Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 19.708
Filter
1.
J Environ Sci (China) ; 147: 523-537, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003068

ABSTRACT

Due to its high efficiency, Fe(II)-based catalytic oxidation has been one of the most popular types of technology for treating growing organic pollutants. A lot of chemical Fe sludge along with various refractory pollutants was concomitantly produced, which may cause secondary environmental problems without proper disposal. We here innovatively proposed an effective method of achieving zero Fe sludge, reusing Fe resources (Fe recovery = 100%) and advancing organics removal (final TOC removal > 70%) simultaneously, based on the in situ formation of magnetic Ca-Fe layered double hydroxide (Fe3O4@CaFe-LDH) nano-material. Cations (Ca2+ and Fe3+) concentration (≥ 30 mmol/L) and their molar ratio (Ca:Fe ≥ 1.75) were crucial to the success of the method. Extrinsic nano Fe3O4 was designed to be involved in the Fe(II)-catalytic wastewater treatment process, and was modified by oxidation intermediates/products (especially those with COO- structure), which promoted the co-precipitation of Ca2+ (originated from Ca(OH)2 added after oxidation process) and by-produced Fe3+ cations on its surface to in situ generate core-shell Fe3O4@CaFe-LDH. The oxidation products were further removed during Fe3O4@CaFe-LDH material formation via intercalation and adsorption. This method was applicable to many kinds of organic wastewater, such as bisphenol A, methyl orange, humics, and biogas slurry. The prepared magnetic and hierarchical CaFe-LDH nanocomposite material showed comparable application performance to the recently reported CaFe-LDHs. This work provides a new strategy for efficiently enhancing the efficiency and economy of Fe(II)-catalyzed oxidative wastewater treatment by producing high value-added LDHs materials.


Subject(s)
Oxidation-Reduction , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Catalysis , Iron/chemistry
2.
J Environ Sci (China) ; 147: 642-651, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003079

ABSTRACT

Nowadays, it is still a challenge to prepared high efficiency and low cost formaldehyde (HCHO) removal catalysts in order to tackle the long-living indoor air pollution. Herein, δ-MnO2 is successfully synthesized by a facile ozonation strategy, where Mn2+ is oxidized by ozone (O3) bubble in an alkaline solution. It presents one of the best catalytic properties with a low 100% conversion temperature of 85°C for 50 ppm of HCHO under a GHSV of 48,000 mL/(g·hr). As a comparison, more than 6 times far longer oxidation time is needed if O3 is replaced by O2. Characterizations show that ozonation process generates a different intermediate of tetragonal ß-HMnO2, which would favor the quick transformation into the final product δ-MnO2, as compared with the relatively more thermodynamically stable monoclinic γ-HMnO2 in the O2 process. Finally, HCHO is found to be decomposed into CO2 via formate, dioxymethylene and carbonate species as identified by room temperature in-situ diffuse reflectance infrared fourier transform spectroscopy. All these results show great potency of this facile ozonation routine for the highly active δ-MnO2 synthesis in order to remove the HCHO contamination.


Subject(s)
Formaldehyde , Manganese Compounds , Oxides , Ozone , Ozone/chemistry , Manganese Compounds/chemistry , Formaldehyde/chemistry , Oxides/chemistry , Air Pollutants/chemistry , Oxidation-Reduction , Temperature , Air Pollution, Indoor/prevention & control , Catalysis
3.
Article in English | MEDLINE | ID: mdl-38955619

