Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 391
Filter
1.
Int Immunopharmacol ; 143(Pt 1): 113310, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39383788

ABSTRACT

Renal ischemia-reperfusion injury (IRI) is a condition that arises from a sudden interruption of the blood flow to the kidney for a period of time followed by restoration of the blood supply. This process contributes to acute kidney injury (AKI), increases morbidity and mortality, and is a major risk factor for chronic kidney disease (CKD). Nuclear factor erythroid-derived 2-like 2 (Nrf2) has been shown to exhibit strong anti-oxidative and anti-inflammatory effects, which are reciprocally regulated by the pro-inflammatory actions of nuclear factor-kappa B (NF-κB) signaling. In this study, we established a model of AKI caused by renal IRI in mice lacking the Nrf2 gene (KO-Nrf2) and mice pre-injected with ML385 (Nrf2 inhibitor). In addition, LPS- or IL-4-induced M1- or M2-type polarized macrophages (RAW264.7), respectively, were also treated with Nrf2 activation and inhibition. The results demonstrated a more pronounced activation of the NF-κB signaling pathway in the Nrf2 inhibition model, accompanied by a more severe inflammatory effect. In cultured macrophages and renal IRI mice, Nrf2 inhibition activated M1 macrophage polarization, thereby increasing the release of proinflammatory cell factors (iNOS and TNF-α) and aggravating renal IRI. Notably, the inhibitory effect of Nrf2 on M1 macrophage polarization was related to the downregulation of the NF-κB signaling pathway activity, resulting in partial relief of renal IRI. Consequently, our findings indicated that Nrf2 inhibits M1 macrophage polarization to ameliorate renal IRI through antagonizing NF-κB signaling. Targeted activation of Nrf2 may be one of the important strategies for renal IRI treatment.

2.
Article in English | MEDLINE | ID: mdl-39368680

ABSTRACT

BACKGROUND: Recent clinical series on donation after uncontrolled cardiovascular death (uDCD) reported successful transplantation of lungs preserved by pulmonary inflation up to 3h post-mortem. This study aims to investigate the additive effects of in situ lowering of intrathoracic temperature and sevoflurane preconditioning on lung grafts in a porcine uDCD model. METHODS: After uDCD induction, donor pigs were allocated to one of the following groups: Control - static lung inflation only (SLI); TC - SLI + continuous intrapleural topical cooling (TC); or TC+Sevo - SLI + TC + sevoflurane. Lungs were retrieved 6h post-asystole and evaluated via ex vivo lung perfusion (EVLP) for 6h. A left single lung transplant was performed using lungs from the best performing group, followed by 4h of graft evaluation. RESULTS: Animals that received topical cooling achieved intrathoracic temperature < 15°C within 1 hour after chest filling of coolant. Only lungs from donors that received TC and TC+Sevo completed the planned post-preservation 6h EVLP assessment. Despite similar early performance of the two groups on EVLP, the TC+Sevo group was superior - associated with overall lower airway pressures, higher pulmonary compliances, less edema development, and less release of inflammatory cytokines. Transplantation was performed using lungs from the TC+Sevo group, and excellent graft function was observed post-reperfusion. CONCLUSION: Preservation of uDCD lungs with a combination of static lung inflation, topical cooling and sevoflurane treatment maintains good pulmonary function up to 6h post-mortem with excellent early post-lung transplant function. These interventions may significantly expand the clinical utilization of uDCD donor lungs.

3.
Front Immunol ; 15: 1436926, 2024.
Article in English | MEDLINE | ID: mdl-39315100

ABSTRACT

Background: Ischemia/reperfusion injury (IRI) is a complex pathological process, triggered by the restoration of blood flow following an interrupted blood supply. While restoring the blood flow is the only option to salvage the ischemic tissue, reperfusion after a prolonged period of ischemia initiates IRI, triggering a cascade of inflammatory responses ultimately leading to neutrophil recruitment to the inflamed tissue, where they release neutrophil extracellular traps (NETs). NETs are web-like structures of decondensed chromatin and neutrophilic proteins, including peptidyl-arginine deiminase 2 and 4 (PAD2, PAD4), that, once outside, can citrullinate plasma proteins, irreversibly changing their conformation and potentially their function. While the involvement of NETs in IRI is known mainly from rodent models, we aimed to determine the effect of NET formation and especially PADs-mediated extracellular protein citrullination in a porcine model of limb IRI. Methods: We conducted our study on amputated pig forelimbs exposed to 1 h or 9 h of ischemia and then reperfused in vivo for 12 h. Limb weight, edema formation, compartmental pressure were measured, and skeletal muscle was analyzed by immunofluorescence (TUNEL assay and dystrophin staining) to evaluate tissue damage. Fibrin tissue deposition, complement deposition and NETs were investigated by immunofluorescence. Citrullinated plasma proteins were immunoprecipitated and citrullinated fibrinogen was identified in the plasma by Western blot and in the tissue by immunofluorescence and Western blot. Results: Our data consolidate the involvement of NETs in a porcine model of limb IRI, correlating their contribution to damage extension with the duration of the ischemic time. We found a massive infiltration of NETs in the group subjected to 9 h ischemia compared to the 1 h and citrullinated fibrinogen levels, in plasma and tissue, were higher in 9 h ischemia group. We propose fibrinogen citrullination as one of the mechanisms contributing to the worsening of IRI. NETs and protein citrullination represent a potential therapeutic target, but approaches are still a matter of debate. Here we introduce the idea of therapeutic approaches against citrullination to specifically inhibit PADs extracellularly, avoiding the downstream effects of hypercitrullination and keeping PADs' and NETs' intracellular regulatory functions.


