Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Micromachines (Basel) ; 15(8)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39203592

ABSTRACT

Highly sensitive infrared photodetectors are needed in numerous sensing and imaging applications. In this paper, we report on extended short-wave infrared (e-SWIR) avalanche photodiodes (APDs) capable of operating at room temperature (RT). To extend the detection wavelength, the e-SWIR APD utilizes a higher indium (In) composition, specifically In0.3Ga0.7As0.25Sb0.75/GaSb heterostructures. The detection cut-off wavelength is successfully extended to 2.6 µm at RT, as verified by the Fourier Transform Infrared Spectrometer (FTIR) detection spectrum measurement at RT. The In0.3Ga0.7As0.25Sb0.75/GaSb heterostructures are lattice-matched to GaSb substrates, ensuring high material quality. The noise current at RT is analyzed and found to be the shot noise-limited at RT. The e-SWIR APD achieves a high multiplication gain of M~190 at a low bias of Vbias=- 2.5 V under illumination of a distributed feedback laser (DFB) with an emission wavelength of 2.3 µm. A high photoresponsivity of R>140 A/W is also achieved at the low bias of Vbias=-2.5 V. This type of highly sensitive e-SWIR APD, with a high internal gain capable of RT operation, provides enabling technology for e-SWIR sensing and imaging while significantly reducing size, weight, and power consumption (SWaP).

2.
Heliyon ; 10(3): e24853, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38322877

ABSTRACT

The first observation of the ν1+3ν3 combination band of the nitrogen dioxide isotopologue 16O14N18O is presented. The band was measured using Fourier-Transform Incoherent Broad-Band Cavity Enhanced Absorption Spectroscopy (FT-IBBCEAS) in the region between 5870 cm-1 and 5940 cm-1. To confirm the assignment, the band was simulated using a standard asymmetric top Watson Hamiltonian using extrapolated rotational and centrifugal distortion constants. Furthermore, the first experimental observation of the ν1+3ν3 band of the 18O14N18O isotopologue is also reported. The positions of ro-vibrational lines of the ν1+3ν3 band of the naturally most abundant isotopologue 16O14N16O were used for wavenumber calibration of line positions.

3.
Photosynth Res ; 161(1-2): 93-103, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38224422

ABSTRACT

C-phycocyanin (C-PC) is the main component of water-soluble light-harvesting complexes (phycobilisomes, PBS) of cyanobacteria. PBS are involved in the absorption of quantum energy and the transfer of electronic excitation energy to the photosystems. A specific environment of C-PC chromophoric groups is provided by the protein matrix structure including protein-protein contacts between different subunits. Registration of C-PC spectral characteristics and the fluorescence anisotropy decay have revealed a significant pH influence on the chromophore microenvironment: at pH 5.0, a chromophore is more significantly interacts with the solvent, whereas at pH 9.0 the chromophore microenvironment becomes more viscous. Conformations of chromophores and the C-PC protein matrix have been studied by Raman and infrared spectroscopy. A decrease in the medium pH results in changes in the secondary structure either the C-PC apoproteins and chromophores, the last one adopts a more folded conformation.


Subject(s)
Bacterial Proteins , Light-Harvesting Protein Complexes , Phycocyanin , Spirulina , Phycocyanin/chemistry , Hydrogen-Ion Concentration , Fluorescence Polarization , Spectrum Analysis, Raman , Spectrophotometry, Infrared , Protein Structure, Secondary , Light-Harvesting Protein Complexes/chemistry , Protein Folding , Spirulina/enzymology , Bacterial Proteins/chemistry
4.
Small ; 20(6): e2304563, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37786270

ABSTRACT

It is substantially challenging for non-centrosymmetric (NCS) Hg-based chalcogenides for infrared nonlinear optical (IR-NLO) applications to realize wide band gap (Eg > 3.0 eV) and sufficient phase-matching (PM) second-harmonic-generation intensity (deff > 1.0 × benchmark AgGaS2 ) simultaneously due to the inherent incompatibility. To address this issue, this work presents a diagonal synergetic substitution strategy for creating two new NCS quaternary Hg-based chalcogenides, AEHgGeS4 (AE = Sr and Ba), based on the centrosymmetric (CS) AEIn2 S4 . The derived AEHgGeS4 displays excellent NLO properties such as a wide Eg (≈3.04-3.07 eV), large PM deff (≈2.2-3.0 × AgGaS2 ), ultra-high laser-induced damage threshold (≈14.8-15 × AgGaS2 ), and suitable Δn (≈0.19-0.24@2050 nm), making them highly promising candidates for IR-NLO applications. Importantly, such excellent second-order NLO properties are primarily attributed to the synergistic combination of tetrahedral [HgS4 ] and [GeS4 ] functional primitives, as supported by detailed theoretical calculations. This study reports the first two NCS Hg-based materials with well-balanced comprehensive properties (i.e., Eg > 3.0 eV and deff > 1.0 × benchmark AgGaS2 ) and puts forward a new design avenue for the construction of more efficient IR-NLO candidates.

