Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 936
Filter
1.
Bioorg Chem ; 152: 107740, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39217780

ABSTRACT

Mimicking the transition state of tryptophan (Trp) and O2 in the enzymatic reaction is an effective approach to design indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. In this study, we firstly assembled a small library of 2-substituted benzo-fused five membered heterocycles and found 2-sulfinyl-benzoxazoles with interesting IDO1 inhibitory activities. Next the inhibitory activity toward IDO1 was gradually improved. Several benzoxazoles showed potent IDO1 inhibitory activity with IC50 of 82-91 nM, and exhibited selectivity between IDO1 and tryptophan 2,3-dioxygenase (TDO2). Enzyme binding studies showed that benzoxazoles are reversible type II IDO1 inhibitors, and modeling studies suggested that the oxygen atom of the sulfoxide in benzoxazoles interacts with the iron atom of the heme group, which mimics the transition state of Fe-O-O-Trp complex. Especially, 10b can effectively inhibit the NO production in lipopolysaccharides (LPS) stimulated RAW264.7 cells, and it also shows good anti-inflammation effect on mice acute inflammation model of croton oil induced ear edema.


Subject(s)
Benzoxazoles , Drug Design , Enzyme Inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase , Lipopolysaccharides , Animals , Mice , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , RAW 264.7 Cells , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Structure-Activity Relationship , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Benzoxazoles/pharmacology , Benzoxazoles/chemistry , Benzoxazoles/chemical synthesis , Molecular Structure , Edema/drug therapy , Edema/chemically induced , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Dose-Response Relationship, Drug , Inflammation/drug therapy , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/metabolism , Male
2.
J Nanobiotechnology ; 22(1): 542, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39238020

ABSTRACT

Phototherapy is a promising antitumor modality, which consists of photothermal therapy (PTT) and photodynamic therapy (PDT). However, the efficacy of phototherapy is dramatically hampered by local hypoxia in tumors, overexpression of indoleamine 2,3-dioxygenase (IDO) and programmed cell death ligand-1 (PD-L1) on tumor cells. To address these issues, self-assembled multifunctional polymeric micelles (RIMNA) were developed to co-deliver photosensitizer indocyanine green (ICG), oxygenator MnO2, IDO inhibitor NLG919, and toll-like receptor 4 agonist monophosphoryl lipid A (MPLA). It is worth noting that RIMNA polymeric micelles had good stability, uniform morphology, superior biocompatibility, and intensified PTT/PDT effect. What's more, RIMNA-mediated IDO inhibition combined with programmed death receptor-1 (PD-1)/PD-L1 blockade considerably improved immunosuppression and promoted immune activation. RIMNA-based photoimmunotherapy synergized with PD-1 antibody could remarkably inhibit primary tumor proliferation, as well as stimulate the immunity to greatly suppress lung metastasis and distant tumor growth. This study offers an efficient method to reinforce the efficacy of phototherapy and alleviate immunosuppression, thereby bringing clinical benefits to cancer treatment.


Subject(s)
Colonic Neoplasms , Immunotherapy , Micelles , Phototherapy , Polymers , Programmed Cell Death 1 Receptor , Animals , Colonic Neoplasms/therapy , Colonic Neoplasms/immunology , Colonic Neoplasms/drug therapy , Mice , Immunotherapy/methods , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Polymers/chemistry , Cell Line, Tumor , Phototherapy/methods , Indocyanine Green/chemistry , Indocyanine Green/therapeutic use , Indocyanine Green/pharmacology , Mice, Inbred BALB C , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photochemotherapy/methods , Female , Humans , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Lipid A/analogs & derivatives
3.
Int Immunopharmacol ; 142(Pt A): 113062, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39244898