ABSTRACT

OBJECTIVE: To describe the development and implementation of a comprehensive in situ simulation-based curriculum for anesthesia residents. DESIGN: This is a prospective study. SETTING: This study was conducted at a university hospital. PARTICIPANTS: This single-center prospective study included all 53 anesthesia residents enrolled in the anesthesia residency program. INTERVENTIONS: Introduction of a routine, high-fidelity, in situ simulation program that incorporates short sessions to train residents in the necessary skill sets and decision-making processes required in the operating room. MEASUREMENTS AND MAIN RESULTS: Our team conducted 182 individual 15-minute simulation sessions over 3 months during regular working hours. All 53 residents in our program actively participated in the simulations. Most residents engaged in at least 3 sessions, with an average participation rate of 3.4 per resident (range, 1-6 sessions). Residents completed an online anonymous survey, with a response rate of 71.7% (38 of 53 residents) over the 3-month period. The survey aimed to assess their overall impression and perceived contribution of this project to their training. CONCLUSIONS: Our proposed teaching method can bridge the gap in resident training and enhance their critical reasoning to manage diverse clinical situations they may not experience during their residency.

4.
ACS Sens ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958469

ABSTRACT

As one of the common carriers of biological information, along with human urine specimens and blood, exhaled breath condensate (EBC) carries reliable and rich information about the body's metabolism to track human physiological normal/abnormal states and environmental exposures. What is more, EBC has gained extensive attention because of the convenient and nondestructive sampling. Facemasks, which act as a physical filter barrier between human exhaled breath and inhaled substances from the external environment, are safe, noninvasive, and economic devices for direct sampling of human exhaled breath and inhaled substances. Inspired by the ability of fog collection of Namib desert beetle, a strategy for in situ collecting and detecting EBC with surface-enhanced Raman scattering is illustrated. Based on the intrinsic and unique wettability differences between the squares and the surrounding area of the pattern on facemasks, the hydrophilic squares can capture exhaled droplets and spontaneously enrich the analytes and silver nanocubes (AgNCs), resulting in good repeatability in situ detection. Using R6G as the probe molecule, the minimal detectable concentration can reach as low as 10-16 M, and the relative standard deviation is less than 7%. This proves that this strategy can achieve high detection sensitivity and high detection repeatability. Meanwhile, this strategy is applicable for portable nitrite analysis in EBC and may provide an inspiration for monitoring other biomarkers in EBC.

5.
Cytometry A ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958502

ABSTRACT

Imaging-based spatial transcriptomics techniques generate data in the form of spatial points belonging to different mRNA classes. A crucial part of analyzing the data involves the identification of regions with similar composition of mRNA classes. These biologically interesting regions can manifest at different spatial scales. For example, the composition of mRNA classes on a cellular scale corresponds to cell types, whereas compositions on a millimeter scale correspond to tissue-level structures. Traditional techniques for identifying such regions often rely on complementary data, such as pre-segmented cells, or lengthy optimization. This limits their applicability to tasks on a particular scale, restricting their capabilities in exploratory analysis. This article introduces "Points2Regions," a computational tool for identifying regions with similar mRNA compositions. The tool's novelty lies in its rapid feature extraction by rasterizing points (representing mRNAs) onto a pyramidal grid and its efficient clustering using a combination of hierarchical and k $$ k $$ -means clustering. This enables fast and efficient region discovery across multiple scales without relying on additional data, making it a valuable resource for exploratory analysis. Points2Regions has demonstrated performance similar to state-of-the-art methods on two simulated datasets, without relying on segmented cells, while being several times faster. Experiments on real-world datasets show that regions identified by Points2Regions are similar to those identified in other studies, confirming that Points2Regions can be used to extract biologically relevant regions. The tool is shared as a Python package integrated into TissUUmaps and a Napari plugin, offering interactive clustering and visualization, significantly enhancing user experience in data exploration.

6.
Asian J Pharm Sci ; 19(3): 100910, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38948397

ABSTRACT

The early diagnosis of cancer is vital for effective treatment and improved prognosis. Tumor biomarkers, which can be used for the early diagnosis, treatment, and prognostic evaluation of cancer, have emerged as a topic of intense research interest in recent years. Nucleic acid, as a type of tumor biomarker, contains vital genetic information, which is of great significance for the occurrence and development of cancer. Currently, living cell nucleic acid probes, which enable the in situ imaging and dynamic monitoring of nucleic acids, have become a rapidly developing field. This review focuses on living cell nucleic acid probes that can be used for the early diagnosis of tumors. We describe the fundamental design of the probe in terms of three units and focus on the roles of different nanomaterials in probe delivery.

