Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Small Methods ; : e2400216, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087367

ABSTRACT

The role of nociceptive nerves in modulating immune responses to harmful stimuli via pain or itch induction remains controversial. Compared to conventional surgery, various implant surgeries are more prone to infections even with low bacterial loads. In this study, an optogenetic technique is introduced for selectively activating peripheral nociceptive nerves using a fully implantable, wirelessly rechargeable optogenetic device. By targeting nociceptors in the limbs of awake, freely moving mice, it is found that activation induces anticipatory immunity in the innervated territory and enhances the adhesion of various host cells to the implant surface. This effect mediates acute immune cell-mediated killing of Staphylococcus aureus on implants and enables the host to win "implant surface competition" against Staphylococcus aureus. This finding provides new strategies for preventing and treating implant-associated infections.

2.
Antibiotics (Basel) ; 13(8)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39199982

ABSTRACT

The worldwide emergence and dissemination of carbapenem-resistant Gram-negative bacteria (CRGNB) is a challenging problem of antimicrobial resistance today. Outbreaks with CRGNB have severe consequences for both the affected healthcare settings as well as the patients with infection. Thus, bloodstream infections caused by metallo-ß-lactamase-producing Enterobacterales can often have clinical implications, resulting in high mortality rates due to delays in administering effective treatment and the limited availability of treatment options. The overall threat of CRGNB is substantial because carbapenems are used to treat infections caused by ESBL-producing Enterobacterales which also exist with high frequency within the same geographical regions. A genome-based surveillance of 589 CRGNB from 61 hospitals across the federal state Hesse in Germany was implemented using next-generation sequencing (NGS) technology to obtain a high-resolution landscape of carbapenem-resistant isolates over a three-year period (2017-2019). The study examined all reportable CRGNB isolates submitted by participating hospitals. This included isolates carrying known carbapenemases (435) together with carbapenem-resistant non-carbapenemase producers (154). Predominant carbapenemase producers included Klebsiella pneumoniae, Escherichia coli, Citrobacter freundii and Acinetobacter baumannii. Over 80% of 375 carbapenem-resistant determinants including KPC-, NDM-, VIM- and OXA-48-like ones detected in 520 Enterobacterales were plasmid-encoded, and half of these were dominated by a few incompatibility (Inc) types, viz., IncN, IncL/M, IncFII and IncF(K). Our results revealed that plasmids play an extraordinary role in the dissemination of carbapenem resistance in the heterogeneous CRGNB population. The plasmids were also associated with several multispecies dissemination events and local outbreaks throughout the study period, indicating the substantial role of horizontal gene transfer in carbapenemase spread. Furthermore, due to vertical and horizontal plasmid transfer, this can have an impact on implant-associated infections and is therefore important for antibiotic-loaded bone cement and drug-containing devices in orthopedic surgery. Future genomic surveillance projects should increase their focus on plasmid characterization.

3.
Biomaterials ; 311: 122649, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38850718

ABSTRACT

Innovative solutions are required for the intervention of implant associated infections (IAIs), especially for bone defect patients with chronic inflammatory diseases like diabetes mellitus (DM). The complex immune microenvironment of infections renders implants with direct antibacterial ability inadequate for the prolonged against of bacterial infections. Herein, a synergistic treatment strategy was presented that combined sonodynamic therapy (SDT) with adaptive immune modulation to treat IAIs in diabetes patients. A multifunctional coating was created on the surface of titanium (Ti) implants, consisting of manganese dioxide nanoflakes (MnO2 NFs) with cascade catalytic enzyme activity and a responsive degradable hydrogel containing a sonosensitizer. The reactive oxygen species (ROS) generated by glucose-hydrogen peroxide (H2O2) cascade catalysis and ultrasound (US) activation sonosensitizer helped kill bacteria and release bacterial antigens. Meanwhile, Mn2+ facilitated dendritic cells (DCs) maturation, enhancing antigen presentation to activate both cellular and humoral adaptive immunity against bacterial infections. This approach effectively eliminated bacteria in established diabetic IAIs model and activated systemic antibacterial immunity, providing long-term antibacterial protection. This study presents a non-antibiotic immunotherapeutic strategy for fighting IAIs in chronic diseases.