ABSTRACT

Indoleamine 2,3-dioxygenase-1 (IDO-1) is an enzyme that catalyzes the metabolism of tryptophan (Trp). It is expressed in limited amounts in normal tissues but significantly upregulated during inflammation and infection. Various inflammatory factors, especially IFN-γ, can induce the expression of IDO-1. While extensive research has been conducted on the role of IDO-1 in tumors, its specific role in complex central nervous system tumors such as glioblastoma (GBM) remains unclear. This study aims to explore the role of IDO-1 in the development of GBM and analyze its association with tryptophan levels and CD8+T cell exhaustion in the tumor region. To achieve this, we constructed an orthotopic mouse glioblastoma tumor model to investigate the specific mechanisms between IDO-1, GBM, and CD8+T cell exhaustion. Our results showed that IDO-1 can promote CD8+T cell exhaustion by reducing tryptophan levels. When IDO-1 was knocked down in glioblastoma cells, other cells within the tumor microenvironment upregulated IDO-1 expression to compensate for the loss and enhance immunosuppressive effects. Therefore, the data suggest that the GBM microenvironment controls tryptophan levels by regulating IDO-1 expression, which plays a critical role in immune suppression. These findings support the use of immune therapy in combination with IDO-1 inhibitors or tryptophan supplementation as a potential treatment strategy.

4.
J Inorg Biochem ; 261: 112707, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39217822

ABSTRACT

Tryptophan dioxygenase (TDO) and indoleamine 2,3 dioxygenase (IDO) belong to a unique class of heme-based enzymes that insert dioxygen into the essential amino acid, L-tryptophan (Trp), to generate N-formylkynurenine (NFK), a critical metabolite in the kynurenine pathway. Recently, the two dioxygenases were recognized as pivotal cancer immunotherapeutic drug targets, which triggered a great deal of drug discovery targeting them. The advancement of the field is however hampered by the poor understanding of the structural properties of the two enzymes and the mechanisms by which the structures dictate their functions. In this review, we summarize recent findings centered on the structure, function, and dynamics of the human isoforms of the two enzymes.

5.
Cells ; 13(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39120289

ABSTRACT

This review discusses the potential of targeting the kynurenine pathway (KP) in the treatment of inflammatory diseases. The KP, responsible for the catabolism of the amino acid tryptophan (TRP), produces metabolites that regulate various physiological processes, including inflammation, cell cycle, and neurotransmission. These metabolites, although necessary to maintain immune balance, may accumulate excessively during inflammation, leading to systemic disorders. Key KP enzymes such as indoleamine 2,3-dioxygenase 1 (IDO1), indoleamine 2,3-dioxygenase 2 (IDO2), tryptophan 2,3-dioxygenase (TDO), and kynurenine 3-monooxygenase (KMO) have been considered promising therapeutic targets. It was highlighted that both inhibition and activation of these enzymes may be beneficial, depending on the specific inflammatory disorder. Several inflammatory conditions, including autoimmune diseases, for which modulation of KP activity holds therapeutic promise, have been described in detail. Preclinical studies suggest that this modulation may be an effective treatment strategy for diseases for which treatment options are currently limited. Taken together, this review highlights the importance of further research on the clinical application of KP enzyme modulation in the development of new therapeutic strategies for inflammatory diseases.


Subject(s)
Inflammation , Kynurenine , Humans , Kynurenine/metabolism , Inflammation/drug therapy , Animals , Molecular Targeted Therapy , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
6.
Comput Biol Med ; 180: 108954, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39094327

ABSTRACT

Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are attractive drug targets for cancer immunotherapy. After disappointing results of the epacadostat as a selective IDO inhibitor in phase III clinical trials, there is much interest in the development of the TDO selective inhibitors. In the current study, several data analysis methods and machine learning approaches including logistic regression, Random Forest, XGBoost and Support Vector Machines were used to model a data set of compounds retrieved from ChEMBL. Models based on the Morgan fingerprints revealed notable fragments for the selective inhibition of the IDO, TDO or both. Multiple fragment docking was performed to find the best set of bound fragments and their orientation in the space for efficient linking. Linking the fragments and optimization of the final molecules were accomplished by means of an artificial intelligence generative framework. Finally, selectivity of the optimized molecules was assessed and the top 4 lead molecules were filtered through PAINS, Brenk and NIH filters. Results indicated that phenyloxalamide, fluoroquinoline, and 3-bromo-4-fluroaniline confer selectivity towards the IDO inhibition. Correspondingly, 1-benzyl-1H-naphtho[2,3-d][1,2,3]triazole-4,9-dione was found to be an integral fragment for the selective inhibition of the TDO by constituting a coordination bond with the Fe atom of heme. In addition, furo[2,3-c]pyridine-2,3-diamine was found as a common fragment for inhibition of the both targets and can be used in the design of the dual target inhibitors of the IDO and TDO. The new fragments introduced here can be a useful building blocks for incorporation into the selective TDO or dual IDO/TDO inhibitors.


