Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 566
Filter
1.
Sci Rep ; 14(1): 20699, 2024 09 05.
Article in English | MEDLINE | ID: mdl-39237579

ABSTRACT

Insulin-like growth factor (IGF)-I mediates long-term activities that determine cell fate, including cell proliferation and differentiation. This study aimed to characterize the mechanisms by which IGF-I determines cell fate from the aspect of IGF-I signaling dynamics. In L6 myoblasts, myogenic differentiation proceeded under low IGF-I levels, whereas proliferation was enhanced under high levels. Mathematical and experimental analyses revealed that IGF-I signaling oscillated at low IGF-I levels but remained constant at high levels, suggesting that differences in IGF-I signaling dynamics determine cell fate. We previously reported that differential insulin receptor substrate (IRS)-1 levels generate a driving force for cell competition. Computational simulations and immunofluorescence analyses revealed that asynchronous IRS-1 protein oscillations were synchronized during myogenic processes through cell competition. Disturbances of cell competition impaired signaling synchronization and cell fusion, indicating that synchronization of IGF-I signaling oscillation is critical for myoblast cell fusion to form multinucleate myotubes.


Subject(s)
Cell Differentiation , Insulin-Like Growth Factor I , Myoblasts , Signal Transduction , Insulin-Like Growth Factor I/metabolism , Myoblasts/metabolism , Myoblasts/cytology , Animals , Cell Line , Cell Proliferation , Muscle Development , Insulin Receptor Substrate Proteins/metabolism , Rats , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/cytology , Cell Fusion
2.
Biol Trace Elem Res ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39186227

ABSTRACT

The SH-SY5Y cell line is widely used in neurotoxicity studies. However, the effects of inducing cell differentiation on the cytotoxic effects of heavy metals are unclear. Therefore, we investigated the effects of mercuric chloride (HgCl2), cadmium chloride (CdCl2), arsenic trioxide (As2O3), and methylmercury (MeHg) on SH-SY5Y cells differentiated in the presence of insulin-like growth factor-I (IGF-I) or all-trans retinoic acid (ATRA). Neurite outgrowth with distinct changes in neuronal marker expression, phenotype, and cell cycle was induced in SH-SY5Y cells by IGF-I treatment for 1 day or ATRA treatment for up to 7 days. The cytotoxic effects of HgCl2 decreased at lower concentrations and increased at higher concentrations in both IGF-I- and ATRA-differentiated cells compared with those in undifferentiated cells. Differentiation with IGF-I, but not with ATRA, increased the cytotoxic effects of CdCl2. Decreased cytotoxic effects of As2O3 and MeHg were observed at lower concentrations in IGF-I-differentiated cells, whereas increased cytotoxic effects of As2O3 and MeHg were observed at higher concentrations in ATRA-differentiated cells. Changes in the cytotoxic effects of heavy metals were observed even after 1 day of ATRA exposure in SH-SY5Y cells. Our results demonstrate that the differentiation of SH-SY5Y cells by IGF-I and ATRA induces different cellular characteristics, resulting in diverse changes in sensitivity to heavy metals, which depend not only on the differentiation agents and treatment time but also on the heavy metal species and concentration.

3.
Protein Pept Lett ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38963110

ABSTRACT

INTRODUCTION: Insulin-like growth factor-1 (IGF-1) is a single-chain polypeptide with various physiological functions. Escherichia coli is one of the most desirable hosts for recombinant protein production, especially for human proteins whose post-translation modifications are not essential for their bioactivity, such as hIGF-1. OBJECTIVES: In this study, bacterial thioredoxin (Trx) was studied as a fused and non-fused protein to convert the insoluble form of recombinant human IGF-1 (rhIGF-1) to its soluble form in E. coli. METHODS: The rhIGF-1 was expressed in the E. coli Origami strain in the form of fused-Trx. It was co-expressed with Trx and then purified and quantified. In the next step, the biological activity of rhIGF-1 was evaluated by alkaline phosphatase (ALP) activity assay in human adipose-derived stem cells (hASCs) regarding the differentiation enhancement effect of IGF-1 through the osteogenic process. RESULTS: Results showed that Trx in both the fused and non-fused forms had a positive effect on the production of the soluble form of rhIGF-1. A significant increase in ALP activity in hASCs after rhIGF-1 treatment was observed, confirming protein bioactivity. CONCLUSION: It was strongly suggested that the overproduction of Trx could increase the solubility of co-expressed recombinant proteins by changing the redox state in E. coli cells.