Subject(s)
Adaptive Immunity , Manganese Compounds , Oxides , Titanium , Ultrasonic Therapy , Animals , Adaptive Immunity/drug effects , Ultrasonic Therapy/methods , Titanium/chemistry , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Oxides/chemistry , Catalysis , Mice , Dendritic Cells/immunology , Reactive Oxygen Species/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/chemistry , Prostheses and Implants , Hydrogen Peroxide , Diabetes Mellitus, Experimental/therapy , Mice, Inbred C57BL
4.
J Pers Med ; 14(4)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38672961

ABSTRACT

Orthopaedic implant-associated infections (OIAIs) represent a notable complication of contemporary surgical procedures, exerting a considerable impact on patient outcomes and escalating healthcare expenditures. Prompt diagnosis holds paramount importance in managing OIAIs, with sonication widely acknowledged as the preferred method for detecting biofilm-associated infections. Recently, dithiothreitol (DTT) has emerged as a potential substitute for sonication, owing to its demonstrated ability to impede biofilm formation. This study aimed to compare the efficacy of DTT with sonication in identifying microorganisms within implants. Conducted as a prospective cohort investigation, the study encompassed two distinct groups: patients with suspected infections undergoing implant removal (Group A) and those slated for hardware explantation (Group B). Hardware segments were assessed for biofilm-related microorganisms using both sonication and DTT, with a comparative analysis of the two methods. A total of 115 patients were enrolled. In Group A, no statistically significant disparity was observed between DTT and sonication. DTT exhibited a sensitivity of 89.47% and specificity of 96.3%. Conversely, in Group B, both DTT and sonication fluid cultures yielded negative results in all patients. Consequently, this investigation suggests that DTT holds comparable efficacy to sonication in detecting OIAIs, offering a novel, cost-effective, and readily accessible diagnostic modality for identifying implant-associated infections.

5.
Front Microbiol ; 15: 1361626, 2024.
Article in English | MEDLINE | ID: mdl-38559357

ABSTRACT

Introduction: One of the biggest obstacles in diagnosing Implant-Associated Infections is the lack of infection criteria and standardized diagnostic methods. These infections present a wide range of symptoms, and their diagnosis can be hampered by the formation of microbial biofilms on the surface of implants. This study aimed to provide insight into the performance of sonication in the diagnosis of infections associated with Cardiac Implantable Electronic Devices, to help define a consensus on the algorithm for the microbial diagnosis of these infections. Methods: We carried out a systematic review with meta-analysis. The PRISMA methodology guidelines were followed, and an advanced search was carried out in PubMed and Web of Science, which enabled 8 articles to be included in the review, in which a meta-analysis was also carried out. QUADAS-2 was used to assess the risk of bias and effect measures were calculated to assess publication bias. Results: The overall sensitivity of the method was 0.823 (95% CI: 0.682-0.910) and the specificity was 0.632 (95% CI: 0.506-0.743). Discussion: These results suggest that sonication may offer advantages in diagnosing these infections. However, it is essential to approach these findings carefully and take into account the recommendations provided in the EHRA 2019 guidelines. This study highlights the importance of more effective diagnostic approaches for implantable medical device-associated infections to improve the quality of treatment and minimize the risks associated with these challenging medical conditions.

6.
Mater Today Bio ; 26: 101022, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38525309

ABSTRACT

Medical implant-associated infections (IAI) is a growing threat to patients undergoing implantation surgery. IAI prevention typically relies on medical implants endowed with bactericidal properties achieved through surface modifications with antibiotics. However, the clinical efficacy of this traditional paradigm remains suboptimal, often necessitating revision surgery and posing potentially lethal consequences for patients. To bolster the existing anti-IAI arsenal, we propose herein a chitosan-based bioactive coating, i.e., ChitoAntibac, which exerts bacteria-inhibitory effects either through immune modulation or phage-directed microbial clearance, without relying on conventional antibiotics. The immuno-stimulating effects and phage-induced bactericidal properties can be tailored by engineering the loading dynamic of macrophage migration inhibitory factor (MIF), which polarizes macrophages towards the proinflammatory subtype (M1) with enhanced bacterial phagocytosis, and Staphylococcal Phage K, resulting in rapid and targeted pathogenic clearance (>99.99%) in less than 8 h. Our innovative antibacterial coating opens a new avenue in the pursuit of effective IAI prevention through immuno-stimulation and phage therapeutics.