7.
J Family Med Prim Care ; 13(5): 2149-2151, 2024 May.
Article in English | MEDLINE | ID: mdl-38948622

ABSTRACT

Malignant phyllodes, along with ductal carcinoma, is known as metaplastic cancer of the breast. This tumor is additionally known as breast carcinosarcoma. Malignant phyllodes in conjunction with ductal carcinoma is a rare finding in routine clinical practice. We describe the case report of a 47-year-old female patient who arrived with a large right breast mass. A core biopsy was performed, and histopathological examination indicated that the tumor was a malignant phyllodes tumor. A positron emission tomography (PET) scan revealed hyper-metabolic and hypo-metabolic tumors with perilesional stranding and satellite nodularity. There were a few metastatic right axillary nodes visible. There was no indication of distant metastases. Due to the presence of both components, a modified radical mastectomy surgery with axillary dissection was undertaken for this patient. Histopathological analysis of paraffin sections revealed ductal carcinoma in situ (DCIS) comedo-epithelial component and spindle-shaped cells with hyper-chromatic oval nuclei and scanty cytoplasm.

8.
J Colloid Interface Sci ; 674: 677-685, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38950466

ABSTRACT

The construction and regulation of built-in electric field (BIEF) are considered effective strategies for enhancing the oxygen evolution reaction (OER) performance of transition metal-based electrocatalysts. Herein, we present a strategy to regulate the electronic structure of nickel-iron layered double hydroxide (NiFe-LDH) by constructing and enhancing the BIEF induced by in-situ heterojunction transformation. This concept is demonstrated through the design and synthesis of Ag2S@S/NiFe-LDH (p-n heterojunction) and Ag@S/NiFe-LDH (Mott-Schottky heterojunction). Benefiting from the larger BIEF of Mott-Schottky heterojunction, efficient electron transfer occurs at the interface between silver (Ag) and NiFe-LDH. As a result, Ag@S/NiFe-LDH exhibits excellent OER performance, requiring only a 232 mV overpotential at 1 M KOH to achieve a current density of 100 mA cm-2, with a small Tafel slope of 73 mV dec-1, as well as excellent electrocatalytic durability. Density functional theory (DFT) calculations further verified that stronger BIEF in Mott-Schottky heterojunction enhances the electron interaction at the interfaces, reduces the energy barrier for the rate-determining step (RDS), and accelerates the OER kinetics. This work provides an effective strategy for designing catalyst with larger BIEF to enhance electrocatalytic activity.

9.
Adv Sci (Weinh) ; : e2402962, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951958

ABSTRACT

The ultrafine cellular structure promotes the extraordinary mechanical performance of metals manufactured by laser powder-bed-fusion (L-PBF). An in-depth understanding of the mechanisms governing the thermal stability of such structures is crucial for designing reliable L-PBF components for high-temperature applications. Here, characterizations and 3D discrete dislocation dynamics simulations are performed to comprehensively understand the evolution of cellular structures in 316L stainless steel during annealing. The dominance of screw-type dislocation dipoles in the dislocation cells is reported. However, the majority of dislocations in sub-grain boundaries (SGBs) are geometrically necessary dislocations (GNDs) with varying types. The disparity in dislocation types can be attributed to the variation in local stacking fault energy (SFE) arising from chemical heterogeneity. The presence of screw-type dislocations facilitates the unpinning of dislocations from dislocation cells/SGBs, resulting in a high dislocation mobility. In contrast, the migration of SGBs with dominating edge-type GNDs requires collaborative motion of dislocations, leading to a sluggish migration rate and an enhanced thermal stability. This work emphasizes the significant role of dislocation type in the thermal stability of cellular structures. Furthermore, it sheds light on how to locally tune dislocation structures with desired dislocation types by adjusting local chemistry-dependent SFE and heat treatment.

