Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
1.
Angew Chem Int Ed Engl ; : e202409435, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38945832

ABSTRACT

In situ analysis of Li plating/stripping processes and evolution of solid electrolyte interphase (SEI) are critical for optimizing all-solid-state Li metal batteries (ASSLMB). However, the buried solid-solid interfaces present a challenge for detection which preclude the employment of multiple analysis techniques. Herein, by employing complementary in situ characterizations, morphological/chemical evolution, Li plating/stripping dynamics and SEI dynamics were directly detected. As a mixed ionic-electronic conducting interface, Li|Li10GeP2S12 (LGPS) performed distinct interfacial morphological/chemical evolution and dynamics from ionic-conducting/electronic-isolating interface like Li|Li3PS4 (LPS), which were revealed by combination of in situ atomic force microscopy and in situ X-ray photoelectron spectroscopy. Though Li plating speed in LGPS was higher than LPS, speed of SSE decomposition was similar and ~85 % interfacial SSE turned into SEI during plating and remained unchanged in stripping. To leverage strengths of different SSEs, an LPS-LGPS-LPS sandwich electrolyte was developed, demonstrating enhanced ionic conductivity and improved interfacial stability with less SSE decomposition (25 %). Using in situ Kelvin probe force microscopy, Li-ion behavior at interface between different SSEs was effectively visualized, uncovering distribution of Li ions at LGPS|LPS interface under different potentials.

2.
J Hazard Mater ; 476: 134981, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38908187

ABSTRACT

High-resolution identification of chromium (Cr) species, especially various organic-Cr complexes, in a convenient and economically-feasible manner is the prerequisite for achieving the advanced treatment of chromium wastewater. To this end, a colorimetric nano-Au sensor array was developed by taking advantage of the UV-spectra shift of gold nanoparticles (Au NPs) upon interaction with Cr species; specifically, four molecular modifiers [i.e., iminodiacetic acid (IDA), tripolyphosphate (TPP), cetyltrimethylammonium bromide (CTAB), and 1,5-diphenylcarbazide (DPC)] were intentionally employed for assembling nano-Au array receptors, which showed respective responses toward different Cr species through the formation of coordination, hydrophobic interaction, electrostatic attraction, and redox reaction, respectively; the "fingerprint" differences of the unique optical properties were then integrated for semi-quantitatively recognizing Cr species by pattern recognition techniques. Eleven ubiquitous Cr species [i.e., Cr(III), Cr(VI), and various Cr(III)-organic complexes] served as the model samples, which could be sensitively identified, no matter in individual or mixture mode, by the developed nano-Au sensor array on the basis of the colorimetric responses resulted from diverse nano-Au-aggregation behaviors, with excellent anti-interference ability in the simulated or actual water scenario. Attractively, the nano-Au sensor array can achieve very sensitive detection limit of the quantitative analyses of Cr species in a prompt in-situ manner, which usually requires a two-step process of separation and detection for the conventional analytical methods. Such a convenient strategy of Cr species discrimination conduces to rationally designing specific protocols for the advanced treatment of chromium wastewater.

3.
Environ Sci Technol ; 58(20): 8724-8735, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38717952

ABSTRACT

Building and protecting soil organic carbon (SOC) are critical to agricultural productivity, soil health, and climate change mitigation. We aim to understand how mechanisms at the organo-mineral interfaces influence SOC persistence in three contrasting soils (Luvisol, Vertisol, and Calcisol) under long-term free air CO2 enrichment conditions. A continuous wheat-field pea-canola rotation was maintained. For the first time, we provided evidence to a novel notion that persistent SOC is molecularly simple even under elevated CO2 conditions. We found that the elevated CO2 condition did not change the total SOC content or C forms compared with the soils under ambient CO2 as identified by synchrotron-based soft X-ray analyses. Furthermore, synchrotron-based infrared microspectroscopy confirmed a two-dimensional microscale distribution of similar and less diverse C forms in intact microaggregates under long-term elevated CO2 conditions. Strong correlations between the distribution of C forms and O-H groups of clays can explain the steady state of the total SOC content. However, the correlations between C forms and clay minerals were weakened in the coarse-textured Calcisol under long-term elevated CO2. Our findings suggested that we should emphasize identifying management practices that increase the physical protection of SOC instead of increasing complexity of C. Such information is valuable in developing more accurate C prediction models under elevated CO2 conditions and shift our thinking in developing management practices for maintaining and building SOC for better soil fertility and future environmental sustainability.


