Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 679
Filter
1.
Sensors (Basel) ; 24(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39123816

ABSTRACT

Gait monitoring using hip joint angles offers a promising approach for person identification, leveraging the capabilities of smartphone inertial measurement units (IMUs). This study investigates the use of smartphone IMUs to extract hip joint angles for distinguishing individuals based on their gait patterns. The data were collected from 10 healthy subjects (8 males, 2 females) walking on a treadmill at 4 km/h for 10 min. A sensor fusion technique that combined accelerometer, gyroscope, and magnetometer data was used to derive meaningful hip joint angles. We employed various machine learning algorithms within the WEKA environment to classify subjects based on their hip joint pattern and achieved a classification accuracy of 88.9%. Our findings demonstrate the feasibility of using hip joint angles for person identification, providing a baseline for future research in gait analysis for biometric applications. This work underscores the potential of smartphone-based gait analysis in personal identification systems.


Subject(s)
Gait , Hip Joint , Smartphone , Humans , Male , Female , Hip Joint/physiology , Gait/physiology , Adult , Accelerometry/instrumentation , Accelerometry/methods , Algorithms , Machine Learning , Gait Analysis/methods , Gait Analysis/instrumentation , Walking/physiology , Young Adult
2.
Ann Biomed Eng ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136890

ABSTRACT

PURPOSE: This study aimed to assess the feasibility of early detection of fatigued gait patterns for older adults through the development of a smart portable device. METHODS: The smart device incorporated seven force sensors and a single inertial measurement unit (IMU) to measure regional plantar forces and foot kinematics. Data were collected from 18 older adults walking briskly on a treadmill for 60 min. The optimal feature set for each recognition model was determined using forward sequential feature selection in a wrapper fashion through fivefold cross-validation. The recognition model was selected from four machine learning models through leave-one-subject-out cross-validation. RESULTS: Five selected characteristics that best represented the state of fatigue included impulse at the medial and lateral arches (increased, p = 0.002 and p < 0.001), contact angle and rotation range of angle in the sagittal plane (increased, p < 0.001), and the variability of the resultant swing angular acceleration (decreased, p < 0.001). The detection accuracy based on the dual signal source of IMU and plantar force was 99%, higher than the 95% accuracy based on the single source. The intelligent portable device demonstrated excellent generalization (ranging from 93 to 100%), real-time performance (2.79 ms), and portability (32 g). CONCLUSION: The proposed smart device can detect fatigue patterns with high precision and in real time. SIGNIFICANCE: The application of this device possesses the potential to reduce the injury risk for older adults related to fatigue during gait.

3.
J Neuroeng Rehabil ; 21(1): 128, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085954

ABSTRACT

BACKGROUND: Systems that capture motion under laboratory conditions limit validity in real-world environments. Mobile motion capture solutions such as Inertial Measurement Units (IMUs) can progress our understanding of "real" human movement. IMU data must be validated in each application to interpret with clinical applicability; this is particularly true for diverse populations. Our IMU analysis method builds on the OpenSim IMU Inverse Kinematics toolkit integrating the Versatile Quaternion-based Filter and incorporates realistic constraints to the underlying biomechanical model. We validate our processing method against the reference standard optical motion capture in a case report with participants with transfemoral amputation fitted with a Percutaneous Osseointegrated Implant (POI) and without amputation walking over level ground. We hypothesis that by using this novel pipeline, we can validate IMU motion capture data, to a clinically acceptable degree. RESULTS: Average RMSE (across all joints) between the two systems from the participant with a unilateral transfemoral amputation (TFA) on the amputated and the intact sides were 2.35° (IQR = 1.45°) and 3.59° (IQR = 2.00°) respectively. Equivalent results in the non-amputated participant were 2.26° (IQR = 1.08°). Joint level average RMSE between the two systems from the TFA ranged from 1.66° to 3.82° and from 1.21° to 5.46° in the non-amputated participant. In plane average RMSE between the two systems from the TFA ranged from 2.17° (coronal) to 3.91° (sagittal) and from 1.96° (transverse) to 2.32° (sagittal) in the non-amputated participant. Coefficients of Multiple Correlation (CMC) results between the two systems in the TFA ranged from 0.74 to > 0.99 and from 0.72 to > 0.99 in the non-amputated participant and resulted in 'excellent' similarity in each data set average, in every plane and at all joint levels. Normalized RMSE between the two systems from the TFA ranged from 3.40% (knee level) to 54.54% (pelvis level) and from 2.18% to 36.01% in the non-amputated participant. CONCLUSIONS: We offer a modular processing pipeline that enables the addition of extra layers, facilitates changes to the underlying biomechanical model, and can accept raw IMU data from any vendor. We successfully validate the pipeline using data, for the first time, from a TFA participant using a POI and have proved our hypothesis.


