Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 778
Filter
1.
Mar Pollut Bull ; 206: 116681, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38991605

ABSTRACT

To elucidate the spatial-temporal impact of invasive saltmarsh plant Spartina anglica on the biogeochemical processes in coastal wetlands, we investigated the rates and partitioning of organic carbon (Corg) mineralization in three representative benthic habitats: (1) vegetated sediments inhabited by invasive S. anglica (SA); vegetated sediments by indigenous Suaeda japonica; and (3) unvegetated mud flats. Microbial metabolic rates were greatly stimulated at the SA site during the active growing seasons of Spartina, indicating that a substantial amount of organic substrates was supplied from the high below-ground biomass of Spartina. At the SA site, sulfate reduction dominated the Corg mineralization pathways during the plant growing season, whereas iron reduction dominated during the non-growing season. Overall, due to its greater biomass and longer growing season than native Suaeda, the expansion of invasive Spartina is likely to greatly alter the Corg-Fe-S cycles and carbon storage capacity in the coastal wetlands.

2.
Environ Pollut ; : 124484, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960120

ABSTRACT

Sundarban, a Ramsar site of India, has been encountering an ecological threat due to the presence of microplastic (MP) wastes generated from different anthropogenic sources. Clibanarius longitarsus, an intertidal hermit crab of Sundarban Biosphere Reserve, resides within the abandoned shell of a gastropod mollusc, Telescopium telescopium. We characterized and estimated the MP in the gills and gut of hermit crab, as well as in the water present in its occupied gastropod shell. The average microplastic abundance in sea water, sand and sediment were 0.175 ± 0.145 MP L-1, 42 ± 15.03 MP kg-1 and 67.63 ± 24.13 MP kg-1 respectively. The average microplastic load in hermit crab was 1.94 ± 0.59 MP crab-1, with 33.89 % and 66.11 % in gills and gut respectively. Gastropod shell water exhibited accumulation of 1.69 ± 1.43 MP L-1. Transparent and fibrous microplastics were documented as the dominant polymers of water, sand and sediment. Shell water exhibited the prevalence of green microplastics followed by transparent ones. Microscopic examination revealed microplastics with 100-300 µm size categories were dominant across all abiotic compartments. ATR-FTIR and Raman spectroscopy confirmed polyethylene and polypropylene as the prevalent polymers among the five identified polymers of biotic and abiotic components. The target group index indicated green and black as the preferable microplastics of crab. The ecological risk analysis indicated a considerable level of environmental pollution risk in Sundarban and its inhabiting organisms. This important information base may facilitate in developing a strategy of mitigation to limit the MP induced ecological risk at Sundarban Biosphere Reserve.

3.
Article in English | MEDLINE | ID: mdl-38970629

ABSTRACT

Benthic amphipod feeding groups are a well-established trophic classification that is mostly based on field observations and laboratory tests and are used in ecological studies to monitor the ecological state of benthic ecosystems. Globally, carbon and nitrogen stable isotope ratio investigations have provided confirmation of, and novel insights into, the trophic ecology of benthic animals, such as polychaetes. However, stable isotopic examinations of benthic amphipods have been limited. Here, we used microgram samples to compare the species-specific dietary sources, trophic positions, and isotopic niche overlap of selected benthic amphipods from the Gulf of Kachchh, Marine National Park, using elemental analyser-isotopic ratio mass spectrometry (EA-IRMS) of carbon and nitrogen. Overall, all primary carbon sources presented wide variation in the isotopic values of δ13C (6.3‰) and δ15N (greater than 13‰). Conversely, the amphipod taxa displayed relatively narrow range for δ13C (3.9‰) and wider range for δ15N (more than 10‰). The results of the Bayesian mixing model revealed that the benthic amphipods had species-specific feeding preferences. However, the predominant carbon source was organic matter in sediment which reinforced benthic pathways for energy flow for most species. According to the estimated trophic level values (1.62-3.39), these species play a significant role as primary and secondary consumers serving as crucial trophic intermediaries in the food chain, connecting the base to the top consumers. High overlapping ecological niche amongst species was detected by SIBER analysis which indicated co-existence of the benthic amphipods in their respective microhabitats. This signifies wider utilisation of resources and inter-specific feeding preferences with minimal competition amongst amphipod species.