5.
J Pharm Sci ; 113(3): 725-734, 2024 03.
Article in English | MEDLINE | ID: mdl-37690776

ABSTRACT

This study proposes the application of carboxymethyl starch derivatives as tablet coatings affording gastro-protection. Carboxymethyl starch (CMS) films were obtained by casting of aqueous filmogenic starch solutions with or without plasticizers and their structural organization was followed using Fourier transform infrared (FTIR), Thermogravimetric analysis (TGA), X-ray diffraction (XRD). Together with data from mechanical tests (tensile strength, elongation, Young's modulus) the results were used to select filmogenic formulations adapted for coatings of tablets. The behaviour of these films was evaluated in simulated gastric and intestinal fluids. The effect of plasticizers (glycerol and sorbitol) on the starch organization, on the rate of drying of the films and on the water vapor absorption was also analyzed. Various types of starch have been compared and the best results were found with high amylose starch (HAS) that was carboxymethylated in an aqueous phase to obtain carboxymethyl high amylose starch (CMHAS). The CMHAS coating solutions containing sorbitol or glycerol as plasticizers have been applied with an industrial pan coater and the final tablets exhibited a good gastro-resistance (up to 2h) in simulated gastric fluid followed by disintegration in simulated intestinal fluid (SIF). The CMHAS derivatives present a high potential as coatings for nutraceutical and pharmaceutical solid dosage forms.


Subject(s)
Amylose , Plasticizers , Starch/analogs & derivatives , Amylose/chemistry , Plasticizers/chemistry , Glycerol/chemistry , Starch/chemistry , Tablets , Sorbitol
6.
Sensors (Basel) ; 23(24)2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38139708

ABSTRACT

The spectrometric characteristics of CdZnTe detectors are largely determined by the nonuniformity of the material and the influence of the negative polarization effects associated with the formation of space charges in the sensitive volume of the detector. They change the electric field distribution in the detector and affect the efficiency of the charge carrier collection. An analysis of the waveforms of the output pulses was used to investigate the uniformity of the charge collection and electric field distribution in the detectors when irradiated by the alpha particles. The influence of infrared (IR) illumination on these parameters was evaluated. IR illumination had no positive effect on the planar detector but greatly improved the charge collection in quasi-hemispherical detectors in the peripheral (corner) regions. The output pulse amplitude increased, and the rise time notably decreased. Polarization that occurred predominantly in the corner regions at low temperatures (from -30 °C to -20 °C) was eliminated using IR illumination.

7.
Front Chem ; 11: 1202255, 2023.
Article in English | MEDLINE | ID: mdl-37332891

ABSTRACT

We present results from a field study monitoring methane and volatile organic compound emissions near an unconventional oil well development in Northern Colorado from September 2019 to May 2020 using a mid-infrared dual-comb spectrometer. This instrument allowed quantification of methane, ethane, and propane in a single measurement with high time resolution and integrated path sampling. Using ethane and propane as tracer gases for methane from oil and gas activity, we observed emissions during the drilling, hydraulic fracturing, millout, and flowback phases of well development. Large emissions were seen in drilling and millout phases and emissions decreased to background levels during the flowback phase. Ethane/methane and propane/methane ratios varied widely throughout the observations.

8.
Methods Mol Biol ; 2651: 53-58, 2023.
Article in English | MEDLINE | ID: mdl-36892758

ABSTRACT

Infrared spectrum stems from the matter's absorption of light in the infrared (IR) light region. Generally, this infrared light absorption is due to the transition of vibrational and rotational energy levels of the involved molecule. Since different molecules have different structures and vibration modes, infrared spectroscopy can therefore be widely applied to analyze the chemical compositions and structures of molecules. Here we describe the method of application of infrared spectroscopy in the investigation of Z-DNA in cells, as infrared spectroscopy can distinguish DNA secondary structures sensitively and the band at 930 cm-1 is specifically attributed to the Z-form DNA. Based on the curve fitting, the relative content of Z-DNA in the cells may be evaluated.