Subject(s)
Carbon Dioxide , Carbon , Soil , Carbon Dioxide/chemistry , Soil/chemistry , Climate Change
4.
Annu Rev Anal Chem (Palo Alto Calif) ; 17(1): 69-102, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38640067

ABSTRACT

We critically evaluate the current status of portable mass spectrometry (pMS), particularly where this aligns with ambient ionization. Assessing the field of pMS can be quite subjective, especially in relation to the portable aspects of design, deployment, and operation. In this review, we discuss what it means to be portable and introduce a set of criteria by which pMS and ambient ionization sources can be assessed. Moreover, we consider the recent literature in terms of the most popular and significant advances in portable instrumentation for ambient ionization and miniature mass spectrometers. Finally, emerging trends and exciting future prospects are discussed and some recommendations are offered.

5.
Food Chem ; 450: 139331, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38621310

ABSTRACT

The sensitive detection of foodborne pathogenic and rapid antibiotic susceptibility testing (AST) is of great significance. This paper reports the enzyme-triggered in situ synthesis of yellow emitting silicon nanoparticles (SiNPs) and the detection of Escherichia coli (E. coli) O157:H7 in food samples and the rapid AST. The rapid counting of E. coli O157:H7 has been achieved through direct visual observation, equipment detection, and smartphone digitalization. A simple detection platform based on smartphone senses and cotton swabs has been established. Meanwhile, rapid AST based on enzyme-catalyzed SiNPs can intuitively obtain colorimetric samples. This paper established a system for bacterial enzyme-triggered in situ synthesis of SiNPs, with high responsiveness, luminescence ratio, and specificity. The detection limit for E. coli O157:H7 can reach 100 CFU/mL during 5 h, and the recovery efficiency ranges from 90.14% to 110.16%, which makes it a promising strategy for the rapid detection of E. coli O157:H7 and AST.


Subject(s)
Escherichia coli O157 , Nanoparticles , Silicon , beta-Galactosidase , Escherichia coli O157/drug effects , Escherichia coli O157/isolation & purification , Nanoparticles/chemistry , Silicon/chemistry , Silicon/pharmacology , beta-Galactosidase/metabolism , beta-Galactosidase/chemistry , Microbial Sensitivity Tests , Food Contamination/analysis , Colorimetry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Food Microbiology
6.
Angew Chem Int Ed Engl ; 63(22): e202403421, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38533686

ABSTRACT

Adsorptive separation of propyne/propylene (C3H4/C3H6) is a crucial yet complex process, however, it remains a great difficulty in developing porous materials that can meet the requirements for practical applications, particularly with an exceptional ability to bind and store trace amounts of C3H4. Functionalization of pore-partitioned metal-organic frameworks (ppMOFs) is methodically suited for this challenge owing to the possibility of dramatically increasing binding sites on highly porous and confined domains. We here immobilized Lewis-basic (-NH2) and Lewis-acidic (-NO2) sites on this platform. Along with an integrated nature of high uptake of C3H4 at 1 kPa, high uptake difference of C3H4-C3H6, moderated binding strength, promoted kinetic selectivity, trapping effect and high stability, the NH2-decorated ppMOF (NTU-100-NH2) can efficiently produce polymer-grade C3H6 (99.95 %, 8.3 mmol ⋅ g-1) at room temperature, which is six times more than the NO2-decorated crystal (NTU-100-NO2). The in situ infrared spectroscopy, crystallographic analysis, and sequential blowing tests showed that the densely packed amino group in this highly porous system has a unique ability to recognize and stabilize C3H4 molecules. Moving forward, the strategy of organic functionalization can be extended to other porous systems, making it a powerful tool to customize advanced materials for challenging tasks.