4.
PeerJ ; 12: e17697, 2024.
Article in English | MEDLINE | ID: mdl-38993978

ABSTRACT

Rocky intertidal habitats occur worldwide and are mainly characterized by primary space holders such as seaweeds and sessile invertebrates. Some of these organisms are foundation species, as they can form structurally complex stands that host many small invertebrates. The abundance of primary space holders is known to vary along coastlines driven directly or indirectly by environmental variation. However, it is less clear if the invertebrate assemblages associated to a foundation species may remain relatively unchanged along coastlines, as similar stands of a foundation species can generate similar microclimates. We examined this question using abundance data for invertebrate species found in mussel stands of a similar structure in wave-exposed rocky habitats at mid-intertidal elevations along the Atlantic coast of Nova Scotia (Canada). While the most abundant invertebrate species were found at three locations spanning 315 km of coastline, species composition (a combined measure of species identity and their relative abundance) differed significantly among the locations. One of the species explaining the highest amount of variation among locations (a barnacle) exhibited potential signs of bottom-up regulation involving pelagic food supply, suggesting benthic-pelagic coupling. The abundance of the species that explained the highest amount of variation (an oligochaete) was positively related to the abundance of their predators (mites), further suggesting bottom-up forcing in these communities. Overall, we conclude that species assemblages associated to structurally similar stands of a foundation species can show clear changes in species composition at a regional scale.


Subject(s)
Bivalvia , Ecosystem , Invertebrates , Animals , Nova Scotia , Invertebrates/physiology , Bivalvia/physiology , Biodiversity
5.
Article in English | MEDLINE | ID: mdl-38958649

ABSTRACT

A novel slightly halophilic, aerobic, and Gram-stain-negative strain, designated as CH-27T, was isolated during a bacterial resource investigation of intertidal sediment collected from Xiaoshi Island in Weihai, PR China. Cells of strain CH-27T were rod-shaped with widths of 0.3-0.6 µm and lengths of 2.0-11.0 µm. Strain CH-27T grew optimally at 37 °C, pH 7.0 and with 2.0 % (w/v) NaCl. Catalase activity was weakly positive and oxidase activity was positive. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CH-27T was most related to Marinihelvus fidelis KCTC 92639T (93.6 %), followed by Wenzhouxiangella marina MCCC 1K00261T (92.0 %). Based on genome comparisons between strain CH-27T and M. fidelis KCTC 92639T, the average amino acid identity was 63.6 % and the percentage of conserved proteins was 48.3 %. The major cellular fatty acid of strain CH-27T (≥10 %) was iso-C15 : 0 and the sole respiratory quinone was quinone-8. The polar lipids were phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, and aminophospholipid. The DNA G+C content was 62.7 mol%. Based on comprehensive analysis of its phylogenetic, physiological, biochemical, and chemotaxonomic characteristics, strain CH-27T represents a novel species in a novel genus, for which the name Elongatibacter sediminis gen. nov., sp.nov. is proposed. The type strain is CH-27T (=MCCC 1H00480T=KCTC 8011T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Geologic Sediments , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Fatty Acids/chemistry , Geologic Sediments/microbiology , China , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Genome, Bacterial , Phospholipids/chemistry
6.
Mar Environ Res ; 199: 106562, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38870558

ABSTRACT

For sessile intertidal organisms, periods of low tide impose both cellular and physiological challenges that can determine bathymetric distribution. To understand how intertidal location influences the cellular response of the bivalve Perumytilus purpuratus during the tidal cycle (immersion-emersion-immersion), specimens from the upper intertidal (UI) and lower intertidal (LI) of bathymetric distribution were sampled every 2 h over a 10-h period during a summer tidal cycle. Parallelly, organisms from the UI and LI were reciprocally transplanted and sampled throughout the same tidal cycle. Levels of oxidative damage (lipid peroxidation and protein carbonyls) as well as total antioxidant capacity and total carotenoids were evaluated as cellular responses to variations in environmental conditions throughout the tidal cycle. The results indicate that both the location in the intertidal zone (UI/LI), the level of aerial exposure, and the interaction of both factors are determinants of oxidative levels and total antioxidant capacity of P. purpuratus. Although oxidative damage levels are triggered during the low tide period (aerial exposure), it is the UI specimens that induce higher levels of lipid peroxidation compared to those from the LI, which is consistent with the elevated levels of total antioxidant capacity. On the other hand, organisms from the LI transplanted to the UI increase the levels of lipid peroxidation but not the levels of protein carbonyls, a situation that is also reflected in higher levels of antioxidant response and total carotenoids than those from the UI transplanted to the LI. The bathymetric distribution of P. purpuratus in the intertidal zone implies differentiated responses between organisms of the lower and upper limits, influenced by their life history. A high phenotypic plasticity allows this mussel to adjust its metabolism to respond to abrupt changes in the surrounding environmental conditions.

7.
Microorganisms ; 12(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38930626

ABSTRACT

Mercury (Hg) methylation in mangrove sediments can result in the accumulation of neurotoxic methylmercury (MeHg). Identification of Hg methyltransferase gene hgcA provides the means to directly characterize the microbial Hg-methylating consortia in environments. Hitherto, the microbial Hg-methylating community in mangrove sediments was scarcely investigated. An effort to assess the diversity and abundance of hgcA genes and transcripts and link them to Hg and MeHg contents was made in the mangrove intertidal sediments along the urbanized Shenzhen Bay, China. The hgcA genes and transcripts associated with Thermodesulfobacteria [mainly Geobacteraceae, Syntrophorhabdaceae, Desulfobacterales, and Desulfarculales (these four lineages were previously classified into the Deltaproteobacteria taxon)], as well as Euryarchaeota (mainly Methanomicrobia and Theionarchaea) dominated the hgcA-harboring communities, while Chloroflexota, Nitrospirota, Planctomycetota, and Lentisphaerota-like hgcA sequences accounted for a small proportion. The hgcA genes appeared in greater abundance and diversity than their transcript counterparts in each sampling site. Correlation analysis demonstrated that the MeHg content rather than Hg content significantly correlated with the structure of the existent/active hgcA-harboring community and the abundance of hgcA genes/transcripts. These findings provide better insights into the microbial Hg methylation drivers in mangrove sediments, which could be helpful for understanding the MeHg biotransformation therein.

8.
J Hazard Mater ; 475: 134893, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38878438

ABSTRACT

Nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) is an important methane (CH4) consumption and nitrogen (N) removal pathway in estuarine and coastal wetlands. Antibiotic contamination is known to affect microbially mediated processes; however, its influences on n-DAMO and the underlying molecular mechanisms remain poorly understood. In the present study, using 13CH4 tracer method combined with molecular techniques, we investigated the responses of n-DAMO microbial abundance, activity, and the associated microbial community composition to sulfamethazine (SMT, a sulfonamide antibiotic, with exposure concentrations of 0.05, 0.5, 5, 20, 50, and 100 µg L-1). Results showed that the effect of SMT exposure on n-DAMO activity was dose-dependent. Exposure to SMT at concentrations of up to 5 µg L-1 inhibited the potential n-DAMO rates (the average rates of nitrite- and nitrate-DAMO decreased by 92.9 % and 79.2 % relative to the control, respectively). In contrast, n-DAMO rates tended to be promoted by SMT when its concentration increased to 20-100 µg L-1 (the average rates of nitrite- and nitrate-DAMO increased by 724.1 % and 630.1 % relative to the low-doses, respectively). Notably, low-doses of SMT suppressed nitrite-DAMO to a greater extent than nitrate-DAMO, indicating that nitrite-DAMO was more sensitive to SMT than nitrate-DAMO. Molecular analyses suggest that the increased n-DAMO activity under high-doses SMT exposure may be driven by changes in microbial communities, especially because of the promotion of methanogens that provide more CH4 to n-DAMO microbes. Moreover, the abundances of n-DAMO microbes at high SMT exposure (20 and 50 µg L-1) were significantly higher than that at low SMT exposure (0.05-5 µg L-1). These results advance our understanding of the ecological effects of SMT on carbon (C) and N interactions in estuarine and coastal wetlands.