Subject(s)
Citrullination , Disease Models, Animal , Extracellular Traps , Fibrinogen , Reperfusion Injury , Animals , Extracellular Traps/metabolism , Extracellular Traps/immunology , Fibrinogen/metabolism , Swine , Reperfusion Injury/metabolism , Reperfusion Injury/immunology , Neutrophils/immunology , Neutrophils/metabolism , Ischemia/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/immunology , Muscle, Skeletal/blood supply , Hindlimb/blood supply , Protein-Arginine Deiminase Type 4/metabolism
4.
Int J Mol Sci ; 25(17)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39273476

ABSTRACT

We recently reported in a rat model of kidney transplantation that the addition of sodium thiosulfate (STS) to organ preservation solution improved renal graft quality and prolonged recipient survival. The present study investigates whether STS pre-treatment would produce a similar effect. In vitro, rat kidney epithelial cells were treated with 150 µM STS before and/or during exposure to hypoxia followed by reoxygenation. In vivo, donor rats were treated with PBS or 2.4 mg/kg STS 30 min before donor kidneys were procured and stored in UW or UW+150 µM STS solution at 4 °C for 24 h. Renal grafts were then transplanted into bilaterally nephrectomised recipient rats which were then sacrificed on post-operative day 3. STS pre-treatment significantly reduced cell death compared to untreated and other treated cells in vitro (p < 0.05), which corresponded with our in vivo result (p < 0.05). However, no significant differences were observed in other parameters of tissue injury. Our results suggest that STS pre-treatment may improve renal graft function after transplantation.


Subject(s)
Kidney Transplantation , Kidney , Reperfusion Injury , Thiosulfates , Animals , Thiosulfates/pharmacology , Thiosulfates/therapeutic use , Reperfusion Injury/drug therapy , Kidney Transplantation/adverse effects , Kidney Transplantation/methods , Rats , Male , Kidney/drug effects , Organ Preservation Solutions/pharmacology , Organ Preservation/methods
5.
Immunopharmacol Immunotoxicol ; 46(5): 672-684, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39155607

ABSTRACT

BACKGROUND: Hepatic ischemia reperfusion injury (IRI) is a common liver surgery complication. This study aims to explore the effect and potential mechanism of Sunitinib - a multi-target tyrosine kinase inhibitor - on hepatic IRI. METHODS: We established a hepatic IRI model using C57BL/6 mice, and integrated 40 mg/kg of Sunitinib, solely or combined with 100 µg/kg of coumermycin A1 (C-A1), in the treatment strategy. H&E staining, TUNEL assay, and detection of serum ALT and AST activities were used to assess liver damage. Further, ELISA kits and Western Blots were utilized to determine IL-1ß, TNF-α, IL-6, CXCL10, and CXCL2 levels. Primary macrophages, once isolated, were cultured in vitro with either 2 nM of Sunitinib, or Sunitinib in conjunction with 1 µM of C-A1, to gauge their influence on macrophage polarization. qPCR and Western blot were conducted to examine the level of p-STAT1/STAT1, p-STAT3/STAT3, p-JAK2/JAK2, and M1/M2 polarization markers. To quantify immune cell infiltration, we applied Immunofluorescence. RESULTS: Sunitinib pretreatment significantly alleviated liver injury and reduced p-STAT1/STAT1, p-STAT3/STAT3, p-JAK2/JAK2 levels. In vitro, Sunitinib treatment curbed M1 polarization induced by LPS + IFN-γ and bolstered M2 polarization triggered by IL-4. C-A1 application upregulated JAK2/STAT pathway phosphorylation and promoted LPS + IFN-γ-induced M1 polarization, which was reversed by Sunitinib treatment. In IL-4-stimulated macrophages, application of C-A1 activated the JAK2/STAT pathway and decreased M2-type macrophages, which was reversed by Sunitinib treatment either. CONCLUSION: Sunitinib is capable of guiding the polarization of macrophages toward an M2-type phenotype via the inhibition of the JAK2/STAT pathway, thereby exerting a protective effect on hepatic IRI.