Subject(s)
Amputation, Surgical , Artificial Limbs , Humans , Biomechanical Phenomena , Amputation, Surgical/rehabilitation , Femur/surgery , Osseointegration/physiology , Male , Proof of Concept Study , Amputees/rehabilitation , Walking/physiology , Adult , Bone-Anchored Prosthesis
4.
Biomed Mater Eng ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39031336

ABSTRACT

BACKGROUND: Inertial measurement unit (IMU)-based motion sensors are affordable, and their use is appropriate for rehabilitation. However, regarding the accuracy of estimated angle information obtained from this sensor, it is reported that it is likely affected by velocity. OBJECTIVE: The present study investigated the reliability and validity of the angle information obtained using IMU-based sensors compared with a three-dimensional (3D) motion analyzer. METHODS: The Euler angle obtained using the 3D motion analyzer and the angle obtained using the IMU-based sensor (IMU angle) were compared. Reliability was assessed by comparing the Bland-Altman analysis, intra-class correlation coefficient (ICC) (1,1), and cross-correlation function. The root mean square (RMS) error, ICC (2,1), and cross-correlation function were used to compare data on the Euler and IMU angles to evaluate the validity. RESULTS: Regarding reliability, the Bland-Atman analysis indicated no fixed or proportional bias in the angle measurements. The measurement errors ranged from 0.2° to 3.2°. In the validity, the RMS error ranged from 0.3° to 2.2°. The ICCs (2,1) were 0.9. The cross-correlation functions were >0.9, which indicated a high degree of agreement. CONCLUSION: The IMU-based sensor had a high reliability and validity. The IMU angle may be used in rehabilitation.

5.
Sensors (Basel) ; 24(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39001085

ABSTRACT

Recently, posture recognition technology has advanced rapidly. Herein, we present a novel posture angle calculation system utilizing a single inertial measurement unit and a spatial geometric equation to accurately identify the three-dimensional (3D) motion angles and postures of both the upper and lower limbs of the human body. This wearable system facilitates continuous monitoring of body movements without the spatial limitations or occlusion issues associated with camera-based methods. This posture-recognition system has many benefits. Providing precise posture change information helps users assess the accuracy of their movements, prevent sports injuries, and enhance sports performance. This system employs a single inertial sensor, coupled with a filtering mechanism, to calculate the sensor's trajectory and coordinates in 3D space. Subsequently, the spatial geometry equation devised herein accurately computed the joint angles for changing body postures. To validate its effectiveness, the joint angles estimated from the proposed system were compared with those from dual inertial sensors and image recognition technology. The joint angle discrepancies for this system were within 10° and 5° when compared with dual inertial sensors and image recognition technology, respectively. Such reliability and accuracy of the proposed angle estimation system make it a valuable reference for assessing joint angles.


Subject(s)
Posture , Humans , Posture/physiology , Wearable Electronic Devices , Biomechanical Phenomena/physiology , Movement/physiology , Male , Algorithms , Extremities/physiology
6.
Sensors (Basel) ; 24(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39001122

ABSTRACT

Human Activity Recognition (HAR), alongside Ambient Assisted Living (AAL), are integral components of smart homes, sports, surveillance, and investigation activities. To recognize daily activities, researchers are focusing on lightweight, cost-effective, wearable sensor-based technologies as traditional vision-based technologies lack elderly privacy, a fundamental right of every human. However, it is challenging to extract potential features from 1D multi-sensor data. Thus, this research focuses on extracting distinguishable patterns and deep features from spectral images by time-frequency-domain analysis of 1D multi-sensor data. Wearable sensor data, particularly accelerator and gyroscope data, act as input signals of different daily activities, and provide potential information using time-frequency analysis. This potential time series information is mapped into spectral images through a process called use of 'scalograms', derived from the continuous wavelet transform. The deep activity features are extracted from the activity image using deep learning models such as CNN, MobileNetV3, ResNet, and GoogleNet and subsequently classified using a conventional classifier. To validate the proposed model, SisFall and PAMAP2 benchmark datasets are used. Based on the experimental results, this proposed model shows the optimal performance for activity recognition obtaining an accuracy of 98.4% for SisFall and 98.1% for PAMAP2, using Morlet as the mother wavelet with ResNet-101 and a softmax classifier, and outperforms state-of-the-art algorithms.