Subject(s)
Denitrification , Methane , Oxidation-Reduction , Sulfamethazine , Water Pollutants, Chemical , Wetlands , Methane/metabolism , Sulfamethazine/metabolism , Anaerobiosis , Denitrification/drug effects , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Anti-Bacterial Agents/pharmacology , Estuaries , Bacteria/metabolism , Bacteria/drug effects , Nitrites/metabolism , Nitrates/metabolism
9.
Integr Zool ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38897980

ABSTRACT

Intertidal organisms usually live near their upper thermal limits, and are vulnerable to future global warming. As a vital response to thermal stress, thermoregulatory strategy in physiological and behavioral performance is essential for organisms coping with thermal stress and surviving the changing world. To investigate the relationship between the thermoregulatory strategy and habitat temperature, in the present study, we comparatively investigated the thermal responsive strategy among different geographic populations of the supralittoral snail Littoraria sinensis by determining snails' cardiac function and behavioral performance. Our results indicated that populations inhabiting high ambient temperatures had higher sublethal temperatures (i.e. Arrhenius breakpoint temperatures, ABTs, the temperature at which the heart rate shapely decreases with further heating) and lethal temperatures (i.e. Flatline temperatures, FLTs, the temperature at which heart rate ceases), and behaved less actively (e.g. shorter moving distances and shorter moving time) in the face of high and rising temperatures-a physiological fight strategy. On the other hand, populations at relatively low ambient temperatures had relatively lower physiological upper thermal limits with lower ABTs and FLTs and moved more actively in the face of high and rising temperatures-a behavioral flight strategy. These results demonstrate that the thermoregulatory strategies of the snails are closely related to their habitat temperatures and are different among populations surviving divergent thermal environments.

10.
Mar Environ Res ; 199: 106541, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38852493

ABSTRACT

Non-indigenous species (NIS) have the potential to colonize and become established in a wide range of coastal habitats. Species with broad environmental tolerances can quickly adapt to local conditions and expand their niches along environmental gradients, and even colonize habitats with extreme abiotic conditions. Here we report and document the distribution of eight marine NIS (four seaweed and four invertebrate species) found in tidepools along a 3000 km latitudinal gradient along the Pacific coast of Chile (18.4°S to 41.9°S). The seaweed NIS Codium fragile, Capreolia implexa, Schottera nicaeensis and Mastocarpus latissimus were mostly distributed towards high latitudes (i.e., more southerly locations), where temperatures in tidepools were low. The invertebrate NIS Anemonia alicemartinae, Ciona robusta, Bugula neritina and Bugulina flabellata were more common towards low latitudes, where high temperatures were registered in the tidepools. Across the intertidal gradient, seaweed NIS were mostly found in pools in the mid and low intertidal zone, while invertebrate NIS occurred mostly in pools from the mid and upper intertidal zones. The realized niche spaces of NIS (based on the Outlying Mean Index, OMI) in the study area were mainly influenced by environmental conditions of temperature and salinity (along the latitudinal and intertidal gradients), while other tidepool characteristics (depth, surface area, exposition, and complexity) only had minor effects. Five of the eight NIS exhibited a realized niche space coinciding with the average tidepool environmental conditions, while marginal niches were occupied by species with affinities for specific temperatures and salinities along the latitudinal and intertidal gradients. Our results indicate that physiological tolerances to environmental factors play a fundamental role in the distribution of seaweed and invertebrate NIS in tidepools along the Chilean coast. This study confirms that tidepools offer suitable conditions for some seaweed and invertebrate NIS, potentially facilitating their invasion into new natural habitats.

11.
Mar Pollut Bull ; 204: 116523, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815474

ABSTRACT

Ocean acidification and heatwaves caused by rising CO2 affect bivalves and other coastal organisms. Intertidal bivalves are vital to benthic ecosystems, but their physiological and metabolic responses to compound catastrophic climate events are unknown. Here, we examined Manila clam (Ruditapes philippinarum) responses to low pH and heatwaves. Biochemical and gene expression demonstrated that pH and heatwaves greatly affect physiological energy enzymes and genes expression. In the presence of heatwaves, Manila clams expressed more enzymes and genes involved in physiological energetics regardless of acidity, even more so than in the presence of both. In this study, calcifying organisms' biochemical and molecular reactions are more susceptible to temperature rises than acidity. Acclimation under harsh weather conditions was consistent with thermal stress increase at lower biological organization levels. These substantial temporal biochemical and molecular patterns illuminate clam tipping points. This study helps us understand how compound extreme weather and climate events affect coastal bivalves for future conservation efforts.