7.
Acta Biomater ; 177: 20-36, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38342192

ABSTRACT

While there has been significant research conducted on bacterial colonization on implant materials, with a focus on developing surface modifications to prevent the formation of bacterial biofilms, the study of Candida albicans biofilms on implantable materials is still in its infancy, despite its growing relevance in implant-associated infections. C. albicans fungal infections represent a significant clinical concern due to their severity and associated high fatality rate. Pathogenic yeasts account for an increasing proportion of implant-associated infections, since Candida spp. readily form biofilms on medical and dental device surfaces. In addition, these biofilms are highly antifungal-resistant, making it crucial to explore alternative solutions for the prevention of Candida implant-associated infections. One promising approach is to modify the surface properties of the implant, such as the wettability and topography of these substrata, to prevent the initial Candida attachment to the surface. This review summarizes recent research on the effects of surface wettability, roughness, and architecture on Candida spp. attachment to implantable materials. The nanofabrication of material surfaces are highlighted as a potential method for the prevention of Candida spp. attachment and biofilm formation on medical implant materials. Understanding the mechanisms by which Candida spp. attach to surfaces will allow such surfaces to be designed such that the incidence and severity of Candida infections in patients can be significantly reduced. Most importantly, this approach could also substantially reduce the need to use antifungals for the prevention and treatment of these infections, thereby playing a crucial role in minimizing the possibility contributing to instances of antimicrobial resistance. STATEMENT OF SIGNIFICANCE: In this review we provide a systematic analysis of the role that surface characteristics, such as wettability, roughness, topography and architecture, play on the extent of C. albicans cells attachment that will occur on biomaterial surfaces. We show that exploiting bioinspired surfaces could significantly contribute to the prevention of antimicrobial resistance to antifungal and chemical-based preventive measures. By reducing the attachment and growth of C. albicans cells using surface structure approaches, we can decrease the need for antifungals, which are conventionally used to treat such infections.


Subject(s)
Antifungal Agents , Candida albicans , Humans , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Biofilms , Surface Properties , Biocompatible Materials/chemistry
8.
ACS Nano ; 18(9): 6990-7010, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38385433

ABSTRACT

The clinical treatment efficacy for implant-associated infections (IAIs), particularly those caused by Methicillin-resistant Staphylococcus aureus (MRSA), remains unsatisfactory, primarily due to the formation of biofilm barriers and the resulting immunosuppressive microenvironment, leading to the chronicity and recurrence of IAIs. To address this challenge, we propose a light-induced immune enhancement strategy, synthesizing BSA@MnO2@Ce6@Van (BMCV). The BMCV exhibits precise targeting and adhesion to the S. aureus biofilm-infected region, coupled with its capacity to catalyze oxygen generation from H2O2 in the hypoxic and acidic biofilm microenvironment (BME), promoting oxygen-dependent photodynamic therapy efficacy while ensuring continuous release of manganese ions. Notably, targeted BMCV can penetrate biofilms, producing ROS that degrade extracellular DNA, disrupting the biofilm structure and impairing its barrier function, making it vulnerable to infiltration and elimination by the immune system. Furthermore, light-induced reactive oxygen species (ROS) around the biofilm can lyse S. aureus, triggering bacterium-like immunogenic cell death (ICD), releasing abundant immune costimulatory factors, facilitating the recognition and maturation of antigen-presenting cells (APCs), and activating adaptive immunity. Additionally, manganese ions in the BME act as immunoadjuvants, further amplifying macrophage-mediated innate and adaptive immune responses and reversing the immunologically cold BME to an immunologically hot BME. We prove that our synthesized BMCV elicits a robust adaptive immune response in vivo, effectively clearing primary IAIs and inducing long-term immune memory to prevent recurrence. Our study introduces a potent light-induced immunomodulatory nanoplatform capable of reversing the biofilm-induced immunosuppressive microenvironment and disrupting biofilm-mediated protective barriers, offering a promising immunotherapeutic strategy for addressing challenging S. aureus IAIs.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus , Hydrogen Peroxide/pharmacology , Manganese/therapeutic use , Manganese Compounds/pharmacology , Reactive Oxygen Species/pharmacology , Staphylococcal Infections/drug therapy , Oxides/pharmacology , Biofilms , Immunity , Immunosuppression Therapy , Oxygen/pharmacology , Anti-Bacterial Agents/pharmacology
9.
Front Bioeng Biotechnol ; 12: 1332771, 2024.
Article in English | MEDLINE | ID: mdl-38375457