Subject(s)
Janus Kinase 2 , Macrophages , Mice, Inbred C57BL , Reperfusion Injury , Signal Transduction , Sunitinib , Animals , Janus Kinase 2/metabolism , Janus Kinase 2/antagonists & inhibitors , Sunitinib/pharmacology , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/immunology , Reperfusion Injury/pathology , Mice , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Male , Signal Transduction/drug effects , Liver/drug effects , Liver/pathology , STAT Transcription Factors/metabolism
6.
Transl Pediatr ; 13(6): 963-975, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38984029

ABSTRACT

Background and Objective: Ferroptosis, a form of programmed cell death driven by lipid peroxidation and dependent on iron ions, unfolds through a sophisticated interplay of multiple biological processes. These include perturbations in iron metabolism, lipid peroxidation, aberrant amino acid metabolism, disruptions in hypoxia-inducible factor-prolyl hydroxylase (HIF-PHD) axis, and endoplasmic reticulum (ER) stress. Recent studies indicate that ferroptosis may serve as a promising therapeutic target for hypoxia-associated brain injury such as hypoxic-ischemic brain damage (HIBD) and cerebral ischemia-reperfusion injury (CIRI). HIBD is a neonatal disease that can be fatal, causing death or mental retardation in newborns. HIBD is a kind of diffuse brain injury, which is characterized by apoptosis of nerve cells and abnormal function and structure of neurons after cerebral hypoxia and ischemia. At present, there are no fundamental prevention and treatment measures for HIBD. The brain is the most sensitive organ of the human body to hypoxia. Cerebral ischemia will lead to the damage of local brain tissue and its function, and CIRI will lead to a series of serious consequences. We hope to clarify the mechanism of ferroptosis in hypoxia-associated brain injury, inhibit the relevant targets of ferroptosis in hypoxia-associated brain injury to guide clinical treatment, and provide guidance for the subsequent treatment of disease-related drugs. Methods: Our research incorporated data on "ferroptosis", "neonatal hypoxic ischemia", "hypoxic ischemic brain injury", "hypoxic ischemic encephalopathy", "brain ischemia-reperfusion injury", and "therapeutics", which were sourced from Web of Science, PubMed, and comprehensive reviews and articles written in English. Key Content and Findings: This review delineates the underlying mechanisms of ferroptosis and the significance of these pathways in hypoxia-associated brain injury, offering an overview of therapeutic strategies for mitigating ferroptosis. Conclusions: Ferroptosis involves dysregulation of iron metabolism, lipid peroxidation, amino acid metabolism, dysregulation of HIF-PHD axis and endoplasmic reticulum stress (ERS). By reviewing the literature, we identified the involvement of the above processes in HIBD and CIRI, and summarized a series of therapeutic measures for HIBD and CIRI by inhibiting ferroptosis. We hope this study would provide guidance for the clinical treatment of HIBD and CIRI in the future.

7.
Clin Transplant ; 38(7): e15397, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39007406

ABSTRACT

BACKGROUND: Since the 2018 allocation system change in heart transplantation (HT), ischemic times have increased, which may be associated with peri-operative and post-operative complications. This study aimed to compare ischemia reperfusion injury (IRI) in hearts preserved using ice-cold storage (ICS) and the Paragonix SherpaPak TM Cardiac Transport System (CTS). METHODS: From January 2021 to June 2022, consecutive endomyocardial biopsies from 90 HT recipients were analyzed by a cardiac pathologist in a single-blinded manner: 33 ICS and 57 CTS. Endomyocardial biopsies were performed at three-time intervals post-HT, and the severity of IRI manifesting histologically as coagulative myocyte necrosis (CMN) was evaluated, along with graft rejection and graft function. RESULTS: The incidence of IRI at weeks 1, 4, and 8 post-HT were similar between the ICS and CTS groups. There was a 59.3% statistically significant reduction in CMN from week 1 to 4 with CTS, but not with ICS. By week 8, there were significant reductions in CMN in both groups. Only 1 out of 33 (3%) patients in the ICS group had an ischemic time >240 mins, compared to 10 out of 52 (19%) patients in the CTS group. During the follow-up period of 8 weeks to 12 months, there were no significant differences in rejection rates, formation of de novo donor-specific antibodies and overall survival between the groups. CONCLUSION: The CTS preservation system had similar rates of IRI and clinical outcomes compared to ICS despite longer overall ischemic times. There is significantly more recovery of IRI in the early post operative period with CTS. This study supports CTS as a viable option for preservation from remote locations, expanding the donor pool.