Subject(s)
Cheminformatics , Enzyme Inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase , Machine Learning , Tryptophan Oxygenase , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase/chemistry , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Tryptophan Oxygenase/antagonists & inhibitors , Tryptophan Oxygenase/metabolism , Tryptophan Oxygenase/chemistry , Humans , Cheminformatics/methods , Enzyme Inhibitors/chemistry , Molecular Docking Simulation
7.
Int J Mol Sci ; 25(16)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39201612

ABSTRACT

Although therapies based on mesenchymal stromal cells (MSCs) are being implemented in clinical settings, many aspects regarding these procedures require further optimization. Domestic dogs suffer from numerous immune-mediated diseases similar to those found in humans. This study aimed to assess the immunomodulatory activity of canine (c) Wharton jelly (WJ)-derived MSCs and refer them to human (h) MSCs isolated from the same tissue. Canine MSC(WJ)s appeared to be more prone to in vitro aging than their human counterparts. Both canine and human MSC(WJ)s significantly inhibited the activation as well as proliferation of CD4+ and CD8+ T cells. The treatment with IFNγ significantly upregulated indoleamine-2,3-dioxygenase 1 (IDO1) synthesis in human and canine MSC(WJ)s, and the addition of poly(I:C), TLR3 ligand, synergized this effect in cells from both species. Unstimulated human and canine MSC(WJ)s released TGFß at the same level (p > 0.05). IFNγ significantly increased the secretion of TGFß in cells from both species (p < 0.05); however, this response was significantly stronger in human cells than in canine cells. Although the properties of canine and human MSC(WJ)s differ in detail, cells from both species inhibit the proliferation of activated T cells to a very similar degree and respond to pro-inflammatory stimulation by enhancing their anti-inflammatory activity. These results suggest that testing MSC transplantation in naturally occurring immune-mediated diseases in dogs may have high translational value for human clinical trials.


Subject(s)
Cell Proliferation , Mesenchymal Stem Cells , Wharton Jelly , Dogs , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/cytology , Animals , Humans , Wharton Jelly/cytology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Immunomodulation , Interferon-gamma/metabolism , Cells, Cultured , Transforming Growth Factor beta/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Lymphocyte Activation/immunology , Poly I-C/pharmacology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism
8.
J Clin Med ; 13(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39064305

ABSTRACT

(1) Background: Kidney transplantation is the best therapy for patients with end-stage renal disease, but the risk of rejection complicates it. Indoleamine 2,3-dioxygenase 1 (IDO1), an enzyme involved in immune response modulation, has been suggested to play a role in transplant immunological injury. The aim of the study was to explore the expression of IDO1 in the interstitial foci of transplanted kidneys and its potential association with rejection episodes. (2) Methods: This retrospective study analysed kidney transplant biopsies from 121 patients, focusing on IDO1 expression in interstitial foci. Immunohistochemistry was used to detect IDO1, and patients were categorised based on IDO1 presence (IDO1-IF positive or negative). The incidence of rejection was compared between these groups. (3) Results: Patients with IDO1 expression in interstitial foci (IDO1-IF(+)) exhibited higher incidences of rejection 46/80 (57.5%) vs. 10/41 (24.34%) patients compared to IDO1-IF(-) patients, which was statistically significant with p = 0.0005. The analysis of antibody-mediated rejection showed that IDO1-IF(+) patients developed AMR at 12/80 (15%), while only 1 IDO1-IF(-) negative patient did (2,44%), with p = 0.035. T-cell-mediated rejection was also more common in IDO1-IF(+) patients 43/80 (53.75%) than in IDO1-IF(-) patients 7/41 (17.07%), with p = 0.0001. (4) Conclusions: IDO1 expression in interstitial foci of renal transplant biopsies is associated with a higher incidence of rejection, suggesting that IDO1 could serve as a potential biomarker for transplant rejection. These findings highlight the importance of IDO1 in immune regulation and its potential utility in improving the management of kidney transplant recipients.