ABSTRACT

The antibacterial biofunctionality of bone implants is essential for the prevention and treatment of implant-associated infections (IAI). In vitro co-culture models are utilized to assess this and study bacteria-host cell interactions at the implant interface, aiding our understanding of biomaterial and the immune response against IAI without impeding the peri-implant bone tissue regeneration. This paper reviews existing co-culture models together with their characteristics, results, and clinical relevance. A total of 36 studies were found involving in vitro co-culture models between bacteria and osteogenic or immune cells at the interface with orthopedic antibacterial biomaterials. Most studies (∼67%) involved co-culture models of osteogenic cells and bacteria (osteo-bac), while 33% were co-culture models of immune cells and bacterial cells (im-bac). All models involve direct co-culture of two different cell types. The cell seeding sequence (simultaneous, bacteria-first, and cell-first) was used to mimic clinically relevant conditions and showed the greatest effect on the outcome for both types of co-culture models. The im-bac models are considered more relevant for early peri-implant infections, whereas the osteo-bac models suit late infections. The limitations of the current models and future directions to develop more relevant co-culture models to address specific research questions are also discussed.

10.
Biomaterials ; 307: 122515, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38401481

ABSTRACT

Implant-associated infections (IAIs) pose a significant threat to orthopedic surgeries. Bacteria colonizing the surface of implants disrupt bone formation-related cells and interfere with the osteoimmune system, resulting in an impaired immune microenvironment and osteogenesis disorders. Inspired by nature, a zeolitic imidazolate framework (ZIF)-sealed smart drug delivery system on Ti substrates (ZSTG) was developed for the "natural-artificial dual-enzyme intervention (NADEI)" strategy to address these challenges. The subtle sealing design of ZIF-8 on the TiO2 nanotubes ensured glucose oxidase (GOx) activity and prevented its premature leakage. In the acidic infection microenvironment, the degradation of ZIF-8 triggered the rapid release of GOx, which converted glucose into H2O2 for disinfection. The Zn2+ released from degraded ZIF-8, as a DNase mimic, can hydrolyze extracellular DNA, which further enhances H2O2-induced disinfection and prevents biofilm formation. Importantly, Zn2+-mediated M2 macrophage polarization significantly improved the impaired osteoimmune microenvironment, accelerating bone repair. Transcriptomics revealed that ZSTG effectively suppressed the inflammatory cascade induced by lipopolysaccharide while promoting cell proliferation, homeostasis maintenance, and bone repair. In vitro and in vivo results confirmed the superior anti-infective, osteoimmunomodulatory, and osteointegrative capacities of the ZSTG-mediated NADEI strategy. Overall, this smart bionic platform has significant potential for future clinical applications to treat IAIs.


Subject(s)
Anti-Infective Agents , Zeolites , Osseointegration , Hydrogen Peroxide/pharmacology , Macrophages , Anti-Infective Agents/pharmacology , Osteogenesis
SELECTION OF CITATIONS
SEARCH DETAIL