Subject(s)
Graft Rejection , Graft Survival , Heart Transplantation , Organ Preservation , Humans , Heart Transplantation/adverse effects , Male , Female , Organ Preservation/methods , Middle Aged , Follow-Up Studies , Graft Rejection/etiology , Graft Rejection/pathology , Prognosis , Adult , Reperfusion Injury/etiology , Reperfusion Injury/pathology , Cryopreservation/methods , Tissue Donors/supply & distribution , Postoperative Complications , Retrospective Studies
8.
ACS Appl Mater Interfaces ; 16(30): 38979-38988, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39029244

ABSTRACT

Renal ischemia-reperfusion injury (IRI) is a major contributing factor to the development of acute kidney injury (AKI) and has resulted in considerable morbidity and mortality. Persistent inflammatory responses and excessive reactive oxygen species (ROS) in the kidney following IRI can severely delay tissue repair, making it challenging to effectively promote IRI regeneration. Herein, we report an approach to enhance immunotherapy using interleukin-10 (IL-10) to promote IRI regeneration by loading IL-10 onto rectangular DNA origami nanostructures (rDON). rDON can significantly enhance the renal accumulation and retention time of IL-10, enabling it to effectively polarize type 1 macrophages into type 2 macrophages, thereby significantly reducing proinflammatory factors and increasing anti-inflammatory factors. In addition, DNA origami helps mitigate the harmful effects of ROS during renal IRI. The administration of IL-10-loaded DNA origami effectively improves kidney function, resulting in a notable reduction in blood urea nitrogen, serum uric acid, and serum creatinine levels. Our study demonstrates that the integration of anti-inflammatory cytokines within DNA origami holds promise as a strategic approach for cytokine immunotherapy in patients with AKI and other renal disorders.


Subject(s)
Acute Kidney Injury , DNA , Interleukin-10 , Reperfusion Injury , Reperfusion Injury/therapy , Reperfusion Injury/drug therapy , Animals , DNA/chemistry , Interleukin-10/metabolism , Mice , Acute Kidney Injury/therapy , Immunotherapy , Male , Nanostructures/chemistry , Nanostructures/therapeutic use , Kidney/drug effects , Mice, Inbred C57BL , Cytokines/metabolism , Reactive Oxygen Species/metabolism , Humans
9.
Nitric Oxide ; 149: 1-6, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38806106

ABSTRACT

Intestinal transplantation is a complex technical procedure that provides patients suffering from end-stage intestinal failure an opportunity to enjoy improved quality of life, nutrition and survival. Compared to other types of organ transplants, it is a relatively new advancement in the field of organ transplantation. Nevertheless, great advances have been made over the past few decades to the present era, including the use of ischemic preconditioning, gene therapy, and addition of pharmacological supplements to preservation solutions. However, despite these strides, intestinal transplantation is still a challenging endeavor due to several factors. Notable among them is ischemia-reperfusion injury (IRI), which results in loss of cellular integrity and mucosal barrier function. In addition, IRI causes graft failure, delayed graft function, and decreased graft and recipient survival. This has necessitated the search for novel therapeutic avenues and improved transplantation protocols to prevent or attenuate intestinal IRI. Among the many candidate agents that are being investigated to combat IRI and its associated complications, nitric oxide (NO). NO is an endogenously produced gaseous signaling molecule with several therapeutic properties. The purpose of this mini-review is to discuss IRI and its related complications in intestinal transplantation, and NO as an emerging pharmacological tool against this challenging pathological condition. i.


Subject(s)
Graft Rejection , Intestinal Mucosa , Nitric Oxide , Humans , Nitric Oxide/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Graft Rejection/prevention & control , Animals , Intestines/drug effects , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Intestinal Barrier Function
10.
Angew Chem Int Ed Engl ; 63(31): e202317844, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38757787