4.
Front Cell Neurosci ; 18: 1390663, 2024.
Article in English | MEDLINE | ID: mdl-38910964

ABSTRACT

Insulin-like growth factor-I (IGF-I) plays a key role in the modulation of synaptic plasticity and is an essential factor in learning and memory processes. However, during aging, IGF-I levels are decreased, and the effect of this decrease in the induction of synaptic plasticity remains unknown. Here we show that the induction of N-methyl-D-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP) at layer 2/3 pyramidal neurons (PNs) of the mouse barrel cortex is favored or prevented by IGF-I (10 nM) or IGF-I (7 nM), respectively, when IGF-I is applied 1 h before the induction of Hebbian LTP. Analyzing the cellular basis of this bidirectional control of synaptic plasticity, we observed that while 10 nM IGF-I generates LTP (LTPIGF-I) of the post-synaptic potentials (PSPs) by inducing long-term depression (LTD) of the inhibitory post-synaptic currents (IPSCs), 7 nM IGF-I generates LTD of the PSPs (LTDIGF-I) by inducing LTD of the excitatory post-synaptic currents (EPSCs). This bidirectional effect of IGF-I is supported by the observation of IGF-IR immunoreactivity at both excitatory and inhibitory synapses. Therefore, IGF-I controls the induction of Hebbian NMDAR-dependent plasticity depending on its concentration, revealing novel cellular mechanisms of IGF-I on synaptic plasticity and in the learning and memory machinery of the brain.

5.
Clin Endocrinol (Oxf) ; 101(3): 263-273, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38865284

ABSTRACT

OBJECTIVE: Acromegaly is associated with increased morbidity and mortality if left untreated. The therapeutic options include surgery, medical treatment, and radiotherapy. Several guidelines and recommendations on treatment algorithms and follow-up exist. However, not all recommendations are strictly evidence-based. To evaluate consensus on the treatment and follow-up of patients with acromegaly in the Nordic countries. METHODS: A Delphi process was used to map the landscape of acromegaly management in Denmark, Sweden, Norway, Finland, and Iceland. An expert panel developed 37 statements on the treatment and follow-up of patients with acromegaly. Dedicated endocrinologists (n = 47) from the Nordic countries were invited to rate their extent of agreement with the statements, using a Likert-type scale (1-7). Consensus was defined as ≥80% of panelists rating their agreement as ≥5 or ≤3 on the Likert-type scale. RESULTS: Consensus was reached in 41% (15/37) of the statements. Panelists agreed that pituitary surgery remains first line treatment. There was general agreement to recommend first-generation somatostatin analog (SSA) treatment after failed surgery and to consider repeat surgery. In addition, there was agreement to recommend combination therapy with first-generation SSA and pegvisomant as second- or third-line treatment. In more than 50% of the statements, consensus was not achieved. Considerable disagreement existed regarding pegvisomant monotherapy, and treatment with pasireotide and dopamine agonists. CONCLUSION: This consensus exploration study on the management of patients with acromegaly in the Nordic countries revealed a relatively large degree of disagreement among experts, which mirrors the complexity of the disease and the shortage of evidence-based data.


Subject(s)
Acromegaly , Delphi Technique , Somatostatin , Acromegaly/therapy , Humans , Somatostatin/analogs & derivatives , Somatostatin/therapeutic use , Scandinavian and Nordic Countries/epidemiology , Consensus , Human Growth Hormone/therapeutic use , Human Growth Hormone/analogs & derivatives , Surveys and Questionnaires
6.
J Alzheimers Dis ; 99(2): 609-622, 2024.
Article in English | MEDLINE | ID: mdl-38701139

ABSTRACT

Background: Insulin-like growth factor-I (IGF-I) regulates myelin, but little is known whether IGF-I associates with white matter functions in subjective and objective mild cognitive impairment (SCI/MCI) or Alzheimer's disease (AD). Objective: To explore whether serum IGF-I is associated with magnetic resonance imaging - estimated brain white matter volumes or cognitive functions. Methods: In a prospective study of SCI/MCI (n = 106) and AD (n = 59), we evaluated the volumes of the total white matter, corpus callosum (CC), and white matter hyperintensities (WMHs) as well as Mini-Mental State Examination (MMSE), Trail Making Test A and B (TMT-A/B), and Stroop tests I-III at baseline, and after 2 years. Results: IGF-I was comparable in SCI/MCI and AD (113 versus 118 ng/mL, p = 0.44). In SCI/MCI patients, the correlations between higher baseline IGF-I and greater baseline and 2-year volumes of the total white matter and total CC lost statistical significance after adjustment for intracranial volume and other covariates. However, after adjustment for covariates, higher baseline IGF-I correlated with better baseline scores of MMSE and Stroop test II in SCI/MCI and with better baseline results of TMT-B and Stroop test I in AD. IGF-I did not correlate with WMH volumes or changes in any of the variables. Conclusions: Both in SCI/MCI and AD, higher IGF-I was associated with better attention/executive functions at baseline after adjustment for covariates. Furthermore, the baseline associations between IGF-I and neuropsychological test results in AD may argue against significant IGF-I resistance in the AD brain.