Subject(s)
Bivalvia , Seawater , Animals , Bivalvia/physiology , Seawater/chemistry , Hydrogen-Ion Concentration , Climate Change , Oceans and Seas , Ecosystem , Extreme Weather
12.
Environ Pollut ; 355: 124230, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38810679

ABSTRACT

Industrial and urban activities are major contributors to metal contamination in coastal systems, often impacting the physiology, distribution and diversity of marine invertebrates. This study assessed metal contaminations in sediments, seawater, algae and invertebrates across four armoured systems (harbours) and two natural sites along the south coast of South Africa. Bioaccumulation factors such as Biosediment (BSAF), Biowater (BWAF), Bioaccumulation (BAF) and bioremediation of metals by invertebrate bioindicators were also determined. Spatial variation in metal concentrations were observed, however, bioaccumulation of metals was site and species-specific. Invertebrates bioaccumulated higher metal concentrations in armoured than natural sites, with filter feeders exhibiting higher concentrations than grazers. Among filter feeders, Octomeris angulosa and Crassostrea gigas bioaccumulated elevated aluminium (Al), arsenic (As), chromium (Cr), zinc (Zn) and copper (Cu), while, Perna perna accumulated elevated nickel (Ni), cadmium (Cd) and lead (Pb). Among grazers, Siphonaria serrata and Scutellastra longicosta bioaccumulated elevated Al, Cr, Cd, cobalt (Co), Cu, Ni and Zn. Bioaccumulation factors indicated that (As, Ni, Zn) were bioaccumulated by algae, and invertebrates from sediment (BSAF>1) and from seawater (BWAF>1). Additionally, invertebrates bioaccumulated metals from their prey item, algae as indicated by (BAF>1). Arsenic Cd and Pb in invertebrates were above the maximum limit set for human consumption by various regulatory bodies. Our findings underscore the significant role of coastal invertebrates in bioaccumulating and bioremediating metals, suggesting a natural mechanism for water quality enhancement, especially in urbanised coastal areas.


Subject(s)
Aquatic Organisms , Environmental Monitoring , Geologic Sediments , Invertebrates , Water Pollutants, Chemical , Animals , South Africa , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Invertebrates/metabolism , Environmental Monitoring/methods , Risk Assessment , Aquatic Organisms/metabolism , Bioaccumulation , Metals/metabolism , Seawater/chemistry , Metals, Heavy/metabolism , Metals, Heavy/analysis
13.
J Parasitol ; 110(3): 195-199, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38725304

ABSTRACT

Prevalence values for 3 digenean species of the family Opecoelidae were calculated during a half-year period from 20 individuals per month of the fish species Clinocottus analis, collected from an intertidal environment of Baja California, Mexico. Trematode species recovered were Opecoelus adsphaericus, Opecoelus cameroni, and Opecoelus pacificus. Of these, only O. adsphaericus was present throughout the study, whereas O. pacificus and O. cameroni were recorded for 1 or 2 mo, respectively, exhibiting relatively low prevalence values. The decrease in prevalence of O. adsphaericus coincides with the appearance of O. pacificus and O. cameroni; these last 2 species were found only in the largest hosts, and their presence represents new records for Mexican marine fauna.


Subject(s)
Fish Diseases , Trematoda , Trematode Infections , Animals , Trematoda/classification , Trematoda/isolation & purification , Trematode Infections/veterinary , Trematode Infections/parasitology , Trematode Infections/epidemiology , Mexico/epidemiology , Fish Diseases/parasitology , Fish Diseases/epidemiology , Prevalence , Pacific Ocean/epidemiology , Perciformes/parasitology
14.
Conserv Physiol ; 12(1): coae025, 2024.
Article in English | MEDLINE | ID: mdl-38779431