10.
Neuron ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38959892

ABSTRACT

The lateral septum (LS) is composed of heterogeneous cell types that are important for various motivated behaviors. However, the transcriptional profiles, spatial arrangement, function, and connectivity of these cell types have not been systematically studied. Using single-nucleus RNA sequencing, we delineated diverse genetically defined cell types in the LS that play distinct roles in reward processing. Notably, we found that estrogen receptor 1 (Esr1)-expressing neurons in the ventral LS (LSEsr1) are key drivers of reward seeking via projections to the ventral tegmental area, and these neurons play an essential role in methamphetamine (METH) reward and METH-seeking behavior. Extended exposure to METH increases the excitability of LSEsr1 neurons by upregulating hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, thereby contributing to METH-induced locomotor sensitization. These insights not only elucidate the intricate molecular, circuit, and functional architecture of the septal region in reward processing but also reveal a neural pathway critical for METH reward and behavioral sensitization.

11.
Int J Biol Macromol ; : 133505, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960225

ABSTRACT

Electromagnetic interference (EMI) shielding materials play a vital role in human society, especially in light of the rapid development of electronic communication equipment. Therefore, it is urgent to develop green, high-efficiency EMI shielding materials. Wood, as a renewable raw material, possesses significant structural advantages in studying EMI materials due to its unique 3D pore structure. Herein, we report magnetoelectric lignocellulosic matrix composites derived from the delignified wood for efficient EMI shielding. The composite was fabricated by in-situ polymerization of PEDOT conductive coating and magnetic Fe3O4 in delignified wood. The conductive 3D pore structure of Fe3O4/PEDOT@wood could effectively cause dielectric loss and multiple internal reflections. Combined with the magnetic loss of Fe3O4, the material exhibited excellent EMI shielding effectiveness (SE), which could be attributed to the synergistic effect of dielectric and magnetic losses. The Fe3O4/PEDOT@wood showed excellent conductivity (103 S/m), good magnetism (26.7 emu/g), the EMI SE up to 59.8 dB, and high SEA/SET ratios of~84.2 % to 95.7 % at 2 mm in X -band. Moreover, the material exhibited a high compressive strength and tensile strength of 100.8 MPa and 18.1 MPa, respectively. Therefore, this work provided a reference for the preparation of high-efficiency EMI shielding materials.

12.
Hematol Oncol Clin North Am ; 38(4): 831-849, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960507

ABSTRACT

In breast cancer (BC) pathogenesis models, normal cells acquire somatic mutations and there is a stepwise progression from high-risk lesions and ductal carcinoma in situ to invasive cancer. The precancer biology of mammary tissue warrants better characterization to understand how different BC subtypes emerge. Primary methods for BC prevention or risk reduction include lifestyle changes, surgery, and chemoprevention. Surgical intervention for BC prevention involves risk-reducing prophylactic mastectomy, typically performed either synchronously with the treatment of a primary tumor or as a bilateral procedure in high-risk women. Chemoprevention with endocrine therapy carries adherence-limiting toxicity.


Subject(s)
Breast Neoplasms , Carcinoma, Intraductal, Noninfiltrating , Humans , Female , Breast Neoplasms/therapy , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Carcinoma, Intraductal, Noninfiltrating/therapy , Carcinoma, Intraductal, Noninfiltrating/pathology
13.
Small ; : e2402976, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963321

ABSTRACT

Morphology, crystal phase, and its transformation are important structures that frequently determine electrocatalytic activity, but the correlations of intrinsic activity with them are not completely understood. Herein, using Co(OH)2 micro-platelets with well-defined structures (phase, thickness, area, and volume) as model electrocatalysts of oxygen evolution reaction, multiple in situ microscopy is combined to correlate the electrocatalytic activity with morphology, phase, and its transformation. Single-entity morphology and electrochemistry characterized by atomic force microscopy and scanning electrochemical cell microscopy reveal a thickness-dependent turnover frequency (TOF) of α-Co(OH)2. The TOF (≈9.5 s-1) of α-Co(OH)2 with ≈14 nm thickness is ≈95-fold higher than that (≈0.1 s-1) with ≈80 nm. Moreover, this thickness-dependent activity has a critical thickness of ≈30 nm, above which no thickness-dependence is observed. Contrarily, ß-Co(OH)2 reveals a lower TOF (≈0.1 s-1) having no significant correlation with thickness. Combining single-entity electrochemistry with in situ Raman microspectroscopy, this thickness-dependent activity is explained by more reversible Co3+/Co2+ kinetics and larger ratio of active Co sites of thinner α-Co(OH)2, accompanied with faster phase transformation and more extensive surface restructuration. The findings highlight the interactions among thickness, ratio of active sites, kinetics of active sites, and phase transformation, and offer new insights into structure-activity relationships at single-entity level.

14.
IUCrJ ; 11(Pt 4): 476-485, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38958014

ABSTRACT

A series of events underscoring the significant advancements in micro-crystallization and in vivo crystallography were held during the 26th IUCr Congress in Melbourne, positioning microcrystallography as a pivotal field within structural biology. Through collaborative discussions and the sharing of innovative methodologies, these sessions outlined frontier approaches in macromolecular crystallography. This review provides an overview of this rapidly moving field in light of the rich dialogues and forward-thinking proposals explored during the congress workshop and microsymposium. These advances in microcrystallography shed light on the potential to reshape current research paradigms and enhance our comprehension of biological mechanisms at the molecular scale.


Subject(s)
Crystallization , Crystallography, X-Ray/methods , Crystallography/methods , Macromolecular Substances/chemistry
15.
Anal Chim Acta ; 1316: 342875, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38969433

ABSTRACT

BACKGROUND: Indole-3-acetic acid (IAA) and salicylic acid (SA), pivotal regulators in plant growth, are integral to a variety of plant physiological activities. The ongoing and simultaneous monitoring of these hormones in vivo enhances our comprehension of their interactive and regulatory roles. Traditional detection methods, such as liquid chromatography-mass spectrometry, cannot obtain precise and immediate information on IAA and SA due to the complexity of sample processing. In contrast, the electrochemical detection method offers high sensitivity, rapid response times, and compactness, making it well-suited for in vivo or real-time detection applications. RESULTS: A microneedle electrochemical sensor system crafted from disposable stainless steel (SS) wire was specifically designed for the real-time assessment of IAA and SA in plant in situ. This sensor system included a SS wire (100 µm diameter) coated with carbon cement and multi-walled carbon nanotubes, a plain platinum wire (100 µm diameter), and an Ag/AgCl wire (100 µm diameter). Differential pulse voltammetry and amperometry were adopted for detecting SA and IAA within the range of 0.1-20 µM, respectively. This sensor was applied to track IAA and SA fluctuations in tomato leaves during PstDC3000 infection, offering continuous data. Observations indicated an uptick in SA levels following infection, while IAA production was suppressed. The newly developed disposable SS wire-based microneedle electrochemical sensor system is economical, suitable for mass production, and inflicts minimal damage during the monitoring of SA and IAA in plant tissues. SIGNIFICANCE: This disposable microneedle electrochemical sensor facilitates in vivo detection of IAA and SA in smaller plant tissues and allows for long-time monitoring of their concentrations, which not only propels research into the regulatory and interaction mechanisms of IAA and SA but also furnishes essential tools for advancing precision agriculture.