Subject(s)
Alzheimer Disease , Brain , Cognitive Dysfunction , Insulin-Like Growth Factor I , Magnetic Resonance Imaging , Neuropsychological Tests , White Matter , Humans , Male , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/analysis , Alzheimer Disease/blood , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , Female , Aged , Cognitive Dysfunction/blood , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , White Matter/diagnostic imaging , White Matter/pathology , Brain/pathology , Brain/diagnostic imaging , Neuropsychological Tests/statistics & numerical data , Aged, 80 and over , Cognition/physiology , Prospective Studies , Middle Aged , Organ Size , Mental Status and Dementia Tests , Insulin-Like Peptides
7.
Iran Biomed J ; 28(2&3): 82-9, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38770885

ABSTRACT

Background: Osteogenic, antioxidant and anti-inflammatory effects of Whey protein and M. oleifera gel prompted us to evaluate their role alone or in combination on osseointegration in rabbits. Methods: In this study, 24 titanium implants were inserted in the femurs of six rabbits. One implant was placed without treatment, and another one was coated with a mixture of whey protein and M. oleifera gel for each side. The animals were divided into two groups of 2- and 6-week intervals and evaluated using histopathological and immunohistochemical techniques. Results: Histological evaluation revealed a significant difference between the experimental and the control groups after two weeks in osteoblast and osteocyte counts. The experimental group had mature bone development after six weeks of implantation, while the control group had a woven bone. Immunohistochemical results showed that the experimental group, compared to the control group, exhibited early positive expression of osteoblast cells at two weeks after the experiment. Based on histopathological observations, the experimental group showed a tiny area of collagenous fiber in 6th week after the implantation. Conclusion: A mixture of whey protein and M. oleifera could accelerate osseointegration and healing processes.


Subject(s)
Moringa oleifera , Osseointegration , Plant Extracts , Plant Leaves , Whey Proteins , Animals , Whey Proteins/pharmacology , Rabbits , Osseointegration/drug effects , Moringa oleifera/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Male , Osteoblasts/drug effects , Femur/drug effects , Osteogenesis/drug effects
8.
J Clin Med ; 13(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38792459

ABSTRACT

Several studies have demonstrated interesting results considering the implication of three growth factors (GFs), namely nerve growth factor (NGF), erythropoietin (EPO), and the insulin-like growth factor-I (IGF-1) in the physiology of male reproductive functions. This review provides insights into the effects of NGF, EPO, and IGF-1 on the male reproductive system, emphasizing mainly their effects on sperm motility and vitality. In the male reproductive system, the expression pattern of the NGF system varies according to the species and testicular development, playing a crucial role in morphogenesis and spermatogenesis. In humans, it seems that NGF positively affects sperm motility parameters and NGF supplementation in cryopreservation media improves post-thaw sperm motility. In animals, EPO is found in various male reproductive tissues, and in humans, the protein is present in seminal plasma and testicular germ cells. EPO receptors have been discovered in the plasma membrane of human spermatozoa, suggesting potential roles in sperm motility and vitality. In humans, IGF-1 is expressed mainly in Sertoli cells and is present in seminal plasma, contributing to cell development and the maturation of spermatozoa. IGF-1 seems to modulate sperm motility, and treatment with IGF-1 has a positive effect on sperm motility and vitality. Furthermore, lower levels of NGF or IGF-1 in seminal plasma are associated with infertility. Understanding the mechanisms of actions of these GFs in the male reproductive system may improve the outcome of sperm processing techniques.