9.
Pharmaceutics ; 16(7)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39065567

ABSTRACT

Glioma is characterized by strong immunosuppression and excessive angiogenesis. Based on existing reports, it can be speculated that the resistance to anti-angiogenic drug vascular endothelial growth factor A (VEGFA) antibody correlates to the induction of novel immune checkpoint indoleamine 2,3-dioxygenase 1 (IDO1), while IDO1 has also been suggested to be related to tumor angiogenesis. Herein, we aim to clarify the potential role of IDO1 in glioma angiogenesis and the mechanism behind it. Bioinformatic analyses showed that the expressions of IDO1 and angiogenesis markers VEGFA and CD34 were positively correlated and increased with pathological grade in glioma. IDO1-overexpression-derived-tryptophan depletion activated the general control nonderepressible 2 (GCN2) pathway and upregulated VEGFA in glioma cells. The tube formation ability of angiogenesis model cells could be inhibited by IDO1 inhibitors and influenced by the activity and expression of IDO1 in condition medium. A significant increase in serum VEGFA concentration and tumor CD34 expression was observed in IDO1-overexpressing GL261 subcutaneous glioma-bearing mice. IDO1 inhibitor RY103 showed positive anti-tumor efficacy, including the anti-angiogenesis effect and upregulation of natural killer cells in GL261 glioma-bearing mice. As expected, the combination of RY103 and anti-angiogenesis agent sunitinib was proved to be a better therapeutic strategy than either monotherapy.

10.
Anticancer Res ; 44(8): 3337-3342, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39060076

ABSTRACT

BACKGROUND/AIM: Indoleamine 2,3-dioxygenase 1 (IDO1) is a key enzyme in tryptophan metabolism and plays an important role in immunosuppression. The effects of IDO1 on tumor invasion and metastasis have been studied in several types of malignancies. However, the role of IDO1 in these steps in colorectal cancer (CRC) has not been elucidated. Therefore, we aimed to investigate the effects of IDO1 on invasion, migration, and epithelial-mesenchymal transition (EMT) in CRC cells. MATERIALS AND METHODS: All experiments were performed using the DLD-1 colon cancer cell line that expresses IDO1. We conducted a scratch wound healing assay and Boyden chamber assay to investigate the impact of IDO1 on DLD-1 cell migration and invasion, respectively, in the presence and absence of the IDO1 inhibitor L-1-methyl-tryptophan (L-1-MT). Additionally, western blotting was performed to analyze alterations in the expression of EMT-related markers caused by L-1-MT. RESULTS: High expression of IDO1 was confirmed in the cytoplasm of DLD-1 by immunofluorescence staining. In the scratch wound healing assay, the invasion ability of DLD-1 cells decreased to 62% after treatment with L-1-MT at 1,000 µM for 24 h. In the Boyden chamber assay, the migration of DLD-1 cells was suppressed by 85% after treatment with L-1-MT at 2,500 µM for 24 h. L-1-MT treatment increased the expression level of E-cadherin and decreased the expression levels of vimentin, Snail, and Slug. CONCLUSION: IDO1 inhibition reduced the invasion and migration ability of IDO1-expressing DLD-1 colon cancer cells, which was accompanied by altered expression of EMT-related proteins. IDO1 could be a potential target for the treatment of advanced CRC.


Subject(s)
Cell Movement , Colonic Neoplasms , Epithelial-Mesenchymal Transition , Indoleamine-Pyrrole 2,3,-Dioxygenase , Neoplasm Invasiveness , Tryptophan , Humans , Epithelial-Mesenchymal Transition/drug effects , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Cell Movement/drug effects , Colonic Neoplasms/pathology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Cell Line, Tumor , Tryptophan/analogs & derivatives , Tryptophan/pharmacology , Tryptophan/metabolism , Enzyme Inhibitors/pharmacology
11.
Animals (Basel) ; 14(14)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39061522