ABSTRACT

Body temperature is universally recognized as a dominant driver of biological performance. Although the critical distinction between the temperature of an organism and its surrounding habitat has long been recognized, it remains common practice to assume that trends in air temperature-collected via remote sensing or weather stations-are diagnostic of trends in animal temperature and thus of spatiotemporal patterns of physiological stress and mortality risk. Here, by analysing long-term trends recorded by biomimetic temperature sensors designed to emulate intertidal mussel temperature across the US Pacific Coast, we show that trends in maximal organismal temperature ('organismal climatologies') during aerial exposure can differ substantially from those exhibited by co-located environmental data products. Specifically, using linear regression to compare maximal organismal and environmental (air temperature) climatologies, we show that not only are the magnitudes of body and air temperature markedly different, as expected, but so are their temporal trends at both local and biogeographic scales, with some sites showing significant decadal-scale increases in organismal temperature despite reductions in air temperature, or vice versa. The idiosyncratic relationship between the spatiotemporal patterns of organismal and air temperatures suggests that environmental climatology cannot be statistically corrected to serve as an accurate proxy for organismal climatology. Finally, using quantile regression, we show that spatiotemporal trends vary across the distribution of organismal temperature, with extremes shifting in different directions and at different rates than average metrics. Overall, our results highlight the importance of quantifying changes in the entire distribution of temperature to better predict biological performance and dispel the notion that raw or 'corrected' environmental (and specially air temperature) climatologies can be used to predict organismal temperature trends. Hence, despite their widespread coverage and availability, the severe limitations of environmental climatologies suggest that their role in conservation and management policy should be carefully considered.

15.
Mar Environ Res ; 198: 106523, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38678752

ABSTRACT

Climate change is altering environmental conditions, with microclimates providing small-scale refuges within otherwise challenging environments. Durvillaea (southern bull kelp; rimurapa) is a genus of large intertidal fucoid algae, and some species harbour diverse invertebrate communities in their holdfasts. We hypothesised that animal-excavated Durvillaea holdfasts provide a thermal refuge for epibiont species, and tested this hypothesis using the exemplar species D. poha. Using a southern Aotearoa New Zealand population as a case-study, we found extreme temperatures outside the holdfast were 4.4 °C higher in summer and 6.9 °C lower in winter than inside the holdfast. A microclimate model of the holdfasts was built and used to forecast microclimates under 2100 conditions. Temperatures are predicted to increase by 2-3 °C, which may exceed the tolerances of D. poha. However, if D. poha or a similar congeneric persists, temperatures inside holdfasts will remain less extreme than the external environment. The thermal tolerances of two Durvillaea-associated invertebrates, the trochid gastropod Cantharidus antipodum and the amphipod Parawaldeckia kidderi, were also assessed; C. antipodum, but not P. kidderi, displayed metabolic depression at temperatures above and below those inside holdfasts, suggesting that they would be vulnerable outside the holdfast and with future warming. Microclimates, such as those within D. poha holdfasts or holdfasts of similar species, will therefore be important refuges for the survival of species both at the northern (retreating edge) and southern (expanding edge) limits of their distributions.


Subject(s)
Climate Change , Invertebrates , Kelp , Microclimate , Animals , Kelp/physiology , New Zealand , Invertebrates/physiology , Temperature , Amphipoda/physiology
16.
Environ Toxicol Pharmacol ; 108: 104456, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657882

ABSTRACT

Di(2-ethylhexyl) phthalate (DEHP), have been increasingly used as plasticizers to manufacture soft and flexible materials and ubiquitously found in water and sediments in the aquatic ecosystem. The aim of the present study was to evaluate the effect of DEHP exposure on cellular homeostasis (HSF1 and seven HSPs), immune responses (ILF), and apoptotic responses (p53, BAX, Bcl-2). DEHP exposure upregulated the expression of HSF1 and ILF. Moreover, it altered the expression levels of HSPs (upregulation of HSP70, HSP90, HSP40, HSP83, and HSP67B2 and downregulation of HSP60 and HSP21) in conjunction with HSF1 and ILF in the gills and hepatopancreas of M. japonicus exposed to DEHP. At the protein level, DEHP exposure changed apoptotic signals in both tissues of M. japonicus. These findings indicate that chronic exposures to several DEHP concentrations could disturb cellular balance, damage the inflammatory and immune systems, and induce apoptotic cell death, thereby affecting the survival of M. japonicus.