9.
Clin Res Cardiol ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587563

ABSTRACT

BACKGROUND: Growth hormone (GH) resistance is characterized by high GH levels but low levels of insulin-like growth factor-I (IGF-I) and growth hormone binding protein (GHBP) and, for patients with chronic disease, is associated with the development of cachexia. OBJECTIVES: We investigated whether GH resistance is associated with changes in left ventricular (LV) mass (cardiac wasting) in patients with cancer. METHODS: We measured plasma IGF-I, GH, and GHBP in 159 women and 148 men with cancer (83% stage III/IV). Patients were grouped by tertile of echocardiographic LVmass/height2 (women, < 50, 50-61, > 61 g/m2; men, < 60, 60-74, > 74 g/m2) and by presence of wasting syndrome with unintentional weight loss (BMI < 24 kg/m2 and weight loss ≥ 5% in the prior 12 months). Repeat echocardiograms were obtained usually within 3-6 months for 85 patients. RESULTS: Patients in the lowest LVmass/height2 tertile had higher plasma GH (median (IQR) for 1st, 2nd, and 3rd tertile women, 1.8 (0.9-4.2), 0.8 (0.2-2.2), 0.5 (0.3-1.6) ng/mL, p = 0.029; men, 2.1 (0.8-3.2), 0.6 (0.1-1.7), 0.7 (0.2-1.9) ng/mL, p = 0.003). Among women, lower LVmass was associated with higher plasma IGF-I (68 (48-116), 72 (48-95), 49 (35-76) ng/mL, p = 0.007), whereas such association did not exist for men. Patients with lower LVmass had lower log IGF-I/GH ratio (women, 1.60 ± 0.09, 2.02 ± 0.09, 1.88 ± 0.09, p = 0.004; men, 1.64 ± 0.09, 2.14 ± 0.11, 2.04 ± 0.11, p = 0.002). GHBP was not associated with LVmass. Patients with wasting syndrome with unintentional weight loss had higher plasma GH and GHBP, lower log IGF-I/GH ratio, and similar IGF-I. Overall, GHBP correlated inversely with log IGF-I/GH ratio (women, r = - 0.591, p < 0.001; men, r = - 0.575, p < 0.001). Additionally, higher baseline IGF-I was associated with a decline in LVmass during follow-up (r = - 0.318, p = 0.003). CONCLUSION: In advanced cancer, reduced LVmass is associated with increased plasma GH and reduced IGF-I/GH ratio, suggesting increasing GH resistance, especially for patients with wasting syndrome with unintentional weight loss. Higher baseline IGF-I was associated with a decrease in relative LVmass during follow-up.

10.
Nutrients ; 16(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38612991

ABSTRACT

Insulin-like growth factor I (IGF-I) has been suggested as an important factor in the pathogenesis of bronchopulmonary dysplasia (BPD). In turn, nutrition has been associated with IGF-I levels and could be of importance in the pathogenesis of BPD. This study aimed to explore the association between nutrition, the IGF-I axis and the occurrence of BPD. Eighty-six preterm infants (44 male, mean gestational age: 29.0 weeks (standard deviation: 1.7 weeks)) were enrolled in an observational study. Serum IGF-I (µg/L) and insulin-like growth factor binding protein 3 (IGFBP-3; mg/L) were measured at birth and at 2, 4 and 6 weeks postnatal age. BPD was diagnosed at 36 weeks postmenstrual age. Twenty-nine infants were diagnosed with BPD. For every µg/L per week increase in IGF-I, the odds of BPD decreased (0.68, 95% CI 0.48-0.96, corrected for gestational age). The change in IGF-I in µg/L/week, gestational age in weeks and a week of predominant donor human milk feeding were associated with the occurrence of BPD in the multivariable analysis (respectively, OR 0.63 (0.43-0.92), OR 0.44 (0.26-0.76) and 7.6 (1.2-50.4)). IGFBP-3 was not associated with the occurrence of BPD in the multivariable analysis. In conclusion, a slow increase in IGF-I levels and a lower gestational age increase the odds of BPD. Donor human milk might increase the odds of BPD and should be further explored.


Subject(s)
Bronchopulmonary Dysplasia , Infant, Newborn , Infant , Humans , Male , Insulin-Like Growth Factor I , Infant, Premature , Insulin-Like Peptides , Nutritional Status
11.
Int J Stem Cells ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38658195