7.
J Microsc ; 295(2): 177-190, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38415368

ABSTRACT

Long-term placement of facial implants requires avoiding the formation of fibrous tissue capsules around the artificial material by creating osteoconductive properties of the surface. Most promising approach is the deposition coatings made of materials very similar to bone mineral components, that is, calcium phosphates such as hydroxyapatite (HAp). As part of the research work, an innovative, cost-effective atmospheric pressure plasma deposition (APPD) system was used as a low-temperature coating technology for generating the HAp coatings deposition. Full microstructural characterisation of the coatings using SEM and TEM techniques was carried out in the work. It has been shown that the fully crystalline HAp powder undergoes a transformation during the coatings deposition and the material had a quasi-sintered structure after deposition. The crystalline phase content increased at the coating/substrate interface, while the surface of the HAp was amorphous. This is a very beneficial phenomenon due to the process of bioresorption. The amorphous phase undergoes much faster biodegradation than the crystalline one. In order to increase the bioactivity of the HAp, Zn particles were introduced on the surface of the coating. The TEM microstructural analysis in conjunction with the qualitative analysis of the EDS chemical composition showed that the binding of the Zn particles within the HAp matrix had diffusive character, which is very favourable from the point of view of the quality of the adhesion and the bioactivity of the coating. In the case of such a complex structure and due to its very porous nature, micromechanical analysis was carried out in situ in SEM, that is, by microhardness measurements of both the HAp matrix and the Zn particle. It was shown that the average value of HAp microhardness was 4.395 GPa ± 0.08, while the average value of Zn microhardness was 1.142 GPa ± 0.02.

8.
Heliyon ; 10(4): e25626, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38384584

ABSTRACT

This paper proposes a novel engineering approach to control molten metals at high temperatures considering the industrial environment of such materials. To reduce analysis time and cost, in-line analysis techniques are more advantageous as they provide real-time information about melt composition. For this reason, recent research works focus on the development of new devices based on LIBS (Laser Induced Breakdown Spectroscopy). These devices allowed for analyzing impurities inside molten metals with great performance. However, improvements related to the immersion probe conception are still required. Indeed, the previous design used bubbling inside the melt, leading to spatial instabilities of the surface analyzed by LIBS. The solution presented here is mechanical stirring by innovative rotary blades which will be a part of an immersion LIBS probe. Their rotation will generate a representative, renewed, and stable surface that will be targeted by spectroscopic techniques in general and particularly by LIBS laser for molten metal monitoring at high temperatures. This solution was validated using experimental tests based on particle imaging velocimetry (PIV) in water at room temperature and then applied to silicon melt at high temperatures. To do so, it was necessary to design a system that allows the introduction of the blade in the melt and controls its rotation.

9.
Angew Chem Int Ed Engl ; 63(13): e202316837, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38315104

ABSTRACT

The interfacial processes, mainly the lithium (Li) plating/stripping and the evolution of the solid electrolyte interphase (SEI), are directly related to the performance of all-solid-state Li-metal batteries (ASSLBs). However, the complex processes at solid-solid interfaces are embedded under the solid-state electrolyte, making it challenging to analyze the dynamic processes in real time. Here, using in situ electrochemical atomic force microscopy and optical microscopy, we directly visualized the Li plating/stripping/replating behavior, and measured the morphological and mechanical properties of the on-site formed SEI at nanoscale. Li spheres plating/stripping/replating at the argyrodite solid electrolyte (Li6 PS5 Cl)/Li electrode interface is coupled with the formation/wrinkling/inflating of the SEI on its surface. Combined with in situ X-ray photoelectron spectroscopy, details of the stepwise formation and physicochemical properties of SEI on the Li spheres are obtained. It is shown that higher operation rates can decrease the uniformity of the Li+ -conducting networks in the SEI and worsen Li plating/stripping reversibility. By regulating the applied current rates, uniform nucleation and reversible plating/stripping processes can be achieved, leading to the extension of the cycling life. The in situ analysis of the on-site formed SEI at solid-solid interfaces provides the correlation between the interfacial evolution and the electrochemical performance in ASSLBs.