ABSTRACT

Electrocatalytic hydrogenation of 1-octene as non-activated model substrate with neutral water as H-donor is reported, using [(tBuPCP)Ir(H)(Cl)] (1) as the catalyst, to form octane with high faradaic efficiency (FE) of 96 % and a kobs of 87 s-1. Cyclic voltammetry with 1 revealed that two subsequent reductions trigger the elimination of Cl- and afford the highly reactive anionic Ir(I) hydride complex [(tBuPCP)Ir(H)]- (2), a previously merely proposed intermediate for which we now report first experimental data by mass spectrometry. In absence of alkene, the stoichiometric electrolysis of 1 in THF with water selectively affords the Ir(III) dihydride complex [(tBuPCP)Ir(H)2] (3) in 88 % FE from the reaction of 2 with H2O. Complex 3 then hydrogenates the alkene in classical fashion. The presented electro-hydrogenation works with extremely high FE, because the iridium hydrides are water stable, which prevents H2 formation. Even in strongly alkaline conditions (Bu4NOH added), the electro-hydrogenation of 1-octene with 1 also proceeds cleanly (89 % FE), suggesting a highly robust process that may rely on H2O activation, reminiscent to transfer hydrogenation pathways, instead of classical H+ reduction. DFT calculations confirmed oxidative addition of H2O as a key step in this context.

11.
Value Health Reg Issues ; 43: 101002, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38820700

ABSTRACT

OBJECTIVES: This study aimed to determine long-term cost-effectiveness of continuous glucose monitoring (CGM) technology versus self-monitoring of blood glucose (SMBG) in adults with type 1 diabetes (T1D) using multiple daily injections in Iran. METHODS: According to available data, the long-term costs and clinical outcomes of CGM and SMBG were estimated using the Sheffield Type 1 Diabetes Model, with a lifetime horizon from a payer's perspective. The primary outcome was the cost per quality-adjusted life year (QALY) gained. RESULTS: The lifetime cost-effectiveness analysis demonstrated that on average, the use of CGM increased life expectancy by 1.32 years and QALYs by 1.63, compared with SMBG. The CGM group had an average discounted total cost of $40 093 US dollars, whereas the SMBG group had an average discounted total cost of $13 366. This resulted in an incremental cost-effectiveness ratio (ICER) of $16 386 per QALY gained, which is less than the threshold of 3 times the gross domestic product (GDP) per capita of Iran ($24 561). CONCLUSIONS: Considering 3 times the GDP per capita as the threshold, CGM is likely to be cost-effective in Iran. However, for CGM to be very cost-effective (ie, have an ICER less than 1 times the GDP per capita) and presumably more accessible, the price of CGM should decrease to $40 per sensor, each with a lifespan of 14 days.


Subject(s)
Blood Glucose Self-Monitoring , Blood Glucose , Cost-Benefit Analysis , Diabetes Mellitus, Type 1 , Quality-Adjusted Life Years , Humans , Cost-Benefit Analysis/methods , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/economics , Diabetes Mellitus, Type 1/drug therapy , Blood Glucose Self-Monitoring/economics , Blood Glucose Self-Monitoring/methods , Iran , Adult , Male , Blood Glucose/analysis , Female , Middle Aged , Continuous Glucose Monitoring
12.
Int J Clin Exp Pathol ; 17(4): 151-164, 2024.
Article in English | MEDLINE | ID: mdl-38716349

ABSTRACT

OBJECTIVES: Acute Kidney Injury (AKI) and Chronic Kidney Disease (CKD) are increasingly recognised as one disease continuum, rather than distinct entities, and are associated with a huge burden to healthcare services. The leading cause of AKI worldwide is Ischaemia Reperfusion Injury (IRI), most commonly seen in clinical settings of sepsis-driven hypotension. Ischaemic Preconditioning (IPC) is a strategy aimed at reducing the deleterious effects of IRI. The objectives of this study were to demonstrate an efficacious in vivo model of Kidney IRI, and the protective influence of IPC in attenuating AKI and development of renal fibrosis. METHODS: A rat model of bilateral kidney IRI was used: Male Lewis rats (n=84) were assigned to IRI, sham or IPC. In IRI, renal pedicles were clamped for 45 minutes. IPC groups underwent pulsatile IPC prior to IRI. Kidneys were retrieved at 24 hours, 48 hours, 7 days, 14 days and 28 days, and assessed histologically. RESULTS: IRI led to marked AKI (24-48 h) and renal fibrosis development by 28 days. IPC attenuated this damage, with 66% less fibrosis. Interestingly, at 14-days, the histological appearance of both IRI and IPC kidneys was rather similar, potentially representing an important transitional point at which kidneys commit to either fibrosis or recovery. This may provide a suitable inflexion point for introduction of novel anti-fibrotic therapies. CONCLUSIONS: In conclusion, we have characterised a model of kidney injury from acute to chronic phases, allowing detailed mechanistic understanding and which can be manipulated by effective treatment strategies such as IPC.