ABSTRACT

Tissue engineering envisions functional substitute creation for damaged tissues. Insulin-like growth factor-1 (IGF-1) plays roles in bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation (OD), and we investigated its specific mechanism. BMSCs were cultured and OD was induced. Surface antigens (CD105, CD90, CD44, CD45, CD34) were identified by flow cytometry. Adipogenic, chondrogenic, and osteogenic differentiation abilities of BMSCs were observed. BMSCs were cultured in osteogenic medium containing 80 ng/mL IGF-1 for 3 weeks. Alkaline phosphatase activity, calcification level, osteogenic factor (runt related protein 2 [RUNX2], osteocalcin [OCN], osterix [OSX]), total (t-) ERK1/2 and phosphorylated- (p-) ERK1/2 levels, and SRY-related high-mobility-group box 4 (SOX4) levels were assessed by alkaline phosphatase staining and Alizarin Red staining, Western blot, and reverse transcription-quantitative polymerase chain reaction. The mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway inhibitor (PD98059) was used to inhibit the MAPK/ERK pathway in IGF-1-treated BMSCs. Small interfering-SOX4 was transfected into BMSCs to down-regulate SOX4. IGF-1 increased alkaline phosphatase activity, cell calcification, and osteogenic factor (RUNX2, OCN, OSX) levels in BMSCs, indicating that IGF-1 induced rat BMSC OD. SOX4, and p-ERK1/2 and t-ERK1/2 levels were elevated in IGF-1-induced BMSCs, which were annulled by PD98059. PD98059 partly averted IGF-1-induced rat BMSC OD. SOX4 levels, alkaline phosphatase activity, cell calcification, and osteogenic factor (RUNX2, OCN, OSX) levels were reduced after SOX4 down-regulation, showing that downregulation of SOX4 averted the effect of IGF-1 on inducing rat BMSC OD. IGF-1 induced rat BMSC OD by stimulating SOX4 via the MAPK/ERK pathway.

12.
J Exp Clin Cancer Res ; 43(1): 129, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38685125

ABSTRACT

BACKGROUND: Circulating tumor cells (CTCs) hold immense promise in guiding treatment strategies for advanced gastric cancer (GC). However, their clinical impact has been limited due to challenges in identifying epithelial-mesenchymal transition (EMT)-CTCs using conventional methods. METHODS: To bridge this knowledge gap, we established a detection platform for CTCs based on the distinctive biomarker cell surface vimentin (CSV). A prospective study involving 127 GC patients was conducted, comparing CTCs enumeration using both EpCAM and CSV. This approach enabled the detection of both regular and EMT-CTCs, providing a comprehensive analysis. Spiking assays and WES were employed to verify the reliability of this marker and technique. To explore the potential inducer of CSV+CTCs formation, a combination of Tandem Mass Tag (TMT) quantitative proteomics, m6A RNA immunoprecipitation-qPCR (MeRIP-qPCR), single-base elongation- and ligation-based qPCR amplification method (SELECT) and RNA sequencing (RNA-seq) were utilized to screen and confirm the potential target gene. Both in vitro and in vivo experiments were performed to explore the molecular mechanism of CSV expression regulation and its role in GC metastasis. RESULTS: Our findings revealed the potential of CSV in predicting therapeutic responses and long-term prognosis for advanced GC patients. Additionally, compared to the conventional EpCAM-based CTCs detection method, the CSV-specific positive selection CTCs assay was significantly better for evaluating the therapeutic response and prognosis in advanced GC patients and successfully predicted disease progression 14.25 months earlier than radiology evaluation. Apart from its excellent role as a detection marker, CSV emerges as a promising therapeutic target for attenuating GC metastasis. It was found that fat mass and obesity associated protein (FTO) could act as a potential catalyst for CSV+CTCs formation, and its impact on the insulin-like growth factor-I receptor (IGF-IR) mRNA decay through m6A modification. The activation of IGF-I/IGF-IR signaling enhanced the translocation of vimentin from the cytoplasm to the cell surface through phosphorylation of vimentin at serine 39 (S39). In a GC mouse model, the simultaneous inhibition of CSV and blockade of the IGF-IR pathway yielded promising outcomes. CONCLUSION: In summary, leveraging CSV as a universal CTCs marker represents a significant breakthrough in advancing personalized medicine for patients with advanced GC. This research not only paves the way for tailored therapeutic strategies but also underscores the pivotal role of CSV in enhancing GC management, opening new frontiers for precision medicine.