ABSTRACT

For mammary carcinomas in pet rabbits, prognostic biomarkers are poorly defined, and treatment is limited to surgical excision. Additional treatment options are needed for rabbit patients for which surgery is not a suitable option. In human breast cancer, the immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO1) represents a prognostic biomarker and possible therapeutic target. This retrospective immunohistochemical study examined IDO1 in 96 pet rabbit mammary carcinomas with known mitotic count, hormone receptor status, and percentage of stromal tumor infiltrating lymphocytes (TILs). Tumors were obtained from 96 pet rabbits with an average of 5.5 years. All rabbits with reported sex (n = 88) were female or female-spayed. Of the carcinomas, 94% expressed IDO1, and 86% had sparse TILs consistent with cold tumors. Statistically significant correlations existed between a higher percentage of IDO1-positive tumor cells, lower mitotic counts, and increased estrogen receptor expression. The threshold for significance was IDO1 staining in >10% of tumor cells. These results lead to the assumption that IDO1 expression contributes to tumorigenesis and may represent a prognostic biomarker and possible therapeutic target also in pet rabbit mammary carcinomas. They also support the value of rabbits for breast cancer research.

12.
Metabolites ; 14(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38921469

ABSTRACT

Indoleamine 2,3-deoxygenase (IDO) plays an important role in the catabolism of the amino acid tryptophan. Tryptophan and its metabolites are key immune modulators. Increased IDO activity has been observed in various diseases and is associated with worse clinical outcomes. However, comprehensive research regarding its role in cardiac surgery remains limited. Therefore, we aimed to investigate perioperative changes in IDO activity and pathway metabolites, along with their impact on clinical outcomes in adult patients undergoing cardiac surgery. As an observational cohort study conducted at the Inselspital in Bern from January to December 2019, we retrospectively analyzed the data of prospectively collected biobank samples of patients undergoing cardiac surgery with the use of cardiopulmonary bypass. IDO pathway metabolite analysis was conducted by mass spectrometry. Perioperative dynamics were descriptively assessed and associated with pre-defined clinical outcome measures (30-day mortality, 1-year mortality, incidence of stroke and myocardial infarction, and length of hospital stay) through a multi-step exploratory regression analysis. A cohort of 192 adult patients undergoing cardiac surgery with the use of cardiopulmonary bypass were included (median age 67.0, IQR 60.0-73.0, 75.5% male). A significant perioperative decrease in the kynurenine/tryptophan (Kyn/Trp) ratio (-2.298, 95% CI -4.028 to -596, p = 0.009) and significant perioperative dynamics in the associated metabolites was observed. No association of perioperative changes in IDO activity and pathway metabolites with clinical outcomes was found. A significant decrease in the Kyn/Trp ratio among adult patients undergoing cardiac surgery indicates a perioperative downregulation of IDO, which stands in contrast to other pro-inflammatory conditions. Further studies are needed to investigate IDO in the setting of perioperative immunomodulation, which is a key driver of postoperative complications in cardiac surgery patients.

13.
J Adv Res ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906325

ABSTRACT

INTRODUCTION: Pulmonary fibrosis (PF) is a fatal fibrotic lung disease without any options to halt disease progression. Feasible evidence suggests that aberrant metabolism of amino acids may play a role in the pathoetiology of PF. However, the exact impact of kynurenine (Kyn), a metabolite derived from tryptophan (Trp) on PF is yet to be addressed. OBJECTIVES: This study aims to elucidate the role of kynurenine in both the onset and advancement of PF. METHODS: Liquid chromatography-tandem mass spectrometry was employed to assess Kyn levels in patients with idiopathic PF and PF associated with Sjögren's syndrome. Additionally, a mouse model of PF induced by bleomycin was utilized to study the impact of Kyn administration. Furthermore, cell models treated with TGF-ß1 were used to explore the mechanism by which Kyn inhibits fibroblast functions. RESULTS: We demonstrated that high levels of Kyn are a clinical feature in both idiopathic PF patients and primary Sjögren syndrome associated PF patients. Further studies illustrated that Kyn served as a braking molecule to suppress fibroblast functionality, thereby protecting mice from bleomycin-induced lung fibrosis. The protective effects depend on AHR, in which Kyn induces AHR nuclear translocation, where it upregulates PTEN expression to blunt TGF-ß mediated AKT/mTOR signaling in fibroblasts. However, in fibrotic microenviroment, the expression of AHR is repressed by methyl-CpG-binding domain 2 (MBD2), a reader interpreting the effect of DNA methylation, which results in a significantly reduced sensitivity of Kyn to fibroblasts. Therefore, exogenous administration of Kyn substantially reversed established PF. CONCLUSION: Our studies not only highlighted a critical role of Trp metabolism in PF pathogenesis, but also provided compelling evidence suggesting that Kyn could serve as a promising metabolite against PF.