Subject(s)
DNA, Z-Form , Spectrophotometry, Infrared/methods , DNA , Vibration
9.
Sensors (Basel) ; 23(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36904834

ABSTRACT

Infrared (IR) small-target-detection performance restricts the development of infrared search and track (IRST) systems. Existing detection methods easily lead to missed detection and false alarms under complex backgrounds and interference, and only focus on the target position while ignoring the target shape features, which cannot further identify the category of IR targets. To address these issues and guarantee a certain runtime, a weighted local difference variance measure (WLDVM) algorithm is proposed. First, Gaussian filtering is used to preprocess the image by using the idea of a matched filter to purposefully enhance the target and suppress noise. Then, the target area is divided into a new tri-layer filtering window according to the distribution characteristics of the target area, and a window intensity level (WIL) is proposed to represent the complexity level of each layer of windows. Secondly, a local difference variance measure (LDVM) is proposed, which can eliminate the high-brightness background through the difference-form, and further use the local variance to make the target area appear brighter. The background estimation is then adopted to calculate the weighting function to determine the shape of the real small target. Finally, a simple adaptive threshold is used after obtaining the WLDVM saliency map (SM) to capture the true target. Experiments on nine groups of IR small-target datasets with complex backgrounds illustrate that the proposed method can effectively solve the above problems, and its detection performance is better than seven classic and widely used methods.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 295: 122634, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-36944279

ABSTRACT

Resistant bacteria have become one of the leading health threats in the last decades. Extended-spectrum ß-lactamase (ESBL) producing bacteria, including Escherichia (E.) coli and Klebsiella (K.) pneumoniae (the most frequent ones), are a significant class out of all resistant infecting bacteria. Due to the widespread and ongoing development of ESBL-producing (ESBL+) resistant bacteria, many routinely used antibiotics are no longer effective against them. However, an early and reliable ESBL+ bacteria detection method will improve the efficiency of treatment and limit their spread. In this work, we investigated the capability of infrared (IR) spectroscopy based machine learning tools [principal component analysis (PCA) and Random Forest (RF) classifier] for the rapid detection of ESBL+ bacteria isolated directly from patients' urine. For that, we examined 1881 E. coli samples (416 ESBL+ and 1465 ESBL-) and 609 K. pneumoniae samples (237 ESBL+ and 372 ESBL-). All samples were isolated directly from the urine of midstream patients. This study revealed that within 40 min of receiving the patient urine it is possible to determine the infecting bacterium as E. coli or K. pneumoniae with 95% success rate while it was possible to determine the ESBL+E. coli and ESBL+K. pneumoniae with 83% and 78% accuracy rates, respectively.


Subject(s)
Escherichia coli Infections , Klebsiella Infections , Humans , Escherichia coli , beta-Lactamases , Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae , Spectrophotometry, Infrared , Machine Learning , Escherichia coli Infections/microbiology , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Microbial Sensitivity Tests
11.
Materials (Basel) ; 15(22)2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36431486

ABSTRACT

Increasing attention is given to waterborne coatings for corrosion protection due to the lower ecological impact on the environment. It has been found that by using waterborne coatings, the emission of harmful volatile organic compounds (VOCs) is reduced by more than 50 g/L. However, they require longer drying time, their anti-corrosion performance is not as good as solvent-borne coatings and they still have not been developed for all corrosion environments. Another way to reduce VOCs is by using infrared (IR) drying technology. With catalytic infrared radiation, it is possible to cure all surfaces at notably reduced costs compared to traditional systems and in total respect for the environment, thanks to significant energy savings and minimal CO2 emissions. The aim of this paper was to evaluate corrosion protective properties of waterborne coatings which were dried with traditional and accelerated drying techniques, i.e., under atmospheric conditions and by using IR technology. Two different coating systems were applied, with and without Zn in the primer. To achieve this goal, the test samples were subjected to electrochemical, corrosion, and physical tests. It was shown that infrared technology does not affect the quality of the coating and it drastically reduces the intercoating interval. A coating system with zinc in the primer showed better overall protection properties after being subjected to impedance and salt spray testing, but generally, solvent-borne coatings still have higher durability than waterborne in extreme marine conditions according to recent research. Microstructure and porosity remained intact and the atomic force microscope confirmed that the flash-off was conducted correctly since there were no pinholes and blisters detected on the coating's surface. This study can serve as a foundation for further investigations of IC-dried waterborne coatings because there are not many at the moment.