Subject(s)
Electrochemical Techniques , Indoleacetic Acids , Plant Leaves , Salicylic Acid , Solanum lycopersicum , Stainless Steel , Solanum lycopersicum/chemistry , Indoleacetic Acids/analysis , Salicylic Acid/analysis , Plant Leaves/chemistry , Plant Leaves/metabolism , Stainless Steel/chemistry , Electrochemical Techniques/instrumentation , Needles , Plant Diseases/microbiology
16.
BMC Infect Dis ; 24(1): 669, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965458

ABSTRACT

BACKGROUND: Abdominal aorta-duodenal fistulas are rare abnormal communications between the abdominal aorta and duodenum. Secondary abdominal aorta-duodenal fistulas often result from endovascular surgery for aneurysms and can present as severe late complications. CASE PRESENTATION: A 50-year-old male patient underwent endovascular reconstruction for an infrarenal abdominal aortic pseudoaneurysm. Prior to the operation, he was diagnosed with Acquired Immune Deficiency Syndrome and Syphilis. Two years later, he was readmitted with lower extremity pain and fever. Blood cultures grew Enterococcus faecium, Salmonella, and Streptococcus anginosus. Sepsis was successfully treated with comprehensive anti-infective therapy. He was readmitted 6 months later, with blood cultures growing Enterococcus faecium and Escherichia coli. Although computed tomography did not show contrast agent leakage, we suspected an abdominal aorta-duodenal fistula. Esophagogastroduodenoscopy confirmed this suspicion. The patient underwent in situ abdominal aortic repair and received long-term antibiotic therapy. He remained symptom-free during a year and a half of follow-up. CONCLUSIONS: This case suggests that recurrent infections with non-typhoidal Salmonella and gut bacteria may be an initial clue to secondary abdominal aorta-duodenal fistula.


Subject(s)
Sepsis , Humans , Male , Middle Aged , Sepsis/microbiology , Sepsis/complications , Aorta, Abdominal/surgery , Aorta, Abdominal/microbiology , Enterococcus faecium/isolation & purification , Anti-Bacterial Agents/therapeutic use , Streptococcus anginosus/isolation & purification , Intestinal Fistula/microbiology , Intestinal Fistula/surgery , Intestinal Fistula/complications , Salmonella/isolation & purification , Escherichia coli/isolation & purification , Recurrence , Duodenal Diseases/microbiology , Duodenal Diseases/surgery , Duodenal Diseases/complications , Salmonella Infections/microbiology , Salmonella Infections/complications , Salmonella Infections/diagnosis , Salmonella Infections/drug therapy
17.
Breast ; 77: 103764, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38970983

ABSTRACT

BACKGROUND: Ductal carcinoma in situ (DCIS) can progress to invasive breast cancer (IBC), but often never will. As we cannot predict accurately which DCIS-lesions will or will not progress to IBC, almost all women with DCIS undergo breast-conserving surgery supplemented with radiotherapy, or even mastectomy. In some countries, endocrine treatment is prescribed as well. This implies many women with non-progressive DCIS undergo overtreatment. To reduce this, the LORD patient preference trial (LORD-PPT) tests whether mammographic active surveillance (AS) is safe by giving women with low-risk DCIS a choice between treatment and AS. For this, sufficient knowledge about DCIS is crucial. Therefore, we assessed women's DCIS knowledge in association with socio-demographic and clinical characteristics. METHODS: LORD-PPT participants (N = 376) completed a questionnaire assessing socio-demographic and clinical characteristics, risk perception, treatment choice and DCIS knowledge after being informed about their diagnosis and treatment options. RESULTS: 66 % of participants had poor knowledge (i.e., answered ≤3 out of 7 knowledge items correctly). Most incorrect answers involved overestimating the safety of AS and misunderstanding of DCIS prognostic risks. Overall, women with higher DCIS knowledge score perceived their risk of developing IBC as being somewhat higher than women with poorer knowledge (p = 0.049). Women with better DCIS knowledge more often chose surgery whilst most women with poorer knowledge chose active surveillance (p = 0.049). DISCUSSION: Our findings show that there is room for improvement of information provision to patients. Decision support tools for patients and clinicians could help to stimulate effective shared decision-making about DCIS management.