14.
Adv Mater ; : e2405475, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898702

ABSTRACT

While proteolysis-targeting chimeras (PROTACs) hold great potential for persistently reprogramming the immunosuppressive tumor microenvironment via targeted protein degradation, precisely activating them in tumor tissues and preventing uncontrolled proteolysis at off-target sites remain challenging. Herein, a light-triggered PROTAC nanoassembly (LPN) for photodynamic indoleamine 2,3-dioxygenase (IDO) proteolysis is reported. The LPN is derived from the self-assembly of prodrug conjugates, which comprise a PROTAC, cathepsin B-specific cleavable peptide linker, and photosensitizer, without any additional carrier materials. In colon tumor models, intravenously injected LPNs initially silence the activity of PROTACs and accumulate significantly in targeted tumor tissues due to an enhanced permeability and retention effect. Subsequently, the cancer biomarker cathepsin B begins to trigger the release of active PROTACs from the LPNs through enzymatic cleavage of the linkers. Upon light irradiation, tumor cells undergo immunogenic cell death induced by photodynamic therapy to promote the activation of effector T cells, while the continuous IDO degradation of PROTAC simultaneously blocks tryptophan metabolite-regulated regulatory-T-cell-mediated immunosuppression. Such LPN-mediated combinatorial photodynamic IDO proteolysis effectively inhibits tumor growth, metastasis, and recurrence. Collectively, this study presents a promising nanomedicine, designed to synergize PROTACs with other immunotherapeutic modalities, for more effective and safer cancer immunotherapy.

15.
ACS Appl Mater Interfaces ; 16(24): 30671-30684, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38843203

ABSTRACT

Indoleamine 2,3-dioxygenase (IDO), highly expressed in hepatocellular carcinoma (HCC), plays a pivotal role in creating an immune-suppressive tumor microenvironment. Inhibiting IDO activity has emerged as a promising immunotherapeutic strategy; however, the delivery of IDO inhibitors to the tumor site is constrained, limiting their therapeutic efficacy. In this study, we developed a magnetic vortex nanodelivery system for the targeted delivery of the IDO inhibitor NLG919, integrated with magnetic hyperthermia therapy to reverse the immune-suppressive microenvironment of liver cancer and inhibit tumor growth. This system comprises thermoresponsive polyethylenimine-coated ferrimagnetic vortex-domain iron oxide nanorings (PI-FVIOs) loaded with NLG919 (NLG919/PI-FVIOs). Under thermal effects, NLG919 can be precisely released from the delivery system, counteracting IDO-mediated immune suppression and synergizing with NLG919/PI-FVIOs-mediated magnetothermodynamic (MTD) therapy-induced immunogenic cell death (ICD), resulting in effective HCC suppression. In vivo studies demonstrate that this combination therapy significantly inhibits tumor growth and metastasis by enhancing the accumulation of cytotoxic T lymphocytes and suppressing regulatory T cells within the tumor. Overall, our findings reveal that NLG919/PI-FVIOs can induce a potent antitumor immune response by disrupting the IDO pathway and activating the ICD, offering a promising therapeutic avenue for HCC treatment.