Subject(s)
Human Activities , Wavelet Analysis , Humans , Human Activities/classification , Algorithms , Deep Learning , Wearable Electronic Devices , Activities of Daily Living , Neural Networks, Computer , Image Processing, Computer-Assisted/methods
7.
Sensors (Basel) ; 24(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39001198

ABSTRACT

In GNSS/IMU integrated navigation systems, factors like satellite occlusion and non-line-of-sight can degrade satellite positioning accuracy, thereby impacting overall navigation system results. To tackle this challenge and leverage historical pseudorange information effectively, this paper proposes a graph optimization-based GNSS/IMU model with virtual constraints. These virtual constraints in the graph model are derived from the satellite's position from the previous time step, the rate of change of pseudoranges, and ephemeris data. This virtual constraint serves as an alternative solution for individual satellites in cases of signal anomalies, thereby ensuring the integrity and continuity of the graph optimization model. Additionally, this paper conducts an analysis of the graph optimization model based on these virtual constraints, comparing it with traditional graph models of GNSS/IMU and SLAM. The marginalization of the graph model involving virtual constraints is analyzed next. The experiment was conducted on a set of real-world data, and the results of the proposed method were compared with tightly coupled Kalman filtering and the original graph optimization method. In instantaneous performance testing, the method maintains an RMSE error within 5% compared with real pseudorange measurement, while in a continuous performance testing scenario with no available GNSS signal, the method shows approximately a 30% improvement in horizontal RMSE accuracy over the traditional graph optimization method during a 10-second period. This demonstrates the method's potential for practical applications.

8.
Heliyon ; 10(13): e33546, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39040320

ABSTRACT

Background: Accurate identification of gait events is crucial to reliable gait analysis. Heel rise, a key event marking the transition from mid-stance to terminal stance, poses challenges in precise detection due to its gradual nature. This leads to variability in accuracy across studies utilizing diverse measuring techniques. Research question: How do different HR detection methods compare when assessed against the underlying heel motion pattern and visual detection across varying speed, footwear conditions, and individuals? Methods: Leveraging data from over 10,000 strides in diverse scenarios with 15 healthy subjects, we evaluated methods based on measurements from optical motion capture (OMC), force plates, and shank-mounted inertial measurement units (IMUs). The evaluation of these methods included an assessment of their precision and consistency with the heel marker's motion pattern and agreement with visually detected heel rise. Results: OMC-based heel rise detection methods, utilizing the heel marker's vertical acceleration and jerk, consistently identified the same point in the heel motion pattern, outperforming velocity-based methods and our new position-based method resembling traditional footswitch-based heel rise detection. Variability in velocity and position-based methods derives from subtle heel rise variations after mid-stance, exhibiting individual differences. Our proposed IMU-based methods show promise by closely matching OMC-based accuracy. Significance: The results have significant implications for gait analysis, providing insights into heel rise event detection's complexities. Accurate HR identification is crucial for gait phase separation, and our findings, especially with the robust heel marker's jerk-based method, enhance precision and consistency across walking conditions. Moreover, our successful development and validation of IMU-based algorithm offer cost-effective and mobile alternative for HR detection, expanding their potential use in comprehensive gait analysis.

9.
Sensors (Basel) ; 24(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000898

ABSTRACT

The motivation behind this research is the lack of an underground mining shaft data set in the literature in the form of open access. For this reason, our data set can be used for many research purposes such as shaft inspection, 3D measurements, simultaneous localization and mapping, artificial intelligence, etc. The data collection method incorporates rotated Velodyne VLP-16, Velodyne Ultra Puck VLP-32c, Livox Tele-15, IMU Xsens MTi-30 and Faro Focus 3D. The ground truth data were acquired with a geodetic survey including 15 ground control points and 6 Faro Focus 3D terrestrial laser scanner stations of a total 273,784,932 of 3D measurement points. This data set provides an end-user case study of realistic applications in mobile mapping technology. The goal of this research was to fill the gap in the underground mining data set domain. The result is the first open-access data set for an underground mining shaft (shaft depth -300 m).