12.
Heliyon ; 8(9): e10472, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36060463

ABSTRACT

Due to the recent COVID-19 pandemic that occurred worldwide since 2020, scientists and researchers have been studying methods to detect the presence of the virus causing COVID-19 disease, namely SARS-CoV-2. Optical spectroscopy is a method that employs the interaction of light in detecting virus on samples. It is a promising method that might help in detecting the presence of SARS-CoV-2 in samples. Four optical spectroscopy methods are discussed in this paper: ultraviolet (UV), infrared (IR), Raman spectroscopy and fluorescence spectroscopy. UV and IR spectroscopy differ in wavelength range (less than 400 nm for UV, more than 700 nm for IR). Raman spectroscopy involves shift in wavelength due to scattering of light. Fluorescence spectroscopy involves difference in wavelength between absorbed and emitted light due to vibrational relaxation. These four methods had been proven to differentiate healthy samples from virus-infected samples. UV spectroscopy is useful in determining presence of virus based on 260 nm/280 nm absorbance ratio. However, its usefulness is limited due to its destructive properties on virus at sufficiently high intensity. Meanwhile, IR spectroscopy has becoming popular in studies involving virus samples. Mid-infrared (MIR) spectroscopy is most commonly used among IR spectroscopy as it usually provides useful information directly from spectral data. Near infrared (NIR) spectroscopy is also used in studying virus samples, but additional methods such as principal component analysis (PCA) and partial least squares (PLS) are required to process raw spectral data and to identify molecules based on spectral peaks. On the other hand, Raman spectroscopy is useful because spectral data can be analyzed directly in identifying vibrational modes of specific molecules in virus samples. Fluorescence spectroscopy relies on interaction between viral particles and fluorescent tags for the detection of virus based on improvement or quenching of fluorescent signal. Due to non-invasive properties of virus samples, IR, Raman and fluorescence spectroscopy will be used more often in future studies involving virus detection in infected samples.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 280: 121572, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-35785709

ABSTRACT

Nanodiamond/polyamide (ND/PA) nanocomposite was examined with infrared (IR) microscopy and time-domain nuclear magnetic resonance (TD-NMR) to elucidate in detail the interphase between amino functionalized ND (ND-NH2) and PA 66. An IR image of the ND/PA nanocomposite suggested the uniform nanoscale distribution of the ND-NH2 particles thanks to the spherical shape and accessible external surface of ND terminated with reactive amino groups. On the other hand, a substantial level of change was observed in T2 decay curves when the ND-NH2 particles were incorporated in the PA 66. The fine features of the thermally induced changes in the decay curves were readily analyzed with the two-trace two-dimensional (2T2D) correlation method. The variation in the asynchronous correlation intensity indicated that the changes observed in the mechanical properties of the ND/NH2 may be attributed to the development of crosslinking between tie chains in the amorphous region via the interaction between the ND-NH2 and PA 66. Accordingly, such firm links have a substantial effect in preventing the displacement of the amorphous domain, which eventually increases the Young's modulus but reduces the ductility of the PA.

14.
Int J Mol Sci ; 23(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35897823

ABSTRACT

The theory of orientation polarization and dielectric relaxation was developed by P. Debye more than 100 years ago. It is based on approximating a molecule by a sphere having one or more dipole moments. By that the detailed intra- and intermolecular interactions are explicitly not taken into consideration. In this article, the principal limitations of the Debye approximation are discussed. Taking advantage of the molecular specificity of the infrared (IR) spectral range, measurements of the specific IR absorption of the stretching vibration υ(OH) (at 3370 cm-1) and the asymmetric υas(CH2) (at 2862.9 cm-1) are performed in dependence on the frequency and the strength of external electric fields and at varying temperature. The observed effects are interpreted as caused by orientation polarization of the OH and the adjacent CH2 moieties.