13.
Sci Rep ; 14(1): 10010, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693159

ABSTRACT

This study evaluated the applicability of IRI-2016 model in predicting GPS TEC using the monthly means of the five (5) quiet days for equinoxes and solstices months. GPS-derived TEC data were obtained from the IGS network of ground based dual frequency GPS receivers from three stations [(KYN3 0.53° S, 38.53° E; Geom. Lat. 3.91.63° S), (MBAR 0.60° S, 30.74° E; Geom. Lat. 2.76° S) and HOID 1.45° S, 31.34° E; Geom. Lat. 3.71° S]. All the three options for topside Ne of IRI-2016 model and ABT-2009 for bottomside thickness have been used to compute the IRI TEC. The results were compared with the GPS TEC measurements. Correlation Coefficients between the two sets of data, the Root-Mean Square Errors of the IRI-TEC from the GPS-TEC, and the percentage RMSE of the IRI-TEC from the GPS-TEC have been computed. In general, the IRI-2016 model underestimated GPS-TEC during the nighttime, whereas the model overestimated GPS-TEC values during the daytime. At most of the stations and during all seasons where data were available, correlation coefficient was above 0.9, which is quite strong. The variation of O/N2 ratio may potentially be the cause of the IRI TEC deviation from the GPS TEC. This variation arises from lower thermosphere plasma drift that moves upward.

14.
Am J Physiol Renal Physiol ; 327(1): F103-F112, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38779750

ABSTRACT

α-1-Microglobulin (A1M) is a circulating glycoprotein with antioxidant, heme-binding, and mitochondrial protection properties. The investigational drug RMC-035, a modified therapeutic A1M protein, was assessed for biodistribution and pharmacological activity in a broad set of in vitro and in vivo experiments, supporting its clinical development. Efficacy and treatment posology were assessed in various models of kidney ischemia and reperfusion injury (IRI). Real-time glomerular filtration rate (GFR), functional renal biomarkers, tubular injury biomarkers (NGAL and KIM-1), and histopathology were evaluated. Fluorescently labeled RMC-035 was used to assess biodistribution. RMC-035 demonstrated consistent and reproducible kidney protection in rat IRI models as well as in a model of IRI imposed on renal impairment and in a mouse IRI model, where it reduced mortality. Its pharmacological activity was most pronounced with combined dosing pre- and post-ischemia and weaker with either pre- or post-ischemia dosing alone. RMC-035 rapidly distributed to the kidneys via glomerular filtration and selective luminal uptake by proximal tubular cells. IRI-induced expression of kidney heme oxygenase-1 was inhibited by RMC-035, consistent with its antioxidative properties. RMC-035 also dampened IRI-associated inflammation and improved mitochondrial function, as shown by tubular autofluorescence. Taken together, the efficacy of RMC-035 is congruent with its targeted mechanism(s) and biodistribution profile, supporting its further clinical evaluation as a novel kidney-protective therapy.NEW & NOTEWORTHY A therapeutic A1M protein variant (RMC-035) is currently in phase 2 clinical development for renal protection in patients undergoing open-chest cardiac surgery. It targets several key pathways underlying kidney injury in this patient group, including oxidative stress, heme toxicity, and mitochondrial dysfunction. RMC-035 is rapidly eliminated from plasma, distributing to kidney proximal tubules, and demonstrates dose-dependent efficacy in numerous models of ischemia-reperfusion injury, particularly when administered before ischemia. These results support its continued clinical evaluation.


Subject(s)
Alpha-Globulins , Kidney , Reperfusion Injury , Animals , Reperfusion Injury/pathology , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Reperfusion Injury/drug therapy , Alpha-Globulins/metabolism , Alpha-Globulins/pharmacology , Male , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Disease Models, Animal , Glomerular Filtration Rate/drug effects , Mice, Inbred C57BL , Humans , Mice , Heme Oxygenase-1/metabolism , Rats , Rats, Sprague-Dawley , Acute Kidney Injury/pathology , Acute Kidney Injury/metabolism , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Tissue Distribution
15.
Int J Mol Sci ; 25(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38673917

ABSTRACT

Kidney transplantation offers a longer life expectancy and a better quality of life than dialysis to patients with end-stage kidney disease. Ischemia-reperfusion injury (IRI) is thought to be a cornerstone in delayed or reduced graft function and increases the risk of rejection by triggering the immunogenicity of the organ. IRI is an unavoidable event that happens when the blood supply is temporarily reduced and then restored to an organ. IRI is the result of several biological pathways, such as transcriptional reprogramming, apoptosis and necrosis, innate and adaptive immune responses, and endothelial dysfunction. Tubular cells mostly depend on fatty acid (FA) ß-oxidation for energy production since more ATP molecules are yielded per substrate molecule than glucose oxidation. Upon ischemia-reperfusion damage, the innate and adaptive immune system activates to achieve tissue clearance and repair. Several cells, cytokines, enzymes, receptors, and ligands are known to take part in these events. The complement cascade might start even before organ procurement in deceased donors. However, additional experimental and clinical data are required to better understand the pathogenic events that take place during this complex process.