Subject(s)
Biomarkers, Tumor , Neoplastic Cells, Circulating , Stomach Neoplasms , Vimentin , Animals , Female , Humans , Male , Mice , Middle Aged , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Prospective Studies , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , Vimentin/metabolism
13.
Heliyon ; 10(5): e27225, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38468961

ABSTRACT

Endoplasmic Reticulum Stress (ERS) is a key factor in the development of Non-Alcoholic Fatty Liver Disease (NAFLD) in diabetes. The current study aimed to examine the effects of exercise and IGF-I on ERS markers in liver tissue. Rats were divided into five groups (n = 8 per group), including control (CON), diabetes (DIA), diabetes + exercise (DIA + EX), diabetes + IGF-I (DIA + IGF-I), and diabetes + exercise + IGF-I (DIA + EX + IGF-I). Type 1 diabetes was induced by an I.P. injection of streptozotocin (60 mg/kg). After 30 days of treatment with exercise or IGF-I alone or in combination, liver tissue was assessed for caspase 12, 8, and CHOP protein levels, and expression of ERS markers (ATF-6, PERK, IRE-1A) and lipid metabolism-involved genes (FAS, FXR, SREBP-1c) by western immunoblotting. In addition, for the evaluation of histopathological changes in the liver, Hematoxylin - Eosin and Masson's Trichrome staining were done. Compared to the control group, diabetes significantly caused liver fibrosis, induced ERS, increased caspase 12 and 8 levels in the liver, and changed expression levels of genes associated with lipid metabolism, including FAS, FXR, and SREBP-1c. Treatment with either exercise or IGF-I reduced fibrosis levels suppressed ER stress markers and apoptosis, and improved expression of genes associated with lipid metabolism. In addition, simultaneous treatment with exercise and IGF-I showed a synergistic effect compared to DIA + E and DIA + IGF-I. The results suggest that IGF-1 and exercise reduced liver fibrosis possibly by reducing ERS, creating adaptive ER stress status, and improving protein folding.

14.
Reprod Sci ; 31(6): 1541-1550, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38347382

ABSTRACT

Vitamin D was well-known to be associated with gestational diabetes mellitus (GDM). Insulin-like growth factor-I (IGF-I) has been linked to vitamin D and GDM, respectively. We hypothesize that changes in IGF-I metabolism induced by 25(OH)D3 might contribute to GDM. Therefore, we investigated the independent and combined relationships of serum 25(OH)D3 and IGF-I concentrations with GDM risk, and the mediation effect of IGF-I on 25(OH)D3. A total of 278 pregnant women (including 125 cases and 153 controls) were recruited in our current study. Maternal serum 25(OH)D3 and IGF-I were measured in the second trimester. Logistic regression models were used to estimate the associations of 25(OH)D3 and IGF-I concentrations with the risk of GDM. Mediation analyses were used to explore the mediation effect of IGF-I on the association between 25(OH)D3 and the risk of GDM. After adjusted for the confounded factors, both the third and fourth quartile of 25(OH)D3 decreased the risk of GDM (OR = 0.226; 95% CI, 0.103-0.494; OR = 0.109; 95% CI, 0.045-0.265, respectively) compared to the first quartile of 25(OH)D3. However, the third and fourth quartile of serum IGF-I (OR = 5.174; 95% CI, 2.287-11.705; OR = 12.784; 95% CI, 5.292-30.879, respectively) increased the risk of GDM compared to the first quartile of serum IGF-I. Mediation analyses suggested that 19.62% of the associations between 25(OH)D3 and GDM might be mediated by IGF-I. The lower concentration of serum 25(OH)D3 or higher IGF-I in the second trimester was associated with an increased risk of GDM. The serum IGF-I level might be a potential mediator between 25(OH)D3 and GDM.


Subject(s)
Diabetes, Gestational , Insulin-Like Growth Factor I , Vitamin D , Adult , Female , Humans , Pregnancy , Calcifediol/blood , Case-Control Studies , Diabetes, Gestational/blood , Insulin-Like Growth Factor I/metabolism , Risk Factors , Vitamin D/blood
15.
Front Endocrinol (Lausanne) ; 15: 1290007, 2024.
Article in English | MEDLINE | ID: mdl-38370349