10.
Sensors (Basel) ; 24(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000912

ABSTRACT

The present work focuses on the tapping test, which is a method that is commonly used in the literature to assess dexterity, speed, and motor coordination by repeatedly moving fingers, performing a tapping action on a flat surface. During the test, the activation of specific brain regions enhances fine motor abilities, improving motor control. The research also explores neuromuscular and biomechanical factors related to finger dexterity, revealing neuroplastic adaptation to repetitive movements. To give an objective evaluation of all cited physiological aspects, this work proposes a measurement architecture consisting of the following: (i) a novel measurement protocol to assess the coordinative and conditional capabilities of a population of participants; (ii) a suitable measurement platform, consisting of synchronized and non-invasive inertial sensors to be worn at finger level; (iii) a data analysis processing stage, able to provide the final user (medical doctor or training coach) with a plethora of useful information about the carried-out tests, going far beyond state-of-the-art results from classical tapping test examinations. Particularly, the proposed study underscores the importance interdigital autonomy for complex finger motions, despite the challenges posed by anatomical connections; this deepens our understanding of upper limb coordination and the impact of neuroplasticity, holding significance for motor abilities assessment, improvement, and therapeutic strategies to enhance finger precision. The proof-of-concept test is performed by considering a population of college students. The obtained results allow us to consider the proposed architecture to be valuable for many application scenarios, such as the ones related to neurodegenerative disease evolution monitoring.


Subject(s)
Fingers , Hand , Humans , Fingers/physiology , Hand/physiology , Motor Skills/physiology , Biomechanical Phenomena/physiology , Movement/physiology , Male , Adult , Female , Psychomotor Performance/physiology
11.
Sensors (Basel) ; 24(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000951

ABSTRACT

Hand-intensive work is strongly associated with work-related musculoskeletal disorders (WMSDs) of the hand/wrist and other upper body regions across diverse occupations, including office work, manufacturing, services, and healthcare. Addressing the prevalence of WMSDs requires reliable and practical exposure measurements. Traditional methods like electrogoniometry and optical motion capture, while reliable, are expensive and impractical for field use. In contrast, small inertial measurement units (IMUs) may provide a cost-effective, time-efficient, and user-friendly alternative for measuring hand/wrist posture during real work. This study compared six orientation algorithms for estimating wrist angles with an electrogoniometer, the current gold standard in field settings. Six participants performed five simulated hand-intensive work tasks (involving considerable wrist velocity and/or hand force) and one standardised hand movement. Three multiplicative Kalman filter algorithms with different smoothers and constraints showed the highest agreement with the goniometer. These algorithms exhibited median correlation coefficients of 0.75-0.78 for flexion/extension and 0.64 for radial/ulnar deviation across the six subjects and five tasks. They also ranked in the top three for the lowest mean absolute differences from the goniometer at the 10th, 50th, and 90th percentiles of wrist flexion/extension (9.3°, 2.9°, and 7.4°, respectively). Although the results of this study are not fully acceptable for practical field use, especially for some work tasks, they indicate that IMU-based wrist angle estimation may be useful in occupational risk assessments after further improvements.


Subject(s)
Algorithms , Wrist , Humans , Wrist/physiology , Male , Adult , Female , Range of Motion, Articular/physiology , Biomechanical Phenomena , Movement/physiology , Hand/physiology , Wrist Joint/physiology
12.
Front Bioeng Biotechnol ; 12: 1385750, 2024.
Article in English | MEDLINE | ID: mdl-38835976