10.
Talanta ; 271: 125683, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38301372

ABSTRACT

This work describes the development of a microfluidic paper-based analytical device (µPAD) for the determination of copper in fresh and marine waters. A functionalized rhodamine-based chelator was synthesized and used as a chromogenic reagent, forming a highly intense pink complex with the analyte. The aim was to create a paper device that offers optimal performance and provides in-situ, rapid and cost-effective analysis in line with World Health Organization guidelines. The influence on the determination of several physical and chemical parameters was evaluated aiming to achieve the best performance. Under optimised conditions, a linear correlation was established in the range of 0.05-0.50 mg L-1 of copper, with a limit of detection of 10 µg L-1. The accuracy of the proposed method was assessed by comparing the results obtained with the developed µPAD and the results obtained with Inductively Coupled Plasma measurements (RE < 10 %). Recovery studies were also performed using different types of water samples with no need for any prior sample pre-treatment: tap, well, river and seawater. The average recovery percentage of 101 % (RSD = 4.3 %) was obtained, a clear indication of no multiplicative matrix interferences.

11.
Int J Pharm ; 649: 123630, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38040394

ABSTRACT

Viable cell density (VCD) and cell viability (CV) are key performance indicators of cell culture processes in biopharmaceutical production of biologics and vaccines. Traditional methods for monitoring VCD and CV involve offline cell counting assays that are both labor intensive and prone to high variability, resulting in sparse sampling and uncertainty in the obtained data. Process analytical technology (PAT) approaches offer a means to address these challenges. Specifically, in situ probe-based measurements of dielectric spectroscopy (also commonly known as capacitance) can characterize VCD and CV continuously in real time throughout an entire process, enabling robust process characterization. In this work, we propose in situ dielectric spectroscopy as a PAT tool for real time analysis of live-virus vaccine (LVV) production. Dielectric spectroscopy was collected across 25 discreet frequencies, offering a thorough evaluation of the proposed technology. Correlation of this PAT methodology to traditional offline cell counting assays was performed, in which VCD and CV were both successfully predicted using dielectric spectroscopy. Both univariate and multivariate data analysis approaches were evaluated for their potential to establish correlation between the in situ dielectric spectroscopy and offline measurements. Univariate analysis strategies are presented for optimal single frequency selection. Multivariate analysis, in the form of partial least squares (PLS) regression, produced significantly higher correlations between dielectric spectroscopy and offline VCD and CV data, as compared to univariate analysis. Specifically, by leveraging multivariate analysis of dielectric information from all 25 spectroscopic frequencies measured, PLS models performed significantly better than univariate models. This is particularly evident during cell death, where tracking VCD and CV have historically presented the greatest challenge. The results of this work demonstrate the potential of both single and multiple frequency dielectric spectroscopy measurements for enabling robust LVV process characterization, suggesting that broader application of in situ dielectric spectroscopy as a PAT tool in LVV processes can provide significantly improved process understanding. To the best of our knowledge, this is the first report of in situ dielectric spectroscopy with multivariate analysis to successfully predict VCD and CV in real time during live virus-based vaccine production.


Subject(s)
Dielectric Spectroscopy , Vaccines , Cricetinae , Animals , Cell Survival , CHO Cells , Cell Count , Dielectric Spectroscopy/methods , Technology
12.
Molecules ; 28(21)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37959759

ABSTRACT

Paper spray ionization mass spectrometry (PSI MS) has emerged as a notable method for the rapid analysis of biological samples. However, the typical cellulose-based paper tip is incompatible with protein detection due to the strong interaction between cellulose hydroxyl groups and proteins. In this study, we utilized a commercially available polyolefin-based synthetic paper, Teslin®, as an alternative PSI substrate for simple protein analysis. We have named this method "droplet PSI" MS, as the aqueous protein solution droplet retains its shape on the Teslin® paper tip. For droplet PSI, no further chemical pretreatment was necessary for the Teslin® substrate; the only required preparation was shaping the Teslin® paper into a triangular tip. In droplet PSI MS, protein ion signals were instantly detected from a protein solution droplet upon applying a spray solvent in situ along with high voltage (HV). When compared with conventional PSI MS, our method demonstrated superior sensitivity. The droplet PSI MS utilizing Teslin® also showcased flexibility in real-time observation of protein alterations induced by an acid additive. Additionally, the effects of spray solvent composition and the application method were discussed.


Subject(s)
Cellulose , Paper , Mass Spectrometry/methods , Solvents/chemistry , Proteins , Spectrometry, Mass, Electrospray Ionization/methods
14.
J Hazard Mater ; 460: 132167, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37619281

ABSTRACT

This article focusses on the environmental implications of low-cost jewelry for adults from Chinese e-commerce platforms ((n = 8) with heavy metal impurities (Pb, Cd and Hg) and their potential impact on human health and the environment. The study highlights the advantages of using portable X-ray fluorescence (pXRF) analysis for rapid, non-destructive, and in situ analysis of heavy metals in jewelry. The results reveal that all products (n = 106) contained heavy metals at varying levels, Hg being the most commonly detected heavy metal. The fact that 71% of the samples exceeded the EU limit for Pb and 51% exceeded the EU limit for Cd is alarming and highlights the need for stricter regulations and monitoring of the jewelry industry to mitigate the risks posed by heavy metals in the environment. The study emphasizes the importance of using pXRF analysis to identify heavy metals in jewelry and address the literature gap in environmental risk assessments of Pb, Cd, and Hg in low-cost jewelry for adults from China. In general, the findings call for urgent action to ensure the safety of consumers and prevent environmental pollution by strengthening regulations and monitoring the jewelry industry.


Subject(s)
Jewelry , Mercury , Adult , Humans , Cadmium/toxicity , Lead/toxicity , X-Rays , Mercury/toxicity , Commerce
15.
Bioresour Technol ; 386: 129520, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37468006

ABSTRACT

An effective approach for glucose and furfural production by converting cellulose and hemicelluloses from corn stalk in a biphasic system of molten salt hydrate (MSH) and organic solvent using H2SO4 as catalyst was reported. Results showed that the system with LiBr·3H2O and dichloromethane (DCM) had excellent performance in cellulose and hemicelluloses conversion. Under the optimal reaction conditions (corn stalk:LiBr·3H2O:DCM ratio = 0.35:10:20 g/mL/mL, 0.05 mol/L H2SO4, 120 °C, 90 min), 58.9% glucose and 72.5% furfural were yielded. Meanwhile, lignin was obviously depolymerized by the cleavage of ß-O-4' linkages and fractionated with high purity and low molecular weight for potential coproducts. Fluorescence microscopy and confocal Raman microscope displayed that the LiBr·3H2O/DCM treatment caused decreasing intensities in carbohydrate and lignin, suggesting the degradation of the main components of biomass. This research provided a promising biorefinery technology for the comprehensive utilization of corn stalk.


Subject(s)
Furaldehyde , Lignin , Zea mays , Glucose , Solvents , Cellulose , Sodium Chloride , Biomass
16.
ACS Nano ; 17(14): 14043-14052, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37395671

ABSTRACT

The production of renewable feedstocks through the coupled oxygen evolution reaction (OER) with selective organic oxidation requires a perfect balance in the choice of a catalyst and its synthesis access, morphology, and catalytic activity. Herein we report a rapid in-liquid plasma approach to produce a hierarchical amorphous birnessite-type manganese oxide layer on 3D nickel foam. The as-prepared anode exhibits an OER activity with overpotentials of 220, 250, and 270 mV for 100, 500, and 1000 mA·cm-2, respectively, and can spontaneously be paired with chemoselective dehydrogenation of benzylamine under both ambient and industrial (6 M KOH, 65 °C) alkaline conditions. The in-depth ex-situ and in-situ characterization unequivocally demonstrate the intercalation of potassium in the birnessite-type phase with prevalent MnIII states as an active structure, which displays a trade-off between porous morphology and bulk volume catalytic activity. Further, a structure-activity relationship is realized based on the cation size and structurally similar manganese oxide polymorphs. The presented method is a substantial step forward in developing a robust MnOx catalyst for combining effective industrial OER and value-added organic oxidation.

17.
ACS Nano ; 17(11): 10577-10588, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37145868

ABSTRACT

Capacitive deionization in environmental decontamination has been widely studied and now requires intensive development to support large-scale deployment. Porous nanomaterials have been demonstrated to play pivotal roles in determining decontamination efficiency and manipulating nanomaterials to form functional architecture has been one of the most exciting challenges. Such nanostructure engineering and environmental applications highlight the importance of observing, recording, and studying basically electrical-assisted charge/ion/particle adsorption and assembly behaviors localized at charged interfaces. In addition, it is generally desirable to increase the sorption capacity and reduce the energy cost, which increase the requirement for recording collective dynamic and performance properties that stem from nanoscale deionization dynamics. Herein, we show how a single optical fiber can serve as an in situ and multifunctional opto-electrochemical platform for addressing these issues. The surface plasmon resonance signals allow the in situ spectral observation of nanoscale dynamic behaviors at the electrode-electrolyte interface. The parallel and complementary optical-electrical sensing signals enable the single probe but multifunctional recording of electrokinetic phenomena and electrosorption processes. As a proof of concept, we experimentally decipher the interfacial adsorption and assembly behaviors of anisotropic metal-organic framework nanoparticles at a charged surface and decouple the interfacial capacitive deionization within an assembled metal-organic framework nanocoating by visualizing its dynamic and energy consumption properties, including the adsorptive capacity, removal efficiency, kinetic properties, charge, specific energy consumption, and charge efficiency. This simple "all-in-fiber" opto-electrochemical platform offers intriguing opportunities to provide in situ and multidimensional insights into interfacial adsorption, assembly, and deionization dynamics information, which may contribute to understanding the underlying assembly rules and the exploring structure-deionization performance correlations for the development of tailor-made nanohybrid electrode coatings for deionization applications.

18.
Methods Mol Biol ; 2665: 177-189, 2023.
Article in English | MEDLINE | ID: mdl-37166601

ABSTRACT

Recent improvements in synchrotron-based X-ray fluorescence (SXRF) microscopy established it as an advanced analytical tool for analyzing 2D- and 3D distribution of mineral elements in plants. Among existing imaging techniques, SXRF microscopy offers several unique capabilities, including in situ metal quantification in plant tissues and high sensitivity, as low as 1 mg kg-1, at the nanoscale spatial resolution. SXRF is increasingly utilized in different plant science disciplines to provide a fundamental understanding of metal homeostasis, and the function of trace elements in plant metabolism and development. Here, we describe methods for SXRF imaging, including sample preparation, the optimization of conventional SXRF for analyzing trace elements, and the development of confocal SXRF (C-SXRF).


Subject(s)
Trace Elements , X-Rays , Synchrotrons , Metals/metabolism , Microscopy, Fluorescence , Plants/metabolism , Spectrometry, X-Ray Emission/methods
19.
Mikrochim Acta ; 190(4): 124, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36894729

ABSTRACT

A surface-enhanced Raman scattering (SERS)/fluorescence dual-mode nanoprobe was proposed to assess anti-diabetic drug actions from the expression level of the epidermal growth factor receptor (EGFR), which is a significant biomarker of breast cancers. The nanoprobe has a raspberry shape, prepared by coating a dye-doped silica nanosphere with a mass of SERS tags, which gives high gains in fluorescence imaging and SERS measurement. The in situ detection of EGFR on the cell membrane surfaces after drug actions was achieved by using this nanoprobe, and the detection results agree with the enzyme-linked immunosorbent assay (ELISA) kit. Our study suggests that rosiglitazone hydrochloride (RH) may be a potential drug for diabetic patients with breast cancer, while the anti-cancer effect of metformin hydrochloride (MH) is debatable since MH slightly promotes the EGFR expression of MCF-7 cells in this study. This sensing platform endows more feasibility for highly sensitive and accurate feedback of pesticide effects at the membrane protein level.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/drug therapy , Enzyme-Linked Immunosorbent Assay , ErbB Receptors , Optical Imaging , Fluorescence
20.
Anal Sci ; 39(7): 1143-1149, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36959381

ABSTRACT

A new chemiluminescence (CL) method based on the chemiluminescent reaction between sulfide and an acidic permanganate solution was used to quantify sulfide in seawater. A terbium-pipemidic acid complex was used as CL enhancer. The method was used to determine sulfide in the concentration range of 1-30 µmol/L in artificial seawater samples. The limit of detection of the method was 21 nmol/L sulfide. The sensitivity of the CL method was eight times higher than that of the CL method reported previously. Br- ions, which are conservative ions, interfered with sulfide. We investigated the effects of salinity, water temperature, and interfering chemicals,such asheavy-metal ions and organic matter, on the performance of the CL method. In addition, sulfite-spiked natural seawater samples were analyzed. The results demonstrate that the CL method can be used to develop a deep-sea sulfide analyzer.

SELECTION OF CITATIONS
SEARCH DETAIL