Subject(s)
Vibration , Spectrum Analysis , Temperature
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 278: 121371, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-35594700

ABSTRACT

Acetylation is a common and extremely important protein modification in biology, referring to the covalent attachment of an acetyl group to the amino group. There are two forms of protein acetylation, which are lysine Nε-acetylation and N-terminal Nα-acetylation, respectively. Protein lysine Nε-acetylation is a globally important post-translational modification which plays a critical regulatory role in almost all aspects of cell metabolism. In addition, whether lysine on the N-terminal of protein can undergo Nα-acetylation is still a controversial viewpoint. Carrying out further molecular study of the role of acetylation is also the one of challenges. In order to investigate the protein acetylation more effectively, it is thus necessary to have a thorough and comprehensive understanding of lysine acetylation. In this work, both Raman and infrared (IR) spectra of L-lysine Nε-Ace-Lys, Nα-Ace-Lys, and NαNε-Ace-Lys were explored through both experimental experiment and theoretical computation based on density function theory (DFT). Vibration assignments and geometry structures of three acetylated lysines were therefore obtained for the first time in this work. The IR or Raman spectra of four molecules are very different from each other, which can be easily distinguished from the characteristic bands at 1500-1700 cm-1 and 3200-3400 cm-1 regions. Therefore, this work may provide the guide for probing the protein acetylation by Raman and IR spectroscopy.


Subject(s)
Lysine , Protein Processing, Post-Translational , Acetylation , Lysine/metabolism , Spectrum Analysis, Raman , Vibration
16.
Environ Res ; 212(Pt B): 113329, 2022 09.
Article in English | MEDLINE | ID: mdl-35472460

ABSTRACT

Microplastic (MP) surfaces are common sites for microbial colonization and promote biofilm formation in aquatic environments, resulting in changes to the surface properties of MPs and their interaction with pollutants. Although the diversity of microbial communities adhering to MPs has been well documented in aquatic environments, surface changes in MPs due to microbial colonization are still poorly understood. In this study, we aimed to evaluate the variations in the chemical structure and components of biofilms on the surface of polystyrene microplastics (PS-MPs) collected from the shore of the Tuul River in Mongolia, using micro-Fourier transform infrared (micro-FTIR) spectroscopy. We applied a spectral subtraction approach, and the differences in spectra between peroxide-treated and untreated PS-MP particles enabled us to obtain the structural features of biofilms that developed on the plastic surface. In addition, the surface photooxidation status of the sampled PS-MPs was calculated from the subtracted spectra of peroxide-treated and pristine PS-MPs. Various functional groups of N-containing organic substances from bacterial and fungal communities were detected in the obtained biofilm spectra. Based on the spectral characteristics, biofilm spectra were classified into four groups by applying principal component analysis (PCA). A wide range of carbonyl indices (CIs: 0.00-1.40) was found in the subtracted spectra between peroxide-treated and pristine PS-MPs, revealing that different levels of surface oxidation progressed by physical influences such as solar radiation and freeze-thaw cycles. Furthermore, lignocellulose and silicate were found on the PS-MP surface as allochthonous attachments. Considering the variation in residence time of PS-MPs, they attract plant residues and mineral particles through the development of biofilms and travel together in the river environment. Given that the dynamic behavior of MPs can be greatly affected by changes in their surfaces, further studies are needed to emphasize their link to organic matter dynamics.


Subject(s)
Microplastics , Water Pollutants, Chemical , Biofilms , Mongolia , Peroxides/analysis , Plastics/analysis , Polystyrenes , Rivers , Water Pollutants, Chemical/analysis
17.
Molecules ; 27(7)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35408586

ABSTRACT

Wine lees, a sub-exploited byproduct of vinification, is considered a rich source of bioactive compounds, such as (poly)phenols, anthocyanins and tannins. Thus, the effective and rapid recovery of these biomolecules and the assessment of the bioactive properties of wine lees extracts is of utmost importance. Towards this direction, microwave-assisted extraction (MAE) factors (i.e., extraction time, microwave power and solvent/material ratio) were optimized using experimental design models in order to maximize the (poly)phenolic yield of the extracts. After optimizing the MAE process, the total phenolic content (TPC) as well as the antiradical, antioxidant and antimicrobial activity of the extracts were evaluated. Furthermore, Fourier transform infrared spectroscopy (FTIR) was employed to investigate the chemical profile of wine lees extracts. Red varieties exhibited higher biological activity than white varieties. The geographical origin and fermentation stage were also considered as critical factors. The white variety Moschofilero presented the highest antioxidant, antiradical and antimicrobial activity, while Merlot and Agiorgitiko samples showed noteworthy activities among red varieties. Moreover, IR spectra confirmed the presence of sugars, amino acids, organic acids and aromatic compounds. Thus, an efficient, rapid and eco-friendly process was proposed for further valorization of wine lees extracts.