ABSTRACT

Introduction: Inertial Measurement Units (IMU) require a sensor-to-segment calibration procedure in order to compute anatomically accurate joint angles and, thereby, be employed in healthcare and rehabilitation. Research literature proposes several algorithms to address this issue. However, determining an optimal calibration procedure is challenging due to the large number of variables that affect elbow joint angle accuracy, including 3D joint axis, movement performed, complex anatomy, and notable skin artefacts. Therefore, this paper aims to compare three types of calibration techniques against an optical motion capture reference system during several movement tasks to provide recommendations on the most suitable calibration for the elbow joint. Methods: Thirteen healthy subjects were instrumented with IMU sensors and optical marker clusters. Each participant performed a series of static poses and movements to calibrate the instruments and, subsequently, performed single-plane and multi-joint tasks. The metrics used to evaluate joint angle accuracy are Range of Motion (ROM) error, Root Mean Squared Error (RMSE), and offset. We performed a three-way RM ANOVA to evaluate the effect of joint axis and movement task on three calibration techniques: N-Pose (NP), Functional Calibration (FC) and Manual Alignment (MA). Results: Despite small effect sizes in ROM Error, NP displayed the least precision among calibrations due to interquartile ranges as large as 24.6°. RMSE showed significant differences among calibrations and a large effect size where MA performed best (RMSE = 6.3°) and was comparable with FC (RMSE = 7.2°). Offset showed a large effect size in the calibration*axes interaction where FC and MA performed similarly. Conclusion: Therefore, we recommend MA as the preferred calibration method for the elbow joint due to its simplicity and ease of use. Alternatively, FC can be a valid option when the wearer is unable to hold a predetermined posture.

13.
J Neuroeng Rehabil ; 21(1): 96, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845000

ABSTRACT

BACKGROUND: Telerehabilitation is a promising avenue for improving patient outcomes and expanding accessibility. However, there is currently no spine-related assessment for telerehabilitation that covers multiple exercises. METHODS: We propose a wearable system with two inertial measurement units (IMUs) to identify IMU locations and estimate spine angles for ten commonly prescribed spinal degeneration rehabilitation exercises (supine chin tuck head lift rotation, dead bug unilateral isometric hold, pilates saw, catcow full spine, wall angel, quadruped neck flexion/extension, adductor open book, side plank hip dip, bird dog hip spinal flexion, and windmill single leg). Twelve healthy subjects performed these spine-related exercises, and wearable IMU data were collected for spine angle estimation and IMU location identification. RESULTS: Results demonstrated average mean absolute spinal angle estimation errors of 2.59 ∘ and average classification accuracy of 92.97%. The proposed system effectively identified IMU locations and assessed spine-related rehabilitation exercises while demonstrating robustness to individual differences and exercise variations. CONCLUSION: This inexpensive, convenient, and user-friendly approach to spine degeneration rehabilitation could potentially be implemented at home or provide remote assessment, offering a promising avenue to enhance patient outcomes and improve accessibility for spine-related rehabilitation. TRIAL REGISTRATION:  No. E2021013P in Shanghai Jiao Tong University.


Subject(s)
Exercise Therapy , Spine , Telerehabilitation , Humans , Male , Telerehabilitation/instrumentation , Adult , Female , Spine/physiology , Exercise Therapy/methods , Exercise Therapy/instrumentation , Wearable Electronic Devices , Young Adult , Accelerometry/instrumentation , Accelerometry/methods , Biomechanical Phenomena
14.
Sensors (Basel) ; 24(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38894115

ABSTRACT

Recently, inertial measurement units have been gaining popularity as a potential alternative to optical motion capture systems in the analysis of joint kinematics. In a previous study, the accuracy of knee joint angles calculated from inertial data and an extended Kalman filter and smoother algorithm was tested using ground truth data originating from a joint simulator guided by fluoroscopy-based signals. Although high levels of accuracy were achieved, the experimental setup leveraged multiple iterations of the same movement pattern and an absence of soft tissue artefacts. Here, the algorithm is tested against an optical marker-based system in a more challenging setting, with single iterations of a loaded squat cycle simulated on seven cadaveric specimens on a force-controlled knee rig. Prior to the optimisation of local coordinate systems using the REference FRame Alignment MEthod (REFRAME) to account for the effect of differences in local reference frame orientation, root-mean-square errors between the kinematic signals of the inertial and optical systems were as high as 3.8° ± 3.5° for flexion/extension, 20.4° ± 10.0° for abduction/adduction and 8.6° ± 5.7° for external/internal rotation. After REFRAME implementation, however, average root-mean-square errors decreased to 0.9° ± 0.4° and to 1.5° ± 0.7° for abduction/adduction and for external/internal rotation, respectively, with a slight increase to 4.2° ± 3.6° for flexion/extension. While these results demonstrate promising potential in the approach's ability to estimate knee joint angles during a single loaded squat cycle, they highlight the limiting effects that a reduced number of iterations and the lack of a reliable consistent reference pose inflicts on the sensor fusion algorithm's performance. They similarly stress the importance of adapting underlying assumptions and correctly tuning filter parameters to ensure satisfactory performance. More importantly, our findings emphasise the notable impact that properly aligning reference-frame orientations before comparing joint kinematics can have on results and the conclusions derived from them.