Subject(s)
Indoleamine-Pyrrole 2,3,-Dioxygenase , Liver Neoplasms , Tumor Microenvironment , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Animals , Tumor Microenvironment/drug effects , Mice , Humans , Liver Neoplasms/therapy , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/immunology , Hyperthermia, Induced , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Mice, Inbred BALB C , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Imidazoles , Isoindoles
16.
Adv Sci (Weinh) ; 11(30): e2308734, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38884220

ABSTRACT

The unique physical tumor microenvironment (TME) and aberrant immune metabolic status are two obstacles that must be overcome in cancer immunotherapy to improve clinical outcomes. Here, an in situ mechano-immunometabolic therapy involving the injection of a biomimetic hydrogel is presented with sequential release of the anti-fibrotic agent pirfenidone, which softens the stiff extracellular matrix, and small interfering RNA IDO1, which disrupts kynurenine-mediated immunosuppressive metabolic pathways, together with the multi-kinase inhibitor sorafenib, which induces immunogenic cell death. This combination synergistically augmented tumor immunogenicity and induced anti-tumor immunity. In mouse models of clear cell renal cell carcinoma, a single-dose peritumoral injection of a biomimetic hydrogel facilitated the perioperative TME toward a more immunostimulatory landscape, which prevented tumor relapse post-surgery and prolonged mouse survival. Additionally, the systemic anti-tumor surveillance effect induced by local treatment decreased lung metastasis by inhibiting epithelial-mesenchymal transition conversion. The versatile localized mechano-immunometabolic therapy can serve as a universal strategy for conferring efficient tumoricidal immunity in "cold" tumor postoperative interventions.


Subject(s)
Carcinoma, Renal Cell , Disease Models, Animal , Hydrogels , Kidney Neoplasms , Neoplasm Recurrence, Local , Tumor Microenvironment , Animals , Mice , Neoplasm Recurrence, Local/prevention & control , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/drug therapy , Kidney Neoplasms/immunology , Kidney Neoplasms/metabolism , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Immunotherapy/methods , Humans , Biomimetics/methods , Sorafenib/pharmacology , Cell Line, Tumor , Pyridones
17.
Pathogens ; 13(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38787249

ABSTRACT

Neurodegenerative diseases are chronic conditions affecting the central nervous system (CNS). Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid beta in the limbic and cortical brain regions. AD is presumed to result from genetic abnormalities or environmental factors, including viral infections, which may have deleterious, long-term effects. In this study, we demonstrate that the Venezuelan equine encephalitis virus (VEEV) commonly induces neurodegeneration and long-term neurological or cognitive sequelae. Notably, the effects of VEEV infection can persistently influence gene expression in the mouse brain, suggesting a potential link between the observed neurodegenerative outcomes and long-term alterations in gene expression. Additionally, we show that alphavirus encephalitis exacerbates the neuropathological profile of AD through crosstalk between inflammatory and kynurenine pathways, generating a range of metabolites with potent effects. Using a mouse model for ß-amyloidosis, Tg2576 mice, we found that cognitive deficits and brain pathology were more severe in Tg2576 mice infected with VEEV TC-83 compared to mock-infected controls. Thus, during immune activation, the kynurenine pathway plays a more active role in the VEEV TC-83-infected cells, leading to increases in the abundance of transcripts related to the kynurenine pathway of tryptophan metabolism. This pathway generates several metabolites with potent effects on neurotransmitter systems as well as on inflammation, as observed in VEEV TC-83-infected animals.

18.
Bioorg Chem ; 148: 107426, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733750

ABSTRACT

Taking advantage of key interactions between sulfoxide and heme cofactor, we used the sulfoxide as the anchor functional group to develop two series of indoleamine 2, 3-dioxygenase 1 (IDO1) inhibitors: 2-benzylsulfinylbenzoxazoles (series 1) and 2-phenylsulfinylbenzoxazoles (series 2). In vitro enzymatic screening shows that both series can inhibit the activity of IDO1 in low micromolar (series 1) or nanomolar (series 2) levels. They also show inhibitory selectivity between IDO1 and tryptophan 2, 3-dioxygenase 2. Interestingly, although series 1 is less potent IDO1 inhibitors of these two series, it exhibited stronger inhibitory activity toward kynurenine production in interferon-γ stimulated BxPC-3 cells. Enzyme kinetics and binding studies demonstrated that 2-sulfinylbenzoxazoles are non-competitive inhibitors of tryptophan, and they interact with the ferrous form of heme. These results demonstrated 2-sulfinylbenzoxazoles as type II IDO1 inhibitors. Furthermore, molecular docking studies supports the sulfoxide being of the key functional group that interacts with the heme cofactor. Compound 22 (series 1) can inhibit NO production in a concentration dependent manner in lipopolysaccharides (LPS) stimulated RAW264.7 cells, and can relieve pulmonary edema and lung injury in LPS induced mouse acute lung injury models.


