms aiming to neutralize the venom toxins. Antivenoms have been used effectively to treat snakebites for more than a century; however, their administration may result in early and/or late adverse reactions. The present study presents the prevalence of early adverse reactions (EARs) towards Bothrops antivenom therapy in a health tertiary unit in the Brazilian Amazon and explores if specific plasma cytokines and chemokines from envenomed patients could be used as predictors of EARs. A cohort of patients bitten by Bothrops atrox was followed-up at the Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), from 2014 to 2016. Patients were treated with the Brazilian Bothrops antivenom and CXCL-8, CCL-5, CXCL-9, CCL-2, CXCL-10, IL-6, TNF, IL-2, IL-10, IFN-y, IL-4, and IL-17A were evaluated in patients’ plasma samples before and after antivenom administration. From the total of patients (n = 186), mostly were male (82.3%), inhabiting rural areas (87.1%), with an average age of 35 years. Most of the patients (83.8%) were admitted to the hospital within 6 h after the accident, 26 (14%) reported having suffered a previous snakebite, and 97 (52.1%) received between 7 and 9 antivenom vials. The frequency of antivenom-induced EARs was 11.8% (22), resulting mostly of mild reactions. Urticaria was the major EAR manifestation (46.4%). Interestingly, CXCL-8 and IL-2 showed significantly lower levels in patients who progressed to EARs, although IL-2 levels might not represent biological relevance due the small magnitude difference between groups. This study reveals that CXCL-8 and IL-2 could play a role in the onset of EARs in pit viper envenomings.
ABSTRACT
Abstract Ameloblastoma is a highly aggressive odontogenic tumor, and its pathogenesis is associated with many participating genes. Objective We aimed to identify and validate new critical genes of conventional ameloblastoma using microarray and bioinformatics analysis. Methodology Gene expression microarray and bioinformatic analysis were performed using CHIP H10KA and DAVID software for enrichment. Protein-protein interactions (PPI) were visualized using STRING-Cytoscape with MCODE plugin, followed by Kaplan-Meier and GEPIA analyses that were used for the candidate's postulation. RT-qPCR and IHC assays were performed to validate the bioinformatic approach. Results 376 upregulated genes were identified. PPI analysis revealed 14 genes that were validated by Kaplan-Meier and GEPIA resulting in PDGFA and IL2RA as candidate genes. The RT-qPCR analysis confirmed their intense expression. Immunohistochemistry analysis showed that PDGFA expression is parenchyma located. Conclusion With bioinformatics methods, we can identify upregulated genes in conventional ameloblastoma, and with RT-qPCR and immunoexpression analysis validate that PDGFA could be a more specific and localized therapeutic target.
ABSTRACT
Trypanosoma cruzi infection causes Chagas' disease in humans. The infection activates the innate and adaptative immunity in an orchestrated immune response to control parasite growth, guaranteeing host survival. Despite an effective immune response to the parasite in the acute phase, the infection progresses to a chronic stage. The parasite infects different tissues such as peripheral neurons, the brain, skeletal muscle, and heart muscle, among many others. It is evident now that tissue-specific immune responses may develop along with anti-parasite immunity. Therefore, mechanisms to regulate immunity and to ensure tissue-specific tolerance are operating during the infection. Studying those immunoregulatory mechanisms is fundamental to improve host protection or control inflammatory reactions that may lead to pathology. The role of IL-2 during T. cruzi infection is not established. IL-2 production by T cells is strongly down-modulated early in the disease by unknown mechanisms and remains low during the chronic phase of the disease. IL-2 activates NK cells, CD4, and CD8 T cells and may be necessary to immunity development. Also, the expansion and maintenance of regulatory T cells require IL-2. Thus, IL-2 may be a key cytokine involved in promoting or down-regulating immune responses, probably in a dose-dependent manner. This study blocked IL-2 during the acute T. cruzi infection by using a neutralizing monoclonal antibody. The results show that parasitemia and mortality rate was lower in animals treated with anti-IL-2. The percentages and total numbers of CD4+CD25+Foxp3+ T cells diminished within three weeks of infection. The numbers of splenic activated/memory CD4 and CD8 splenic T cells increased during the acute infection. T cells producing IFN-γ, TNF-α and IL-10 also augmented in anti-IL-2-treated infected mice. The IL-2 blockade also increased the numbers of inflammatory cells in the heart and skeletal muscles and the amount of IL-17 produced by heart T cells. These results suggest that IL-2 might be involved in the immune regulatory response during the acute T. cruzi infection, dampening T cell activation through the expansion/maintenance of regulatory T cells and regulating IL-17 production. Therefore, the IL-2 pathway is an attractive target for therapeutic purposes in acute and chronic phases of Chagas' disease.