ABSTRACT

Context: Although the role of insulin-like growth factor I (IGF-1) in nonalcoholic fatty liver disease (NAFLD) has garnered attention in recent years, few studies have examined both reduced and elevated levels of IGF-1. Objective: The aim of this study was to examine the potential relationship between IGF-1 levels and the risk of new-onset NAFLD in patients with pituitary neuroendocrine tumors (PitNET). Methods: We employed multivariable Cox regression models and two-piecewise regression models to assess the association between IGF-1 and new-onset NAFLD. Hazard ratios (HRs) and their corresponding 95% confidence intervals (CIs) were calculated to quantify this association. Furthermore, a dose-response correlation between lgIGF-1 and the development of NAFLD was plotted. Additionally, we also performed subgroup analysis and a series sensitivity analysis. Results: A total of 3,291 PitNET patients were enrolled in the present study, and the median duration of follow-up was 65 months. Patients with either reduced or elevated levels of IGF-1 at baseline were found to be at a higher risk of NAFLD compared to PitNET patients with normal IGF-1(log-rank test, P < 0.001). In the adjusted Cox regression analysis model (model IV), compared with participants with normal IGF-1, the HRs of those with elevated and reduced IGF-1 were 2.33 (95% CI 1.75, 3.11) and 2.2 (95% CI 1.78, 2.7). Furthermore, in non-adjusted or adjusted models, our study revealed a U-shaped relationship between lgIGF-1 and the risk of NAFLD. Moreover, the results from subgroup and sensitivity analyses were consistent with the main results. Conclusions: There was a U-shaped trend between IGF-1 and new-onset NAFLD in patients with PitNET. Further evaluation of our discoveries is warranted.


Subject(s)
Neuroendocrine Tumors , Non-alcoholic Fatty Liver Disease , Humans , Cohort Studies , Incidence , Insulin-Like Growth Factor I/metabolism , Neuroendocrine Tumors/complications , Neuroendocrine Tumors/epidemiology , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology
16.
Endocrinol Metab (Seoul) ; 39(1): 83-89, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38192102

ABSTRACT

This review intends to provide the reader with a practical overview of several (patho)physiological conditions in which knowledge of the interplay between growth hormone (GH), insulin-like growth factor-1 (IGF-1), and insulin is important. This might help treating physicians in making the right decisions on how to intervene and improve metabolism for the benefit of patients, and to understand why and how metabolism responds in their specific cases. We will specifically address the interplay between GH, IGF-1, and insulin in type 1 and 2 diabetes mellitus, liver cirrhosis, and acromegaly as examples in which this knowledge is truly necessary.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Human Growth Hormone , Humans , Growth Hormone , Insulin , Insulin-Like Growth Factor I , Insulin-Like Peptides
17.
Pituitary ; 27(1): 7-22, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37923946

ABSTRACT

PURPOSE: The 14th Acromegaly Consensus Conference was convened to consider biochemical criteria for acromegaly diagnosis and evaluation of therapeutic efficacy. METHODS: Fifty-six acromegaly experts from 16 countries reviewed and discussed current evidence focused on biochemical assays; criteria for diagnosis and the role of imaging, pathology, and clinical assessments; consequences of diagnostic delay; criteria for remission and recommendations for follow up; and the value of assessment and monitoring in defining disease progression, selecting appropriate treatments, and maximizing patient outcomes. RESULTS: In a patient with typical acromegaly features, insulin-like growth factor (IGF)-I > 1.3 times the upper limit of normal for age confirms the diagnosis. Random growth hormone (GH) measured after overnight fasting may be useful for informing prognosis, but is not required for diagnosis. For patients with equivocal results, IGF-I measurements using the same validated assay can be repeated, and oral glucose tolerance testing might also be useful. Although biochemical remission is the primary assessment of treatment outcome, biochemical findings should be interpreted within the clinical context of acromegaly. Follow up assessments should consider biochemical evaluation of treatment effectiveness, imaging studies evaluating residual/recurrent adenoma mass, and clinical signs and symptoms of acromegaly, its complications, and comorbidities. Referral to a multidisciplinary pituitary center should be considered for patients with equivocal biochemical, pathology, or imaging findings at diagnosis, and for patients insufficiently responsive to standard treatment approaches. CONCLUSION: Consensus recommendations highlight new understandings of disordered GH and IGF-I in patients with acromegaly and the importance of expert management for this rare disease.


Subject(s)
Acromegaly , Human Growth Hormone , Humans , Acromegaly/metabolism , Insulin-Like Growth Factor I/metabolism , Delayed Diagnosis , Human Growth Hormone/metabolism , Growth Hormone
18.
Exp Physiol ; 109(5): 662-671, 2024 May.
Article in English | MEDLINE | ID: mdl-38156734

ABSTRACT

Childhood stunting and wasting, or decreased linear and ponderal growth associated with undernutrition, continue to be a major global public health challenge. Although many of the current therapeutic and dietary interventions have significantly reduced childhood mortality caused by undernutrition, there remain great inefficacies in improving childhood stunting. Longitudinal bone growth in children is governed by different genetic, nutritional and other environmental factors acting systemically on the endocrine system and locally at the growth plate. Recent studies have shown that this intricate interplay between nutritional and hormonal regulation of the growth plate could involve the gut microbiota, highlighting the importance of a holistic approach in tackling childhood undernutrition. In this review, I focus on the mechanistic insights provided by these recent advances in gut microbiota research and discuss ongoing development of microbiota-based therapeutics in humans, which could be the missing link in solving undernutrition and childhood stunting.