Subject(s)
Kidney Transplantation , Reperfusion Injury , Humans , Reperfusion Injury/metabolism , Kidney Transplantation/adverse effects , Animals
16.
Mol Biotechnol ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664304

ABSTRACT

IRI often occurs after detorsion of testicular torsion, which can contribute to permanent damage to sperm production function due to spermatogonia pyroptosis. Mounting data manifest that miRNAs possess a function in the IRI progression. However, the miR-153 function in testicular IRI remains unclear. We aim to elucidate the regulatory mechanism of miR-153 in regulating spermatogonia pyroptosis in testicular IRI. We developed the mouse testicular torsion/detorsion (T/D) model and the oxygen-glucose deprivation/reperfusion (OGD/R) model to examine the miR-153 function in testicular IRI. The extent of testicular ischemic damage was evaluated through HE staining the testicular tissue. Various experimental methods, including Western blotting, QRT-PCR, MDA, SOD assays, and immunohistochemistry (IHC), were deployed to examine the miR-153 levels and the generation of ROS in the testicular tissues. Furthermore, we determined the FoxO3 levels and pyroptosis-related proteins in GC-1 cells. Cell viability was assessed using the CCK-8 assay. Finally, the connection between miR-153 and FoxO3 was verified by employing dual luciferase reporter gene assays and Ago2-RIP. In the testicular IRI, we noted a significant elevation in the pyroptosis-correlated proteins NLRP3, caspase-1 (CASP1), IL-1ß, and IL-18 levels. Furthermore, we noted a significant upregulation of miR-153 in the IRI testicular tissues and GC-1 cells treated with OGD/R, and the miR-153 upregulation increased cell pyroptosis. Conversely, the miR-153 downregulation and FoxO3 overexpression reduced cell pyroptosis. Subsequently, we validated that FoxO3 is a miR-153 target gene. During the OGD/R process, miR-153 increased cell pyroptosis in GC-1 cells by suppressing the FoxO3 expression. We identified that the regulation of testicular IRI-induced cell pyroptosis is mediated by miR-153 via its targeting of FoxO3.

17.
Antibiotics (Basel) ; 13(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38667042

ABSTRACT

Periprosthetic joint infection (PJI) is a serious complication after joint arthroplasty. PJI screening and conventional cultures may be inconclusive. Sonication fluid culturing stands out as a valuable adjunct technique for PJI diagnosis. This study aims to determine the clinical relevance of routine sonication for all (a)septic revisions. All patients who underwent (partial) hip or knee revision arthroplasty between 2012 and 2021 were retrospectively reviewed. We formed three groups based on the European Bone and Joint Society PJI criteria: infection confirmed, likely, and unlikely. We analyzed clinical, laboratory, and radiological screening. Sensitivity and specificity were calculated for synovial fluid (preoperative), tissue, and sonication fluid cultures. We determined the clinical relevance of sonication as the percentage of patients for whom sonication confirmed PJI; 429 patients who underwent (partial) revision of hip or knee arthroplasty were included. Sensitivity and specificity were 69% and 99% for synovial fluid cultures, 76% and 92% for tissue cultures, and 80% and 89% for sonication fluid cultures, respectively. Sonication fluid cultures improved tissue culture sensitivity and specificity to 83% and 99%, respectively. In 11% of PJIs, sonication fluid cultures were decisive for diagnosis. This is applicable to acute and chronic infections. Sonication fluid cultures enhanced the sensitivity and specificity of PJI diagnostics. In 11% of PJI cases, causative pathogens were confirmed by sonication fluid culture results. Sonication fluid culture should be performed in all revision arthroplasties.