Subject(s)
Enzyme Inhibitors , Heme , Indoleamine-Pyrrole 2,3,-Dioxygenase , Animals , Humans , Mice , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Heme/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Imidazoles/chemical synthesis , Imidazoles/chemistry , Imidazoles/pharmacology , Benzoxazoles/chemical synthesis , Benzoxazoles/chemistry , Benzoxazoles/pharmacology
19.
Bioorg Med Chem Lett ; 108: 129796, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38754563

ABSTRACT

In this work, we report 14 novel quinazoline derivatives as immune checkpoint inhibitors, IDO1 and PD-L1. The antitumor screening of synthesized compounds on ovarian cancer cells indicated that compound V-d and V-l showed the most activity with IC50 values of about 5 µM. Intriguingly, compound V-d emerges as a stand out, triggering cell death through caspase-dependent and caspase-independent manners. More importantly, V-d presents its ability to hinder tumor sphere formation and re-sensitized cisplatin-resistant A2780 cells to cisplatin treatment. These findings suggest that compound V-d emerges as a promising lead candidate for the future development of immuno anticancer agents.


Subject(s)
Antineoplastic Agents , Drug Design , Drug Screening Assays, Antitumor , Immune Checkpoint Inhibitors , Quinazolines , Humans , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/chemical synthesis , Structure-Activity Relationship , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/chemical synthesis , Immune Checkpoint Inhibitors/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Molecular Structure , Cell Line, Tumor , Dose-Response Relationship, Drug , Cell Proliferation/drug effects , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism
20.
J Virol ; 98(7): e0045824, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38814067

ABSTRACT

Tryptophan metabolism plays a crucial role in facilitating various cellular processes essential for maintaining normal cellular function. Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the conversion of tryptophan (Trp) into kynurenine (Kyn), thereby initiating the degradation of Trp. The resulting Kyn metabolites have been implicated in the modulation of immune responses. Currently, the role of IDO1-mediated tryptophan metabolism in the process of viral infection remains relatively unknown. In this study, we discovered that classical swine fever virus (CSFV) infection of PK-15 cells can induce the expression of IDO1, thereby promoting tryptophan metabolism. IDO1 can negatively regulate the NF-κB signaling by mediating tryptophan metabolism, thereby facilitating CSFV replication. We found that silencing the IDO1 gene enhances the expression of IFN-α, IFN-ß, and IL-6 by activating the NF-κB signaling pathway. Furthermore, our observations indicate that both silencing the IDO1 gene and administering exogenous tryptophan can inhibit CSFV replication by counteracting the cellular autophagy induced by Rapamycin. This study reveals a novel mechanism of IDO1-mediated tryptophan metabolism in CSFV infection, providing new insights and a theoretical basis for the treatment and control of CSFV.IMPORTANCEIt is well known that due to the widespread use of vaccines, the prevalence of classical swine fever (CSF) is shifting towards atypical and invisible infections. CSF can disrupt host metabolism, leading to persistent immune suppression in the host and causing significant harm when co-infected with other diseases. Changes in the host's metabolic profiles, such as increased catabolic metabolism of amino acids and the production of immunoregulatory metabolites and their derivatives, can also influence virus replication. Mammals utilize various pathways to modulate immune responses through amino acid utilization, including increased catabolic metabolism of amino acids and the production of immunoregulatory metabolites and their derivatives, thereby limiting viral replication. Therefore, this study proposes that targeting the modulation of tryptophan metabolism may represent an effective approach to control the progression of CSF.


Subject(s)
Classical Swine Fever Virus , Indoleamine-Pyrrole 2,3,-Dioxygenase , NF-kappa B , Signal Transduction , Tryptophan , Virus Replication , Tryptophan/metabolism , Animals , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , NF-kappa B/metabolism , Swine , Classical Swine Fever Virus/physiology , Cell Line , Kynurenine/metabolism , Classical Swine Fever/virology , Classical Swine Fever/metabolism , Autophagy
SELECTION OF CITATIONS
SEARCH DETAIL