Subject(s)
Anti-Infective Agents , Wine , Anthocyanins/analysis , Anti-Infective Agents/pharmacology , Antioxidants/chemistry , Microwaves , Phenols/chemistry , Plant Extracts/pharmacology , Wine/analysis
18.
J Pharm Sci ; 111(6): 1543-1555, 2022 06.
Article in English | MEDLINE | ID: mdl-35041831

ABSTRACT

Members of the IQ Consortium ″Working Group on Characterization on Amorphous Solid Dispersions″ shares here a perspective on the analytical challenges, and limitations of detecting low levels of crystalline drug substance in amorphous solid dispersions (ASDs) and associated drug products. These companies aim to employ highly sensitive commercially available analytical technologies to guide development, support control strategies, and enable registration of quality products. We hope to promote consistency in development and registration approaches and guide the industry in development of "characterization best practices" in the interest of providing high quality products for patients. The first half of this perspective highlights the unique challenges of analytical methodologies to monitor crystalline drug substance in ASDs and their associated drug products. Challenges around use of limit tests, analyte spiking experiments, and method robustness are also underscored. The latter half describes the merits and limitations of the diverse analytical "toolbox" (such as XRPD, NIR and DSC), which can be readily applied during development and, in some cases, considered for potential application and validation in the commercial QC setting when necessary.


Subject(s)
Chemistry, Pharmaceutical , Calorimetry, Differential Scanning , Chemistry, Pharmaceutical/methods , Crystallization/methods , Humans , Solubility , X-Ray Diffraction
19.
Micromachines (Basel) ; 12(7)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34208985

ABSTRACT

Protective textiles used for military applications must fulfill a variety of functional requirements, including durability, resistance to environmental conditions and ballistic threats, all while being comfortable and lightweight. In addition, these textiles must provide camouflage and concealment under various environmental conditions and, thus, a range of wavelengths on the electromagnetic spectrum. Similar requirements may exist for other applications, for instance hunting. With improvements in infrared sensing technology, the focus of protective textile research and development has shifted solely from providing visible camouflage to providing camouflage in the infrared (IR) region. Smart textiles, which can monitor and react to the textile wearer or environmental stimuli, have been applied to protective textiles to improve camouflage in the IR spectral range. This study presents a review of current smart textile technologies for visible and IR signature control of protective textiles, including coloration techniques, chromic materials, conductive polymers, and phase change materials. We propose novel fabrication technology combinations using various microfabrication techniques (e.g., three-dimensional (3D) printing; microfluidics; machine learning) to improve the visible and IR signature management of protective textiles and discuss possible challenges in terms of compatibility with the different textile performance requirements.

20.
Klin Lab Diagn ; 66(12): 733-738, 2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35020286

ABSTRACT

The aim of this study was to validate the method for analyzing the composition of calculus using infrared (IR) spectroscopy by studying model mixtures of salts. Study was made with an ALPHA-P IR Fourier spectrometer with OPUS software (Bruker, Germany). The samples of pure chemical salts manufactured by Sigma-Aldrich USA were used to validate the method. Salt mixtures were prepared in ratios of 10/90, 50/50 and 90/10. To assess the effect of the fraction size on the calculus component results, were used calculi of patients with urolithiasis. For each mixture were used 10 repeated measurements. Analysis of the composition of model salts showed that in the study of pure cystine salt CV(%) was 0,79%, calcium carbonate - 0,92%, sodium urate - 0,97%, calcium oxalate monohydrate - 4,94%, magnesium ammonium phosphate - 5,59%. And the most common components were analyzed in the composition of complex mixtures, including 90%, 50% and 10% of the investigated component. Calcium oxalate monohydrate has CV(%) 5.70% in mixture 9 part of it to one part of impurities, in mixture 50/50 - 21.57% and in 10/90 - 5.70%. For uric acid in 90/10 - 2.20%, in 50/50 - 10.09%, in 10/90 - 31.94%. For calcium carbonate in 90/10 - 9.02%, in 50/50 - 11.98%, in 10/90 - 24.70%. The dispersion analysis showed that the weighed portions of salts with a particle diameter of more than 0.8 mm provide reproducibility with a CV - 11.48%, with a diameter of 0.2-0.8 mm - 5.35%, and finally less than 0.1 mm - 2.28%. The accuracy of the method is high, but the reproducibility of the IR-spectroscopy method is relatively low in the analysis of stones of mixed composition, due to the greater error in the determination of impurities. Laboratories should pay special attention to optimizing sample preparation to ensure particle fineness less than 0.1 mm.


Subject(s)
Calcium Oxalate , Urolithiasis , Humans , Reproducibility of Results , Spectrophotometry, Infrared , Uric Acid
SELECTION OF CITATIONS
SEARCH DETAIL