18.
Macromol Rapid Commun ; : e2400284, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38967216

ABSTRACT

Due to the advantages of low energy consumption, no air and water pollutions, the reactive polyurethane films (RPUFs) are replacing the solvated and waterborne PUFs nowadays, which significantly promotes the green and low-carbon production of PU films. However, the microstructure evolution and in situ film-formation mechanism of RPUFs in solvent-free media are still unclear. Herein, according to time-temperature equivalence principle, the in situ polyaddition and film-formation processes of RPUFs generated by the typical polyaddition of diisocyanate terminated prepolymer (component B) and polyether glycol (component A) are thoroughly investigated at 25 °C. According to the temporal change of viscosity, the RPUFs gradually transfer from liquid to gel and finally to solid state. Further characterizing the molecular weight, hydrogen bonds, crystallinity, gel content, and phase images, the polyaddition and film-formation processes can be divided into three stages as 1) chain extension and microcrystallization; 2) gelation and demicrocrystallization; 3) microphase separation and film-formation. This work promotes the understanding of the microstructure evolution and film-formation mechanism of RPUFs, which can be used as the theoretical guidance for the controllable preparation of high-performance products based on RPUFs.

19.
Int J Biol Macromol ; 275(Pt 1): 133346, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960231

ABSTRACT

The construction of N, P co-doped hierarchically porous carbons (NPHPC) by a facile and green approach is crucial for high-performance energy storage but still an enormous challenge. Herein, an environment-friendly "in-situ co-doping, self-regulation-activation" strategy is presented to one-pot synthesize NPHPC using a phytic acid-induced polyethyleneimine/chitosan gel (PEI-PA-CS) as single precursor. NPHPC displayed a specific surface area of up to 1494 m2 g-1, high specific capacitance of 449 F g-1 at 1 A g-1, outstanding rate capability and cycling durability in a wide temperature range (-20 to 60 °C). NPHPC and PEI-PA-CS electrolyte assembled symmetric quasi-solid-state flexible supercapacitor presents superb energy outputs of 27.06 Wh kg-1 at power density of 225 W kg-1. For capacitive deionization (CDI), NPHPC also exhibit an excellent salt adsorption capacity of 16.54 mg g-1 in 500 mg L-1 NaCl solution at a voltage of 1.4 V, and regeneration performance. This study provides a valuable reference for the rational design and synthesis of novel biomass-derived energy-storage materials by integrating phytic acid induced heteroatom doping and pore engineering.

20.
Discov Oncol ; 15(1): 257, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960937

ABSTRACT

To address the prevalent genistein (GST) metabolism and inadequate intestinal absorption, an oral long-acting and gastric in-situ gelling gel was designed to encapsulate and localize the intestinal release of the loaded genistein-ginseng (GST-GNS) solid dispersion. Because of the high breast perfusion of GST upon oral absorption, the GST-GNS solid dispersion was developed to enhance GST's dissolution and penetration while offering a synergistic impact against breast cancer (BC). Physiochemical analysis of the GST-GNS solid dispersion, release analysis, gel characterizations, storage stability, penetration, and in vitro cytotoxicity studies were carried out. GST-GNS solid dispersion showed improved dissolution and penetration as compared to raw GST. GST-GNS solid dispersion homogenous shape particles and hydrophilic contacts were revealed by scanning electron microscopy and Fourier Transform-Infrared analysis, respectively. GST-GNS solid dispersion's diffractogram shows the amorphous character. A second modification involved creating a gastric in-situ gelling system loaded with GST-GNS solid dispersion. This system demonstrated improved GST penetration employing the solid dispersion, as well as the localizing of the GST release at the intestinal media and antitumor synergism against BC. For a better therapeutic approach for BC, the innovative oral GST long-acting gel encasing the GST-GNS solid dispersion would be recommended.

SELECTION OF CITATIONS
SEARCH DETAIL