Subject(s)
Chagas Disease , Trypanosoma cruzi , Animals , CD8-Positive T-Lymphocytes , Chagas Disease/drug therapy , Interleukin-2 , Mice , ParasitemiaABSTRACT
Toxicity of high-dose IL-2-based therapies have motivated the development of the IL-2 mutein, which has low expansion properties for regulatory T lymphocytes. The development of two variants (A and B) for the IL-2 mutein purification as well as a conformational comparative study by Circular dichroism (CD) and fluorescence spectroscopy of these products were evaluated. For the first time, in our center, were used of DTT and 2% SDS in the solubilization step to decrease the aggregates on intermediate product, which favors that disulfide bridges are correctly formed during re-folding. A molecular weight of 18 kDa to the monomeric form and of 25-37 kDa to the oligomeric species were estimated by SDS-PAGE. IL-2 mutein showed similar far-UV CD spectral characteristic typical of cytokines with 41% of α-helix content. Batches obtained by Process B showed similar conformational features according near-UV CD and FS studies. However, those obtained by Process A differed in their folding. IL-2 mutein showed that conformational features by near-UV CD were affected by 2% SDS, no variations on secondary structure were observed. Melting temperature values by far-UV CD were higher than 95 °C, indicating a high thermal stability. Finally, the drug product obtained by Process B showed similar conformational characteristics by near-UV CD and FS, and higher biological activity values (7.0 × 103 ng/mL) in the cell proliferation assay with respect to Process A. Also, the recovery was 15% higher than in the Process A and exhibited a 78.48% of purity. Indeed, Process B was selected for the purification.
Subject(s)
Interleukin-2 , Circular Dichroism , Electrophoresis, Polyacrylamide Gel , Protein Structure, Secondary , TemperatureABSTRACT
Interleukin-2 (IL-2) is a classical pro-inflammatory cytokine known to display neuroprotective roles in the central nervous system including the retina. In the present study, we investigate the molecular targets involved in the neurotrophic effect of IL-2 on retinal ganglion cells (RGC) after optic nerve axotomy. Analysis of retrograde labeling of RGC showed that common cell survival mediators, as Trk receptors, Src, PI3K, PKC, and intracellular calcium do not mediate the neurotrophic effect of IL-2 on RGC. No involvement of MAPK p38 was also observed. However, other MAPKs as MEK and JNK appear to be mediating this IL-2 effect. Our data also indicate that JAK2/3 are important intracellular proteins for the IL-2 effect. Interestingly, we demonstrate that the IL-2 effect depends on dopamine D1 receptors (D1R), the cAMP/PKA pathway, interleukin-10 (IL-10), and NF-κB, suggesting that RGC survival induced by IL-2 encompasses a molecular network of major complexity. In addition, treatment of retinal cells with recombinant IL-10 or 6-Cl-pb (D1R full agonist) was able to increase RGC survival similar to IL-2. Taken together, our results suggest that after optic nerve axotomy, the increase in RGC survival triggered by IL-2 is mediated by IL-10 and D1R along with the intracellular pathways of MAPKs, JAK/STAT, and cAMP/PKA.
Subject(s)
Cell Survival/drug effects , Interleukin-10/metabolism , Interleukin-2/pharmacology , MAP Kinase Signaling System/drug effects , Receptors, Dopamine D1/metabolism , Retinal Ganglion Cells/drug effects , Animals , Animals, Newborn , Axotomy , Cells, Cultured , Female , Male , NF-kappa B/metabolism , Nerve Growth Factors/pharmacology , Optic Nerve/surgery , Rats , Retinal Ganglion Cells/metabolismABSTRACT
IPEX is one of the few Inborn Errors of Immunity that may manifest in the fetal period, and its intrauterine forms certainly represent the earliest human autoimmune diseases. Here, we review the clinical, histopathologic, and genetic findings from 21 individuals in 11 unrelated families, with nine different mutations, described as cases of intrauterine IPEX. Recurrent male fetal death (multigenerational in five families) due to hydrops in the midsemester of pregnancy was the commonest presentation (13/21). Noteworthy, in the affected families, there were only fetal- or perinatal-onset cases, with no affected individuals presenting milder forms with later-life manifestation. Most alive births were preterm (5/6). Skin desquamation and intrauterine growth restriction were observed in part of the cases. Fetal ultrasonography showed hyperechoic bowel or dilated bowel loops in the five cases with available imaging data. Histopathology showed multi-visceral infiltrates with T lymphocytes and other cells, including eosinophils, the pancreas being affected in most of the cases (11/21) and as early as at 18 weeks of gestational age. Regarding the nine FOXP3 mutations found in these cases, six determine protein truncation and three predictably impair protein function. Having found distinct presentations for the same FOXP3 mutation in different families, we resorted to the mouse system and showed that the scurfy mutation also shows divergent severity of phenotype and age of death in C57BL/6 and BALB/c backgrounds. We also reviewed age-of-onset data from other monogenic Tregopathies leading to IPEX-like phenotypes. In monogenic IPEX-like syndromes, the intrauterine onset was only observed in two kindreds with IL2RB mutations, with two stillbirths and two premature neonates who did not survive. In conclusion, intrauterine IPEX cases seem to constitute a particular IPEX subgroup, certainly with the most severe clinical presentation, although no strict mutation-phenotype correlations could be drawn for these cases.