Subject(s)
Bone Development , Gastrointestinal Microbiome , Growth Disorders , Humans , Gastrointestinal Microbiome/physiology , Bone Development/physiology , Child , Growth Disorders/microbiology , Growth Disorders/physiopathology , Animals , Malnutrition/microbiology , Malnutrition/physiopathology , Child Development/physiology
19.
J Orthop Surg Res ; 18(1): 915, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38041076

ABSTRACT

BACKGROUNDS: Nonalcoholic fatty liver disease (NAFLD) exhibits a close association with osteoporosis. This work aims to assess the potential effects of NAFLD on the progression of osteopenia in animal models. METHODS: Forty-eight C57BL/6 female mice were randomly divided to wild-type (WT) group and high-fat diet (HFD) group. The corresponding detections were performed after sacrifice at 16, 24 and 32 weeks, respectively. RESULTS: At 16 weeks, an remarkable increase in body weight and lipid aggregation in the hepatocytes of HFD group was observed compared to the WT group, while the bone structure parameters showed no significant difference. At 24 weeks, the levels of TNF-α and IL-6 in NAFLD mice were significantly increased, while the level of osteoprotegerin mRNA in bone tissue was decreased, and the level of receptor activator of nuclear factor Kappa-B ligand mRNA was increased. Meanwhile, the function of osteoclasts was increased, and the bone microstructure parameters showed significant changes. At 32 weeks, in the HFD mice, the mRNA levels of insulin-like growth factor-1 (IGF-1), runt-related transcription factor 2, and osterix mRNA were reduced, while the insulin-like growth factor binding protein-1 (IGFBP-1) level was increased. Simultaneously, the osteoblast function was decreased, and the differences of bone structure parameters were more significant, showing obvious osteoporosis. CONCLUSIONS: The bone loss in HFD mice is pronounced as NAFLD progresses, and the changes of the TNF-α, IL-6, IGF-1, and IGFBP-1 levels may play critical roles at the different stages of NAFLD in HFD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Osteoporosis , Female , Mice , Animals , Non-alcoholic Fatty Liver Disease/complications , Tumor Necrosis Factor-alpha/metabolism , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor Binding Protein 1/genetics , Interleukin-6/metabolism , Mice, Inbred C57BL , Osteoporosis/complications , RNA, Messenger/metabolism
20.
Arch Med Res ; 54(8): 102921, 2023 12.
Article in English | MEDLINE | ID: mdl-38040526

ABSTRACT

Acromegaly is a chronic disease resulting from constantly elevated concentrations of growth hormone (GH) and insulin-like growth factor I (IGF-I). If not adequately treated, GH and IGF-I excess is associated with various cardiovascular risk factors. These symptoms mainly include hypertension and impaired glucose metabolism, which can be observed in approximately one-third of patients. Other comorbidities are dyslipidemia and the presence of obstructive sleep apnea syndrome. However, even in the absence of conventional cardiovascular risk factors, myocardial hypertrophy can occur, which reflects the impact of GH and IGF-I excess itself on the myocardium and is defined as acromegalic cardiomyopathy. Whereas previous echocardiography-based studies reported a high prevalence of cardiomyopathy, this prevalence is much lower in cardiac magnetic resonance imaging-based studies. Myocardial hypertrophy in acromegaly is due to a homogeneous increase in the intracellular myocardial mass and extracellular myocardial matrix and improves following successful treatment through intracellular changes. Intramyocardial water retention or ectopic lipid accumulation might not be of relevant concern. Successful treatment significantly improves myocardial morphology, as well as cardiovascular risk factors. In addition to GH/IGF-I-lowering therapy, the diagnosis and treatment of cardiovascular complications is crucial for the successful management of acromegaly.


Subject(s)
Acromegaly , Cardiomyopathies , Cardiovascular Diseases , Human Growth Hormone , Humans , Growth Hormone , Acromegaly/complications , Acromegaly/therapy , Cardiovascular Diseases/complications , Insulin-Like Growth Factor I/metabolism , Risk Factors , Human Growth Hormone/therapeutic use , Human Growth Hormone/metabolism , Cardiomyopathies/etiology , Cardiomyopathies/therapy , Heart Disease Risk Factors , Hypertrophy/complications
SELECTION OF CITATIONS
SEARCH DETAIL