Subject(s)
Algorithms , Knee Joint , Range of Motion, Articular , Humans , Biomechanical Phenomena/physiology , Knee Joint/physiology , Range of Motion, Articular/physiology , Cadaver , Movement/physiology , Male , Knee/physiology
15.
Sensors (Basel) ; 24(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38894234

ABSTRACT

Medieval combat sport is a form of mixed martial art in which combatants engage in fighting using offensive and defensive equipment while dressed in full armor. The sport is considered extremely taxing, making it nearly impossible to maintain the same level of performance. However, this form of sport has not been thoroughly analyzed, and its impact on human physical response is largely unknown. To address this gap, the study reported here aimed to introduce and test a procedure for analyzing human physical responses within the framework of the sport. To accomplish this, two experienced combatants were asked to engage in a series of strikes, performed in the form of a set duel simulating a professional fight competition. The kinematic aspect of the procedure was examined using motion analysis with the help of an IMU suit, while the physiological aspect was evaluated based on blood lactate levels and heart rate measurements. Furthermore, an ergometer test conducted in a laboratory setting aimed to determine the lactate threshold. The duel results showed noticeable decreases in the kinematic aspects of the strikes, such as the velocity of impact, and a dramatic rise in physiological aspects, such as heart rate and blood lactate levels. During the duel sets, the blood lactate surpassed the threshold level, and at the end, the heart rate exceeded the maximum age-related level. Practicing medieval combat sport has been shown to impose an extreme physical load on the bodies of combatants, noticeably affecting their performance levels.


Subject(s)
Heart Rate , Lactic Acid , Martial Arts , Humans , Martial Arts/physiology , Heart Rate/physiology , Biomechanical Phenomena/physiology , Lactic Acid/blood , Male , Adult , Monitoring, Physiologic/methods , Monitoring, Physiologic/instrumentation
16.
Sensors (Basel) ; 24(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38894258

ABSTRACT

In the construction industry, falls, slips, and trips (FST) account for 42.3% of all accidents. The primary cause of FST incidents is directly related to the deterioration of workers' body stability. To prevent FST-related accidents, it is crucial to understand the interaction between physical fatigue and body stability in construction workers. Therefore, this study investigates the impact of fatigue on body stability in various construction site environments using Dynamic Time Warping (DTW) analysis. We conducted experiments reflecting six different fatigue levels and four environmental conditions. The analysis process involves comparing changes in DTW values derived from acceleration data obtained through wearable sensors across varying fatigue levels and construction environments. The results reveal the following changes in DTW values across different environments and fatigue levels: for non-obstacle, obstacle, water, and oil conditions, DTW values tend to increase as fatigue levels rise. In our experiments, we observed a significant decrease in body stability against external environments starting from fatigue Levels 3 or 4 (30% and 40% of the maximum failure point). In the non-obstacle condition, the DTW values were 9.4 at Level 0, 12.8 at Level 3, and 23.1 at Level 5. In contrast, for the oil condition, which exhibited the highest DTW values, the values were 10.5 at Level 0, 19.1 at Level 3, and 34.5 at Level 5. These experimental results confirm that the body stability of construction workers is influenced by both fatigue levels and external environmental conditions. Further analysis of recovery time, defined as the time it takes for body stability to return to its original level, revealed an increasing trend in recovery time as fatigue levels increased. This study quantitatively demonstrates through wearable sensor data that, as fatigue levels increase, workers experience decreased body stability and longer recovery times. The findings of this study can inform individual worker fatigue management in the future.


Subject(s)
Construction Industry , Fatigue , Humans , Fatigue/physiopathology , Adult , Male , Postural Balance/physiology , Wearable Electronic Devices , Accidental Falls/prevention & control
17.
Sensors (Basel) ; 24(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38894442

ABSTRACT

Laboratory studies have limitations in screening for anterior cruciate ligament (ACL) injury risk due to their lack of ecological validity. Machine learning (ML) methods coupled with wearable sensors are state-of-art approaches for joint load estimation outside the laboratory in athletic tasks. The aim of this study was to investigate ML approaches in predicting knee joint loading during sport-specific agility tasks. We explored the possibility of predicting high and low knee abduction moments (KAMs) from kinematic data collected in a laboratory setting through wearable sensors and of predicting the actual KAM from kinematics. Xsens MVN Analyze and Vicon motion analysis, together with Bertec force plates, were used. Talented female football (soccer) players (n = 32, age 14.8 ± 1.0 y, height 167.9 ± 5.1 cm, mass 57.5 ± 8.0 kg) performed unanticipated sidestep cutting movements (number of trials analyzed = 1105). According to the findings of this technical note, classification models that aim to identify the players exhibiting high or low KAM are preferable to the ones that aim to predict the actual peak KAM magnitude. The possibility of classifying high versus low KAMs during agility with good approximation (AUC 0.81-0.85) represents a step towards testing in an ecologically valid environment.


Subject(s)
Machine Learning , Soccer , Humans , Female , Biomechanical Phenomena/physiology , Soccer/physiology , Adolescent , Knee Joint/physiology , Anterior Cruciate Ligament Injuries/physiopathology , Movement/physiology , Weight-Bearing/physiology , Wearable Electronic Devices
18.
Sensors (Basel) ; 24(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38894472

ABSTRACT

Human trajectories can be tracked by the internal processing of a camera as an edge device. This work aims to match peoples' trajectories obtained from cameras to sensor data such as acceleration and angular velocity, obtained from wearable devices. Since human trajectory and sensor data differ in modality, the matching method is not straightforward. Furthermore, complete trajectory information is unavailable; it is difficult to determine which fragments belong to whom. To solve this problem, we newly proposed the SyncScore model to find the similarity between a unit period trajectory and the corresponding sensor data. We also propose a Likelihood Fusion algorithm that systematically updates the similarity data and integrates it over time while keeping other trajectories in mind. We confirmed that the proposed method can match human trajectories and sensor data with an accuracy, a sensitivity, and an F1 of 0.725. Our models achieved decent results on the UEA dataset.


Subject(s)
Algorithms , Wearable Electronic Devices , Humans , Data Analysis
19.
Article in English | MEDLINE | ID: mdl-38940627

ABSTRACT

The inertial motion unit (IMU) is an effective tool for monitoring and assessing gait impairment in patients with lumbar disc herniation(LDH). However, the current clinical assessment methods for LDH gait focus on patients' subjective scoring indicators and lack the assessment of kinematic ability; at the same time, individual differences in the motor function degradation of the healthy and affected lower limbs of LDH patients are also ignored. To solve this problem, we propose an LDH gait feature model based on multi-source adaptive Kalman data fusion of acceleration and angular velocity. The gait phase is segmented by using an adaptive Kalman data fusion algorithm to estimate the attitude angle, and obtaining gait events through a zero-velocity update technique and a peak detection algorithm. Two IMUs were used to analyze the gait characteristics of lumbar disc patients and healthy gait people, including 12 gait characteristics such as gait spatiotemporal parameters, kinematic parameters, gait variability and stability. Statistical methods were used to analyze the characteristic model and verify the biological differences between the healthy affected side of LDH and healthy subjects. Finally, feature engineering and machine learning technology were used to identify the gait pattern of inertial movement units in patients with lumbar intervertebral disc disease, and achieved a classification accuracy of 95.50%, providing an effective gait feature set and method for clinical evaluation of LDH.

20.
Med Biol Eng Comput ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38926332

ABSTRACT

Camptocormia, a severe flexion deformity of the spine, presents challenges in monitoring its progression outside laboratory settings. This study introduces a customized method utilizing four inertial measurement unit (IMU) sensors for continuous recording of the camptocormia angle (CA), incorporating both the consensual malleolus and perpendicular assessment methods. The setup is wearable and mobile and allows measurements outside the laboratory environment. The practicality for measuring CA across various activities is evaluated for both the malleolus and perpendicular method in a mimicked Parkinson disease posture. Multiple activities are performed by a healthy volunteer. Measurements are compared against a camera-based reference system. Results show an overall root mean squared error (RMSE) of 4.13° for the malleolus method and 2.71° for the perpendicular method. Furthermore, patient-specific calibration during the standing still with forward lean activity significantly reduced the RMSE to 2.45° and 1.68° respectively. This study presents a novel approach to continuous CA monitoring outside the laboratory setting. The proposed system is suitable as a tool for monitoring the progression of camptocormia and for the first time implements the malleolus method with IMU. It holds promise for effectively monitoring camptocormia at home.

SELECTION OF CITATIONS
SEARCH DETAIL