ABSTRACT
Mesenchymal stromal cells (MSC) have been used in over 800 clinical trials with encouraging results in the field of transplant medicine and chronic inflammatory diseases. Today, Umbilical Cord (UC)-derived MSC are the second leading source used for clinical purposes, mainly due to its easy access and superior immune modulatory effects. Although the underlying molecular mechanisms of immune suppressive activities have not been fully understood, research over the last decade strongly suggests that MSC-mediated benefits are closely related to activation of secretome networks. Nevertheless, recent findings also point to cytokine-independent mechanisms as key players of MSC-mediated immune modulation. Here, we set up a robust in vitro immune assay using phytohemagglutinin- or anti-CD3/CD28-treated human peripheral blood mononuclear cells in cell-to-cell interaction or in cell-contact independent format with UC-MSC and conducted integrated transcriptome and secretome analyses to dissect molecular pathways driving UC-MSC-mediated immune modulation. Under inflammatory stimuli, multiparametric analyses of the secretome led us to identify cytokine/chemokine expression patterns associated with the induction of MSC-reprogrammed macrophages and T cell subsets ultimately leading to immune suppression. UC-MSC transcriptome analysis under inflammatory challenge allowed the identification of 47 differentially expressed genes, including chemokines, anti- and pro-inflammatory cytokines and adhesion molecules found also in UC-MSC-immunosupressive secretomes, including the novel candidate soluble IL-2R. This study enabled us to track functionally activated UC-MSC during immune suppression and opened an opportunity to explore new pathways involved in immunity control by UC-MSC. We propose that identified immunomodulatory molecules and pathways could potentially be translated into clinical settings in order to improve UC-MSC-therapy quality and efficacy.
Subject(s)
Inflammation/metabolism , Mesenchymal Stem Cells/metabolism , Paracrine Communication , T-Lymphocytes/metabolism , Transcriptome , Cell Differentiation , Cell Proliferation , Cells, Cultured , Coculture Techniques , Cytokines/genetics , Cytokines/metabolism , Fetal Blood/cytology , Gene Regulatory Networks , Humans , Inflammation/genetics , Inflammation/immunology , Lymphocyte Activation , Mesenchymal Stem Cells/immunology , Phenotype , Secretory Pathway , Signal Transduction , T-Lymphocytes/immunologyABSTRACT
Anti-CD20 treatment represents a therapeutic benefit for patients with B-cell lymphomas, although more efficient therapies are needed for refractory or relapsing patients. Among them, the combination of anti-CD20 and IL-2 that induces T cell response has been hampered by the expansion of FoxP3+ Tregs that strongly express the high affinity IL-2 receptor (IL-2R αßγ). We explore here the anti-tumor effect of an anti-CD20 antibody combined with a mutated IL-2 (no-alpha mutein) which has a disrupted affinity for the IL-2R αßγ. We demonstrate that anti-CD20/no-alpha mutein combination significantly augments the survival rate of mice challenged with huCD20+ cells as compared to animals treated with anti-CD20 ± IL-2. Moreover, the combination with no-alpha mutein but not IL-2 provokes an increase of granzyme B and perforin in splenic NK and CD8+ T cells, a reduction of Tregs and an increase in activated macrophages. The former combination also induces a T helper profile different from that obtained with IL-2, with an earlier polarization to Th1 and no increase in Th17. The therapeutic effect of anti-CD20/no-alpha mutein was accompanied by an expansion of peripheral central (TCM) and effector (TEM) memory CD8+ T cell compartments. Last, as opposed to IL-2, no-alpha mutein administered at the beginning of anti-CD20 treatment did not dampen the long-term protection of surviving mice after tumor rechallenge. Thus, this study shows that the combination of anti-tumor antibodies and no-alpha mutein is a promising approach to improve the therapeutic effect of these antibodies by potentiating NK/macrophage-mediated innate immunity and the adaptive T-cell response.