18.
J Cell Mol Med ; 28(8): e18291, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38597412

ABSTRACT

Natural immunoglobulin M (IgM) antibodies have been shown to recognize post-ischemic neoepitopes following reperfusion of tissues and to activate complement. Specifically, IgM antibodies and complement have been shown to drive hepatic ischemia reperfusion injury (IRI). Herein, we investigate the therapeutic effect of C2 scFv (single-chain antibody construct with specificity of a natural IgM antibody) on hepatic IRI in C57BL/6 mice. Compared with PBS-treated mice, C2 scFv-treated mice displayed almost no necrotic areas, significant reduction in serum ALT, AST and LDH levels, and significantly reduced in the number of TUNEL positive cells. Moreover, C2 scFv-treated mice exhibited a notable reduction in inflammatory cells after hepatic IRI than PBS-treated mice. The serum IL-6, IL-1ß, TNF-α and MPC-1 levels were also severely suppressed by C2 scFv. Interestingly, C2 scFv reconstituted hepatic inflammation and IRI in Rag1-/- mice. We found that C2 scFv promoted hepatic cell death and increased inflammatory cytokines and infiltration of inflammatory cells after hepatic IRI in Rag1-/- mice. In addition, IgM and complement 3d (C3d) were deposited in WT mice and in Rag1-/- mice reconstituted with C2 scFv, indicating that C2 scFv can affect IgM binding and complement activation and reconstitute hepatic IRI. C3d expression was significantly lower in C57BL/6 mice treated with C2 scFv compared to PBS, indicating that excessive exogenous C2 scFv inhibited complement activation. These data suggest that C2 scFv alleviates hepatic IRI by blocking complement activation, and treatment with C2 scFv may be a promising therapy for hepatic IRI.


Subject(s)
Liver , Reperfusion Injury , Animals , Mice , Mice, Inbred C57BL , Liver/metabolism , Immunoglobulin M , Complement System Proteins , Homeodomain Proteins/metabolism
19.
Arch Biochem Biophys ; 755: 109985, 2024 May.
Article in English | MEDLINE | ID: mdl-38579957

ABSTRACT

OBJECTIVE: To determine whether WJ-MSCs pretreated with VPA would enhance their migration to improve functional recovery of renal IRI in rats. METHODS: 150 Sprague-Dawley rats were distributed into 5 groups; Sham, IRI, WJ-MSC, VPA, and WJ-MSCs + VPA. 10 rats were sacrificed after 3, 5, and 7 days. Role of WJ-MSCs pretreated with VPA was evaluated by assessment of renal function, antioxidant enzymes together with renal histopathological and immunohistopathological analyses and finally by molecular studies. RESULTS: WJ-MSCs and VPA significantly improved renal function and increased antioxidants compared to IRI group. Regarding gene expression, WJ-MSCs and VPA decreased BAX and TGF-ß1, up-regulated Akt, PI3K, BCL2, SDF1α, and CXCR4 related to IRI. Additionally, WJ-MSCs pretreated with VPA improved the measured parameters more than either treatment alone. CONCLUSION: WJ-MSCs isolated from the umbilical cord and pretreated with VPA defended the kidney against IRI by more easily homing to the site of injury.

20.
Toxicol Mech Methods ; 34(6): 694-702, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38572673

ABSTRACT

The protective effect of isoflurane on cardiomyocyte ischemia/reperfusion injury (I/RI) was explored in hypoxia and reoxygenation (H/R) induced cardiomyocyte injury model. In terms of mechanism, the participation of long non-coding RNA CASC15/microR-542-3p axis was further discussed. H9c2 cells received H/R treatment to mimic myocardial I/RI. RT-qPCR was performed to quantify mRNA levels. Cell viability and apoptosis were evaluated after isoflurane pretreatment and cell transfection. ELISA was performed to measure the concentrations of inflammatory/oxidative stress-related cytokines (TNF-α, IL-6, MDA, SOD). The target relationship between CASC12 and miR-542-3p was determined via dual-luciferase reporter assay. Isoflurane pretreatment alleviated H/R-induced cell viability suppression and cell apoptosis promotion, which was accompanied by CASC15 downregulation. CASC15 overexpression abolished the influence of isoflurane on cardiomyocytes' viability and apoptosis. H/R-induced excessive release of TNF-α and IL-6 was hold down by isoflurane, which was re-activated after CASC15 overexpression. The concentration changes of both MDA and SOD by isoflurane were reversed by CASC15 overexpression. CASC15 functioned as miR-542-3p sponger, and miR-542-3p overexpression attenuated the effect of isoflurane and CASC15 on H/R-induced cardiac I/RI. Isoflurane pretreatment was beneficial for the alleviation of cardiac I/RI by inhibiting oxidative stress and myocardial inflammatory response. CASC15/miR-542-3p axis was required for isoflurane to exhibit its protective activity against cardiac I/RI.


Subject(s)
Apoptosis , Isoflurane , MicroRNAs , Myocardial Reperfusion Injury , Myocytes, Cardiac , RNA, Long Noncoding , Animals , Rats , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/genetics , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxidative Stress/drug effects , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL