Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Adv Sci (Weinh) ; : e2401789, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874478

ABSTRACT

Acquired resistance represents a critical clinical challenge to molecular targeted therapies such as tyrosine kinase inhibitors (TKIs) treatment in hepatocellular carcinoma (HCC). Therefore, it is urgent to explore new mechanisms and therapeutics that can overcome or delay resistance. Here, a US Food and Drug Administration (FDA)-approved pleuromutilin antibiotic is identified that overcomes sorafenib resistance in HCC cell lines, cell line-derived xenograft (CDX) and hydrodynamic injection mouse models. It is demonstrated that lefamulin targets interleukin enhancer-binding factor 3 (ILF3) to increase the sorafenib susceptibility of HCC via impairing mitochondrial function. Mechanistically, lefamulin directly binds to the Alanine-99 site of ILF3 protein and interferes with acetyltransferase general control non-depressible 5 (GCN5) and CREB binding protein (CBP) mediated acetylation of Lysine-100 site, which disrupts the ILF3-mediated transcription of mitochondrial ribosomal protein L12 (MRPL12) and subsequent mitochondrial biogenesis. Clinical data further confirm that high ILF3 or MRPL12 expression is associated with poor survival and targeted therapy efficacy in HCC. Conclusively, this findings suggest that ILF3 is a potential therapeutic target for overcoming resistance to TKIs, and lefamulin may be a novel combination therapy strategy for HCC treatment with sorafenib and regorafenib.

2.
Int Immunopharmacol ; 136: 112415, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38850791

ABSTRACT

The microenvironment of hepatocellular carcinoma (HCC) is characterized by hypoxia, which leads to immune evasion of HCC. Therefore, gaining a comprehensive understanding of the mechanism underlying the impact of hypoxia on HCC cells may provide valuable insights into immune checkpoint therapy. Based on analysis of databases and clinical samples, we observed that expression level of programmed cell death ligand 1 (PD-L1) and long non-coding RNA (lncRNA) MIR155HG in patients in the hypoxia group were higher than those in the non-hypoxia group. Furthermore, there was a positive correlation between the expression of PD-L1 and MIR155HG with that of HIF-1α. In vitro experiments using hypoxic treatment demonstrated an increase in PD-L1 and MIR155HG expression levels in HCC cells. While the hypoxia-induced upregulation of PD-L1 could be reversed by knocking down MIR155HG. Mechanistically, as a transcription factor, HIF-1α binds to the promoter region of MIR155HG to enhance its transcriptional activity under hypoxic conditions. Hypoxia acts as a stressor promoting nuclear output of ILF3 leading to increased binding of ILF3 to MIR155HG, thereby enhancing stability for HIF-1α mRNA. In vivo, knocking down MIR155HG inhibit subcutaneous tumor growth, reduce the expression of HIF-1α and PD-L1 within tumors; additionally, it enhances anti-tumor immunity response. These findings suggested that through inducing MIR155HG to interact with ILF3, hypoxia increases HIF-1α mRNA stability resulting in elevated PD-L1 expression in HCC and thus promoting immune escape. In summary, this study provides new insights into the effects of hypoxia on HCC immunosuppression.


Subject(s)
B7-H1 Antigen , Carcinoma, Hepatocellular , Gene Expression Regulation, Neoplastic , Hypoxia-Inducible Factor 1, alpha Subunit , Liver Neoplasms , RNA Stability , RNA, Long Noncoding , Animals , Female , Humans , Male , Mice , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/metabolism , Cell Hypoxia , Cell Line, Tumor , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Liver Neoplasms/metabolism , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Tumor Escape/genetics , Tumor Microenvironment/immunology
3.
Mol Med ; 30(1): 30, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395749

ABSTRACT

BACKGROUND: Sepsis is a systemic inflammatory response which is frequently associated with acute lung injury (ALI). Activating transcription factor 3 (ATF3) promotes M2 polarization, however, the biological effects of ATF3 on macrophage polarization in sepsis remain undefined. METHODS: LPS-stimulated macrophages and a mouse model of cecal ligation and puncture (CLP)-induced sepsis were generated as in vitro and in vivo models, respectively. qRT-PCR and western blot were used to detect the expression of ATF3, ILF3, NEAT1 and other markers. The phenotypes of macrophages were monitored by flow cytometry, and cytokine secretion was measured by ELISA assay. The association between ILF3 and NEAT1 was validated by RIP and RNA pull-down assays. RNA stability assay was employed to assess NEAT1 stability. Bioinformatic analysis, luciferase reporter and ChIP assays were used to study the interaction between ATF3 and ILF3 promoter. Histological changes of lung tissues were assessed by H&E and IHC analysis. Apoptosis in lungs was monitored by TUNEL assay. RESULTS: ATF3 was downregulated, but ILF3 and NEAT1 were upregulated in PBMCs of septic patients, as well as in LPS-stimulated RAW264.7 cells. Overexpression of ATF3 or silencing of ILF3 promoted M2 polarization of RAW264.7 cells via regulating NEAT1. Mechanistically, ILF3 was required for the stabilization of NEAT1 through direct interaction, and ATF3 was a transcriptional repressor of ILF3. ATF3 facilitated M2 polarization in LPS-stimulated macrophages and CLP-induced septic lung injury via ILF3/NEAT1 axis. CONCLUSION: ATF3 triggers M2 macrophage polarization to protect against the inflammatory injury of sepsis through ILF3/NEAT1 axis.


Subject(s)
Activating Transcription Factor 3 , Macrophages , RNA, Long Noncoding , Sepsis , Animals , Humans , Mice , Activating Transcription Factor 3/genetics , Activating Transcription Factor 3/metabolism , Lipopolysaccharides , Macrophages/metabolism , Nuclear Factor 90 Proteins/genetics , Nuclear Factor 90 Proteins/metabolism , RAW 264.7 Cells , Sepsis/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
4.
Cancer Cell Int ; 23(1): 304, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38041141

ABSTRACT

Gastric cancer (GC) causes millions of cancer-related deaths due to anti-apoptosis and rapid proliferation. However, the molecular mechanisms underlying GC cell proliferation and anti-apoptosis remain unclear. The expression levels of DHRS4-AS1 in GC were analyzed based on GEO database and recruited GC patients in our institution. We found that DHRS4-AS1 was significantly downregulated in GC. The expression of DHRS4-AS1 in GC tissues showed a significant correlation with tumor size, advanced pathological stage, and vascular invasion. Moreover, DHRS4-AS1 levels in GC tissues were significantly associated with prognosis. DHRS4-AS1 markedly inhibited GC cell proliferation and promotes apoptosis in vitro and in vivo assays. Mechanically, We found that DHRS4-AS1 bound to pro-oncogenic DHX9 (DExH-box helicase 9) and recruit the E3 ligase MDM2 that contributed to DHX9 degradation. We also confirmed that DHRS4-AS1 inhibited DHX9-mediated cell proliferation and promotes apoptosis. Furthermore, we found DHX9 interact with ILF3 (Interleukin enhancer Binding Factor 3) and activate NF-kB Signaling in a ILF3-dependent Manner. Moreover, DHRS4-AS1 can also inhibit the association between DHX9 and ILF3 thereby interfered the activation of the signaling pathway. Our results reveal new insights into mechanisms underlying GC progression and indicate that LncRNA DHRS4-AS1 could be a future therapeutic target and a biomarker for GC diagnosis.

5.
Cancers (Basel) ; 15(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38136312

ABSTRACT

Long non-coding RNA (lncRNA) is involved in the progression of head and neck squamous cell carcinoma (HNSCC). The molecular mechanism of lncRNA SOX2-OT in HNSCC remains unclear. Therefore, we aimed to elucidate the oncogenic role of SOX2-OT in HNSCC. QRT-PCR analysis was performed in 61 pairs of HNSCC cancer tissues, adjacent normal tissues, and 68 plasma samples confirmed that lncRNA SOX2-OT was overexpressed in cancer tissues and plasma samples, which served as a poor prognostic factor for HNSCC. The FISH assay demonstrated that SOX2-OT was localized in the nucleus and cytoplasm of HNSCC cell lines. Further, the cell function assay confirmed that SOX2-OT promoted cell proliferation and metastasis in vitro and in vivo. RNA pulldown and RIP assay results revealed that SOX2-OT bonds with ILF3 in HNSCC, and the rescue assay confirmed that SOX2-OT played an oncogenic role depending on ILF3 protein expression. Ingenuity pathway analysis and Western blotting indicated that SOX2-OT regulated HNSCC progression by promoting STAT3 phosphorylation and modulating the crosstalk between STAT3 and TGF-ß signaling. These results reveal evidence for the role of SOX2-OT in HNSCC progression and metastasis by binding to ILF3, which may serve as a therapeutic target and prognostic biomarker in HNSCC.

6.
Protein Cell ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37991243

ABSTRACT

Telomeres are specialized structures at the ends of linear chromosomes that protect genome stability. The telomeric repeat-containing RNA (TERRA) that is transcribed from subtelomeric regions can invade into double-stranded DNA regions and form RNA:DNA hybrid-containing structure called R-loop. In tumor cells, R-loop formation is closely linked to gene expression and the alternative lengthening of telomeres (ALT) pathway. Dysregulated R-loops can cause stalled replication forks and telomere instability. However, how R-loops are recognized and regulated, particularly at telomeres, is not well understood. We discovered that ILF3 selectively associates with telomeric R-loops and safeguards telomeres from abnormal homologous recombination. Knocking out ILF3 results in excessive R-loops at telomeres and triggers telomeric DNA damage responses (DDR). In addition, ILF3 deficiency disrupts telomere homeostasis and causes abnormalities in the ALT pathway. Using the proximity-dependent biotin identification (BioID) technology, we mapped the ILF3 interactome and discovered that ILF3 could interact with several DNA/RNA helicases, including DHX9. Importantly, ILF3 may aid in the resolution of telomeric R-loops through its interaction with DHX9. Our findings suggest that ILF3 may function as a reader of telomeric R-loops, helping to prevent abnormal homologous recombination and maintain telomere homeostasis.

7.
Cell Rep ; 42(10): 113262, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37864796

ABSTRACT

The roles of long noncoding RNA (lncRNA) and RNA-binding proteins (RBPs) in antiviral innate response warrant further investigation. Here, we identify an lncRNA, termed lncRNA-BTX (between Tbk1 and Xpot), which is upregulated upon viral infection via an IRF3-type I interferon-independent pathway, promoting viral innate immune escape. Deletion of lncRNA-BTX in cells or mice significantly reduces viral load in vitro or in vivo, respectively. Mechanistically, lncRNA-BTX strengthens the interactions between DHX9 or ILF3 (two RBPs that have opposite functions in regulating the replication of RNA virus) and their respective partner, JMJD6 or ILF2, which regulates intracellular translocations of DHX9 and ILF3 from the nucleus to the cytoplasm. Put simply, lncRNA-BTX facilitates DHX9's return to the cytoplasm and retains ILF3 within the nucleus, promoting viral replication. This work unveils a strategy developed by the virus to bypass host innate immunity, thus providing a potential target for antiviral therapeutics.


Subject(s)
RNA, Long Noncoding , Mice , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Virus Replication/genetics , Immunity, Innate/genetics , Signal Transduction , Antiviral Agents
8.
Int J Biol Sci ; 19(13): 4291-4310, 2023.
Article in English | MEDLINE | ID: mdl-37705754

ABSTRACT

Non-small cell lung cancer (NSCLC) is a highly lethal disease worldwide. We found the pseudogene-derived lncRNA PTTG3P is upregulated in NSCLC and associated with larger tumor size, advanced staging, and poor prognosis. This study investigated the oncogenic roles and mechanisms of PTTG3P in NSCLC. We demonstrate that PTTG3P promoted NSCLC cell proliferation, migration, tumorigenesis, and metastasis while inhibiting apoptosis in vitro and in vivo. Mechanistically, PTTG3P formed an RNA-protein complex with ILF3 to maintain MAP2K6 and E2F1 mRNA stability, two oncogenic factors involved in NSCLC progression. RNA-seq revealed MAP2K6 and E2F1 were downregulated upon PTTG3P knockdown. RIP and RNA stability assays showed PTTG3P/ILF3 interaction stabilized MAP2K6 and E2F1 transcripts. Interestingly, E2F1 transcriptionally upregulated PTTG3P by binding its promoter, forming a positive feedback loop. Knockdown of E2F1 or PTTG3P attenuated their mutual regulatory effects on cell growth and migration. Thus, a PTTG3P/ILF3/E2F1 axis enhances oncogene expression to promote NSCLC pathogenesis. Our study reveals PTTG3P exerts oncogenic functions in NSCLC via mRNA stabilization and a feedback loop, highlighting its potential as a prognostic biomarker and therapeutic target.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Feedback , Lung Neoplasms/genetics , Cell Transformation, Neoplastic , Carcinogenesis/genetics , RNA Stability/genetics , Nuclear Factor 90 Proteins/genetics , E2F1 Transcription Factor/genetics
9.
Biol Direct ; 18(1): 33, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37337223

ABSTRACT

BACKGROUND: Proteasome 26S subunit, non-ATPase 3 (PSMD3) has been reported to participate in various human cancers. Nevertheless, the function of PSMD3 in lung cancer (LC) remains unclear. METHODS: RT-qPCR and western blot were used to detect the expression of PSMD3 in LC tissues form TCGA database and clinical samples, and LC cell lines. To study the effect of PSMD3 on LC cell proliferation, migration, invasion, and apoptosis, siRNAs targeting PSMD3 were synthesized and overexpressed plasmids were constructed. CCK-8 assay, Transwell assay, and etc. were used to evaluate the results. Tumor xenograft model was used to evaluate the function of PSMD3 on tumor growth. CO-IP and MS were used to scan the proteins that bind with PSMD3. The interaction between PSMD3 and ILF3 in lung cancer cells were studied using IF staining, CHX protein stability, and ubiquitination assay. Additionally, the effect of ILF3 on cell progression and LC tumor growth was demonstrated by conducting a recovery assay using siILF3 and an ILF3 inhibitor YM155. RESULTS: We observed that PSMD3 was significantly overexpressed in LC tissues and cells, which indicated a poor prognosis. Meanwhile, we found that PSMD3 promoted cell proliferation, migration, and invasion of LC cells. We also determined that PSMD3 stabilized the protein expression of ILF3 and the deubiquitination of ILF3 in lung cancer cells. Furthermore, animal experiments showed that the ILF3 inhibitor YM155 could suppress tumor growth with the presence of PSMD3. CONCLUSIONS: PSMD3 collectively regulated the stability of ILF3 protein and facilitated the ubiquitination of endogenous ILF3 in LC, which ultimately promoted the progression of LC cells. The PSMD3/ ILF3 axis could potentially be used as a novel strategy for both diagnosis and treatment of LC.


Subject(s)
Lung Neoplasms , Nuclear Factor 90 Proteins , Proteasome Endopeptidase Complex , Animals , Humans , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , Nuclear Factor 90 Proteins/genetics , Nuclear Factor 90 Proteins/metabolism , Signal Transduction , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism
10.
Kaohsiung J Med Sci ; 39(8): 811-823, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37132584

ABSTRACT

Skin is the first line of the body to resist pathogen invasion. A potentially fatal infection may result from problems with wound healing. Small molecule drugs like astragaloside IV (AS-IV) show pro-healing activities, but the mechanisms are not fully understood. Using real-time quantitative PCR and a western blot assay, the amount of gene expression was evaluated. The proliferation and migration of keratinocytes were determined by MTS and wound healing assay, respectively. The binding of lncRNA H19 to RBP protein ILF3 and the binding of ILF3 protein to CDK4 mRNA were confirmed by RNA immunoprecipitation. Treatment with AS-IV enhanced the expression of lncRNA H19, ILF3, and CDK4 and improved the proliferation and migration of keratinocytes HaCaT. Additionally, apoptosis of keratinocytes was attenuated by AS-IV. Further studies showed that both lncRNA H19 and ILF3 were important for AS-IV-mediated keratinocyte growth and migration. In addition, lncRNA H19 recruited ILF3 to increase CDK4 mRNA level and enhanced cell proliferation. We discovered a lncRNA H19/ILF3/CDK4 axis that is activated by AS-IV to promote keratinocyte migration and proliferation. These results elucidate the mechanism of action of AS-IV and justify its application in further application in wound healing treatment.


Subject(s)
Cyclin-Dependent Kinase 4 , Keratinocytes , Nuclear Factor 90 Proteins , RNA, Long Noncoding , Cell Proliferation/genetics , Keratinocytes/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , HaCaT Cells , Humans , Nuclear Factor 90 Proteins/genetics , Nuclear Factor 90 Proteins/metabolism , Cyclin-Dependent Kinase 4/genetics
11.
J Biomed Sci ; 30(1): 20, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36959575

ABSTRACT

BACKGROUND: Although immune checkpoint blockade (ICB) therapy has brought survival benefits to patients with specific cancer types, most of cancer patients remain refractory to the ICB therapy, which is largely attributed to the immunosuppressive tumor microenvironment. Thereby, it is urgent to profile key molecules and signal pathways responsible for modification of tumor microenvironment. METHODS: Multiple databases of esophageal squamous cell carcinoma (ESCC) were integratively analyzed to screen candidate genes responsible for infiltration of CD8+ T cells. Expression of pescadillo ribosomal biogenesis factor 1 (PES1) in clinical ESCC samples was examined by qRT-PCR, western blotting, and immunohistochemistry. The mechanisms of PES1 were investigated via RNA sequencing and mass spectrometry followed by immunoprecipitation and proximity ligation assay. The clinical and therapeutic significance of PES1 in ESCC was comprehensively investigated using ESCC cells and mouse model. RESULTS: PES1 was significantly upregulated and correlated with poor prognosis in ESCC patients. PES1 knockdown decreased ESCC cell growth in vitro and in vivo and enhanced the efficacy of ICB therapy in mouse model, which was established through subcutaneous inoculation with ESCC cells. Analyses on RNA sequencing and mass spectrometry suggested that PES1 expression was negatively correlated with IL15 and ILF3 was one of the PES1-associated proteins. It has been known that ILF3 interacts with and stabilizes IL15 mRNA to increase IL15 protein level. Our data further indicated that PES1 interfered with the interaction between ILF3 and IL15 mRNA and impaired ILF3-mediated stabilization of IL15 mRNA, which eventually reduced the protein level of IL15. Interestingly, the inhibitory effect of ICB therapy boosted by PES1 knockdown dramatically antagonized by knockdown of IL15, which suppressed the tumor-infiltrated CD8+ T cells in ESCC. Finally, we confirmed the relationships among PES1, IL15, and CD8+ T cell infiltration in 10 locally advanced ESCC patients receiving ICB neoadjuvant therapy and demonstrated that ICB therapy would be more effective in those with low expression of PES1. CONCLUSIONS: Altogether, our findings herein provided novel insights on biological function and clinical significance of PES1 and suggested that high expression of PES1 could suppress ILF3-IL15 axis-mediated immunosurveillance and promote resistance to ICB through restraining tumor-infiltrated CD8+ T cells.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Animals , Mice , CD8-Positive T-Lymphocytes , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/therapy , Immunotherapy , Interleukin-15/pharmacology , Interleukin-15/therapeutic use , Tumor Microenvironment , RNA-Binding Proteins/metabolism , Nuclear Factor 90 Proteins/metabolism
12.
Am J Physiol Regul Integr Comp Physiol ; 323(6): R861-R874, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36222883

ABSTRACT

Hypertension is characterized by sympathetic hyperactivity, which is related to the overexcitation of the presympathetic neurons in the rostral ventrolateral medulla (RVLM). Nitric oxide (NO) has been reported to be a vital neuromodulator involved in central cardiovascular regulation. However, the mechanism of interleukin-enhanced binding factor 3 (ILF3) participating in blood pressure (BP) regulation is still unclear. Therefore, this study aims to clarify the role of ILF3 within the rostral ventrolateral medulla (RVLM) in regulating NO in hypertension. It was found that the expression level of ILF3 was significantly increased in the RVLM of spontaneously hypertensive rats (SHR) compared with Wistar-Kyoto (WKY) rats through microarray gene expression analysis, Western blot, and immunofluorescence. Overexpression of ILF3 by injecting constructed adenovirus into the RVLM increased the BP and renal sympathetic nerve activity (RSNA) of the WKY rats, significantly decreasing NO production and neuronal nitric oxide synthase (nNOS) expression. Knockdown of ILF3 in the RVLM of SHR significantly reduced BP but increased NO production and the neuronal nitric oxide synthase (nNOS) expression. Furthermore, it was found that the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway was activated via Western blotting in the RVLM after overexpression of ILF3, whereas it was attenuated after knockdown of ILF3 in SHR. In addition, inhibition of PI3K by intracisternal infusion of the PI-103 attenuated the increase in Akt phosphorylation and decrease in nNOS expression and NO production caused by overexpressing ILF3, which ultimately blunted high BP induced by overexpressing ILF3. Taken together, this current study suggests that ILF3 participates in high BP via reducing NO production in the RVLM through PI3K/Akt pathway.


Subject(s)
Hypertension , Proto-Oncogene Proteins c-akt , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type I/genetics , Nitric Oxide Synthase Type I/metabolism , Rats, Inbred WKY , Phosphatidylinositol 3-Kinase/metabolism , Medulla Oblongata/metabolism , Blood Pressure , Rats, Inbred SHR , Interleukins/metabolism , Nuclear Factor 90 Proteins/metabolism
13.
Aging (Albany NY) ; 14(9): 3887-3909, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35507914

ABSTRACT

BACKGROUND: This study aimed to investigate the relationship of dyslipidemia and interleukin-enhancer binding factor 3 (ILF3) in gastric cancer, and provide insights into the potential application of statins as an agent to prevent and treat gastric cancer. METHODS: The expression levels of ILF3 in gastric cancer were examined with publicly available datasets such as TCGA, and western blotting and immunohistochemistry were performed to determine the expression of ILF3 in clinical specimens. The effects of ox-LDL on expression of ILF3 were further verified with western blot analyses. RNA sequencing, Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Gene Set Enrichment Analysis (GSEA) pathway analyses were performed to reveal the potential downstream signaling pathway targets of ILF3. The effects of statins and ILF3 on PI3K/AKT/mTOR signaling pathway, cell proliferation, cell cycle, migration and invasion of gastric cancer cells were investigated with Edu assay, flow cytometry and transwell assay. RESULTS: Immunohistochemistry and western blot demonstrated that the positive expression rates of ILF3 in gastric cancer tissues were higher than adjacent mucosa tissues. The ox-LDL promoted the expression of ILF3 in a time-concentration-dependent manner. ILF3 promoted the proliferation, cell cycle, migration and invasion by activating the PI3K/AKT/mTOR signaling pathway. Statins inhibited the proliferation, cell cycle, migration and invasion of gastric cancer by inhibiting the expression of ILF3. CONCLUSIONS: These findings demonstrate that ox-LDL promotes ILF3 overexpression to regulate gastric cancer progression by activating the PI3K/AKT/mTOR signaling pathway. Statins inhibits the expression of ILF3, which might be a new targeted therapy for gastric cancer.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Stomach Neoplasms , Cell Line, Tumor , Cell Movement , Cell Proliferation , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Lipoproteins, LDL , Nuclear Factor 90 Proteins/genetics , Nuclear Factor 90 Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , TOR Serine-Threonine Kinases/metabolism
14.
Cancer Sci ; 113(11): 3801-3813, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35579257

ABSTRACT

RNA binding proteins (RBPs) play pivotal roles in breast cancer (BC) development. As an RBP, Processing of precursor 7 (POP7) is one of the subunits of RNase P and RNase MRP, however, its exact function and mechanism in BC remain unknown. Here, we showed that expression of POP7 was frequently increased in BC cells and in primary breast tumors. Upregulated POP7 significantly promoted BC cell proliferation in vitro and primary tumor growth in vivo. POP7 also increased cell migration, invasion in vitro, and lung metastasis in vivo. Through RNA immunoprecipitation coupled with sequencing (RIP-seq), we found that POP7 bound preferentially to intron regions and POP7-binding peak associated genes were mainly enriched in cancer-related pathways. Furthermore, POP7 regulated Interleukin Enhancer Binding Factor 3 (ILF3) expression through influencing its mRNA stability. Knockdown of ILF3 significantly impaired the increased malignant potential of POP7-overexpressing cells, suggesting that POP7 enhances BC progression through regulating ILF3 expression. Collectively, our findings provide the first evidence for the important role of POP7 and its regulation of ILF3 in promoting BC progression.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Nuclear Factor 90 Proteins , Ribonuclease P , Female , Humans , Breast Neoplasms/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , Nuclear Factor 90 Proteins/genetics , RNA Stability/genetics , Autoantigens/genetics , Ribonuclease P/genetics
15.
J Mol Biol ; 434(7): 167469, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35120969

ABSTRACT

MicroRNAs (miRNAs) play important roles in regulated gene expression and miRNA biogenesis is also subject to regulation, together constituting critical regulatory circuitries in numerous physiological and pathological processes. As a dsRNA binding protein, interleukin enhancer binding factor 3 (ILF3) has been implicated as a negative regulator in miRNA biogenesis, but the mechanism and specificity have remained undefined. Here, combining small-RNA-seq and CLIP-seq, we showed that ILF3 directly represses many miRNAs or perhaps other types of small RNAs annotated in both miRBase and MirGeneDB. We demonstrated that ILF3 preferentially binds to A/U-enriched motifs, which tend to lengthen and/or stabilize the stem-loop in pri-miRNAs, thereby effectively competing with the Microprocessor to block miRNA biogenesis. Focusing on the biological function of ILF3-suppressed miR-582-3p, we discovered that this LINE-derived miRNA targets a critical interferon-inducible gene RIG-I for repression, thus establishing a novel ILF3/miR-582/RIG-I axis in the antiviral response.


Subject(s)
DEAD Box Protein 58 , Interferon Type I , MicroRNAs , Nuclear Factor 90 Proteins , Receptors, Immunologic , DEAD Box Protein 58/genetics , Gene Expression Regulation , HeLa Cells , Humans , Interferon Type I/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Nuclear Factor 90 Proteins/metabolism , Receptors, Immunologic/genetics
16.
Dig Liver Dis ; 54(1): 125-135, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34053876

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) are essential indicators for hepatocellular carcinoma. LncRNAs can exert the same functions as their antisense mRNAs. ILF3 is an oncogene in hepatocellular carcinoma. ILF3 divergent transcript (ILF3-AS1) is the antisense RNA of ILF3, and has been reported as an oncogene in various cancers. AIMS: To explore the role of lncRNA ILF3-AS1 in malignant phenotypes of hepatocellular carcinoma cells. METHODS AND RESULTS: RT-qPCR analysis revealed that ILF3-AS1 was significantly upregulated in hepatocellular carcinoma cells. The hepatocellular carcinoma cell viability was suppressed by silenced ILF3-AS1. Transwell and wound healing assays showed that ILF3-AS1 downregulation inhibited cell invasion and migration. The levels of proteins associated with epithelial-mesenchymal transition (EMT) process and the Notch pathway were detected by western blot analysis. Luciferase reporter, RNA pull down and RIP assays were used to investigate the relationship between ILF3-AS1 and downstream target genes. ILF3-AS1 competed with meis homeobox 2 (MEIS2) for miR-628-5p in hepatocellular carcinoma cells. ILF3-AS1 elevated the levels of key proteins on the Notch pathway. Rescue assays demonstrated that MEIS2 reversed the antitumor effects of silenced ILF3-AS1 on hepatocellular carcinoma. In vivo assays demonstrated that ILF3-AS1 silencing inhibited the hepatocellular carcinoma tumor growth. CONCLUSIONS: ILF3-AS1 promoted hepatocellular carcinoma progression via the Notch pathway and miR-628-5p/MEIS2 axis.


Subject(s)
Carcinoma, Hepatocellular/genetics , Homeodomain Proteins/genetics , Liver Neoplasms/genetics , MicroRNAs/genetics , Nuclear Factor 90 Proteins/genetics , Transcription Factors/genetics , Cell Line, Tumor , Cell Movement/genetics , Epithelial-Mesenchymal Transition/genetics , Humans , Neoplasm Invasiveness/genetics , Phenotype , RNA, Antisense/genetics , RNA, Long Noncoding/genetics , Receptors, Notch/genetics
17.
Hum Cell ; 34(6): 1843-1854, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34491544

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Increasing evidences have demonstrated that ILF3 antisense RNA 1 (ILF3-AS1) acts as an oncogenic long noncoding RNA (lncRNA) in several types of human cancers. However, the expression pattern, functional role and underlying mechanism of ILF3-AS1 in HCC remains largely unclear. Here, we found that ILF3-AS1 expression was significantly elevated in HCC tissues and also associated with prognosis of patients with HCC. Functional assays demonstrated that knockdown of ILF3-AS1 expression resulted in the suppression of proliferation, migration and invasion in HCC cells, whereas overexpression of ILF3-AS1 exerted opposite effects. Additionally, knockdown of IFL3-AS1 attenuated HCC tumorigenesis and metastasis in vivo. Mechanistically, ILF3-AS1 associated with ILF3 mRNA and inhibited its degradation. ILF3-AS1 increased ILF3 m6A level via recruiting N6-methyladenosine (m6A) RNA methyltransferase METTL3. Moreover, IFL3-AS1 enhanced the interaction between ILF3 mRNA and m6A reader IGF2BP1. Overall, our study revealed the function and mechanism of ILF3-AS1 in the malignant phenotypes of HCC cells, which provides a novel therapeutic target for HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Gene Expression Regulation, Neoplastic/genetics , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Methyltransferases/metabolism , Nuclear Factor 90 Proteins/genetics , Nuclear Factor 90 Proteins/physiology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Carcinoma, Hepatocellular/therapy , Cell Movement/genetics , Cell Proliferation/genetics , Disease Progression , Gene Expression/genetics , Humans , Liver Neoplasms/therapy , Molecular Targeted Therapy , Neoplasm Invasiveness/genetics , Nuclear Factor 90 Proteins/metabolism , RNA, Long Noncoding/metabolism
18.
J Mol Cell Cardiol ; 161: 39-52, 2021 12.
Article in English | MEDLINE | ID: mdl-34343541

ABSTRACT

Calcification is common in atherosclerotic plaque and can induce vulnerability, which further leads to myocardial infarction, plaque rupture and stroke. The mechanisms of atherosclerotic calcification are poorly characterized. Interleukin enhancer binding factor 3 (ILF3) has been identified as a novel factor affecting dyslipidemia and stroke subtypes. However, the precise role of ILF3 in atherosclerotic calcification remains unclear. In this study, we used smooth muscle-conditional ILF3 knockout (ILF3SM-KO) and transgenic mice (ILF3SM-Tg) and macrophage-conditional ILF3 knockout (ILF3M-KO) and transgenic (ILF3M-Tg) mice respectively. Here we showed that ILF3 expression is increased in calcified human aortic vascular smooth muscle cells (HAVSMCs) and calcified atherosclerotic plaque in humans and mice. We then found that hyperlipidemia increases ILF3 expression and exacerbates calcification of VSMCs and macrophages by regulating bone morphogenetic protein 2 (BMP2) and signal transducer and activator of transcription 1 (STAT1) transcription. We further explored the molecular mechanisms of ILF3 in atherosclerotic calcification and revealed that ILF3 acts on the promoter regions of BMP2 and STAT1 and mediates BMP2 upregulation and STAT1 downregulation, which promotes atherosclerotic calcification. Our results demonstrate the effect of ILF3 in atherosclerotic calcification. Inhibition of ILF3 may be a useful therapy for preventing and even reversing atherosclerotic calcification.


Subject(s)
Arteriolosclerosis/etiology , Bone Morphogenetic Protein 2/genetics , Hyperlipidemias/physiopathology , Nuclear Factor 90 Proteins/metabolism , STAT1 Transcription Factor/genetics , Animals , Body Weight , Bone Morphogenetic Protein 2/metabolism , Gene Expression Regulation , Humans , Hyperlipidemias/genetics , Hyperlipidemias/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Nuclear Factor 90 Proteins/genetics , Promoter Regions, Genetic , STAT1 Transcription Factor/metabolism , Vascular Calcification/genetics , Vascular Calcification/metabolism , Vascular Calcification/physiopathology
19.
Mol Ther Nucleic Acids ; 24: 1012-1023, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34141456

ABSTRACT

The role of long non-coding RNA (lncRNA) has been displayed in colorectal cancer (CRC). Here, we aimed to discuss the role of lncRNA interleukin enhancer-binding factor 3-antisense RNA 1 (ILF3-AS1)/enhancer of zeste homolog 2 (EZH2)/cyclin-dependent kinase inhibitor 2 (CDKN2A)/histone 3 (H3) lysine 27 trimethylation (H3K27me3) in cell proliferation and metastasis of CRC. ILF3-AS1, EZH2, and CDKN2A levels in CRC tissues and cells were detected. The relationship between ILF3-AS1/EZH2 expression and the clinicopathological features of CRC was analyzed. High/low expression of ILF3-AS1/EZH2 plasmids were composed to explore the function of ILF3-AS1/EZH2 in invasion, migration, proliferation, colony formation, and apoptosis of CRC cells. The growth status of nude mice was observed to verify the in vitro results from in vivo experiment. ILF3-AS1 and EZH2 increased, whereas CDKN2A reduced in CRC tissues and cells. ILF3-AS1 and EZH2 expression was linked to Dukes stage, distant metastasis, vascular invasion, and lymph node metastasis of CRC patients. Depleted ILF3-AS1 or reduced EZH2 suppressed proliferation, migration, colony-formation, and invasion ability, as well as facilitated apoptosis of CRC cells and attenuated the tumor growth in CRC mice. ILF3-AS1 accelerates the proliferation and metastasis of CRC cells by recruiting histone methylase EZH2 to induce trimethylation of H3K27 and downregulate CDKN2A.

20.
Cancer Cell Int ; 21(1): 322, 2021 Jun 27.
Article in English | MEDLINE | ID: mdl-34176471

ABSTRACT

BACKGROUND: It have been proven that long non-coding RNAs (lncRNAs) serve as regulators in carcinogenesis. Interleukin enhancer binding factor 3 antisense RNA 1 (ILF3-AS1) has been illuminated as a prognostic factor in some cancers. Nevertheless, its expression pattern and possible functions in papillary thyroid carcinoma (PTC) have not been studied. METHODS: The expression of ILF3-AS1 was measured by RT-qPCR and ISH. Colony formation assay and EdU assay were used to probe cell proliferation. TUNEL assay was used for analysis of cell apoptosis. Immunofluorescence and western blot were conducted to evaluate the expression change of E-cadherin and N-cadherin. The RNA interaction was demonstrated by mechanism experiments, including pull down assay and dual luciferase reporter assay. RESULTS: ILF3-AS1 expression was evidently upregulated in PTC cell lines. ILF3-AS1 knockdown restrained the proliferation, migration and invasion of PTC cells. Mechanical investigation revealed that miR-4306 could interact with ILF3-AS1. PLAGL2 was a downstream target of miR-4306. The effects of ILF3-AS1 knockdown on the cellular processes were abrogated by miR-4306 downregulation or pleiomorphic adenoma gene-like 2 (PLAGL2) overexpression. CONCLUSION: ILF3-AS1 plays tumor-promoting role in PTC via targeting miR-4306/PLAGL2 axis.

SELECTION OF CITATIONS
SEARCH DETAIL