Subject(s)
Apoptosis , Diethylhexyl Phthalate , Homeostasis , Plasticizers , Water Pollutants, Chemical , Diethylhexyl Phthalate/toxicity , Apoptosis/drug effects , Animals , Plasticizers/toxicity , Water Pollutants, Chemical/toxicity , Homeostasis/drug effects , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Gills/drug effects , Gills/metabolism , Gene Expression Regulation/drug effects
17.
Mar Pollut Bull ; 202: 116366, 2024 May.
Article in English | MEDLINE | ID: mdl-38621355

ABSTRACT

Ocean acidification has become increasingly severe in coastal areas. It poses emerging threats to coastal organisms and influences ecological functioning. Donax faba, a dominant clam in the intertidal zone of the Bay of Bengal, plays an important role in the coastal food web. This clam has been widely consumed by the local communities and also acts as a staple diet for shorebirds and crustaceans. In this paper, we investigated how acidified conditions will influence the physiology, biochemical constituents, and energetics of Donax faba. Upon incubation for 2 months in lowered pH 7.7 ± 0.05 and control 8.1 ± 0.05 conditions, we found a delayed growth in the acidified conditions followed by decrease in calcium ions in the clam shell. Although not significant, we found the digestive enzymes showed a downward trend. Total antioxidant was significantly increased in the acidified condition compared to the control. Though not significant, the expression level of MDA and antioxidant enzymes (SOD, CAT, GST, GPX, and APX) showed increasing trend in acidified samples. Among nutrients such as amino acids and fatty acids, there was no significant difference between treatments, however, showed a downward trend in the acidified conditions compared to control. Among the minerals, iron and zinc showed significant increase in the acidified conditions. The above results suggest that the clam growth, and physiological energetics may have deleterious effects if exposed for longer durations at lowered pH condition thereby affecting the organisms involved in the coastal food web.


Subject(s)
Bivalvia , Food Chain , Seawater , Animals , Hydrogen-Ion Concentration , Seawater/chemistry , Bivalvia/physiology , Antioxidants/metabolism , Oceans and Seas , Ocean Acidification
18.
Front Mol Biosci ; 11: 1345585, 2024.
Article in English | MEDLINE | ID: mdl-38686015

ABSTRACT

Intertidal macroalgae are important research subjects in stress biology. Basic region-leucine zipper transcription factors (bZIPs) play an important regulatory role in the expression of target genes under abiotic stress. We herein identified a bZIP2 gene PhbZIP2 to regulate abiotic stress tolerance in Pyropia haitanensis, a representative intertidal macroalgal species. Cloning and sequencing of the cDNA characterized a BRLZ structure and an α coiled-coil structure between amino acids and Expression of PhbZIP2 was detected to upregulate under both high temperature and salt stresses. A DAP-seq analysis revealed the PhbZIP2-binding motifs of (T/C)TCCA(C/G) and A (A/G)AAA (G/A), which differed from the conserved motifs in plants. Overexpression of PhbZIP2 was indicative of a high temperature and salt stress tolerances in transgenic Chlamydomonas reinhardtii. It was suggested that PhbZIP2 was probably involved in regulating expression of the photosynthetic-related genes and the response to the abiotic stresses in P. haitanensis, which provide new insights for elucidating efficient adaptation strategies of intertidal macroalgae.

19.
Article in English | MEDLINE | ID: mdl-38591775

ABSTRACT

A Gram-stain-negative, aerobic, rod-shaped and halotolerant bacterium, designated as strain ASW11-75T, was isolated from intertidal sediments in Qingdao, PR China, and identified using a polyphasic taxonomic approach. Growth of strain ASW11-75T occurred at 10-45 °C (optimum, 37 °C), pH 6.5-9.0 (optimum, pH 8.0) and 0.5-18.0 % NaCl concentrations (optimum, 2.5 %). Phylogenetic analyses based on 16S rRNA gene sequences and 1179 single-copy orthologous clusters indicated that strain ASW11-75T is affiliated with the genus Marinobacter. Strain ASW11-75T showed highest 16S rRNA gene sequence similarity to 'Marinobacter arenosus' CAU 1620T (98.5 %). The digital DNA-DNA hybridization and average nucleotide identity values between strain ASW11-75T and its closely related strains (Marinobacter salarius R9SW1T, Marinobacter similis A3d10T, 'Marinobacter arenosus' CAU 1620T, Marinobacter sediminum R65T, Marinobacter salinus Hb8T, Marinobacter alexandrii LZ-8T and Marinobacter nauticus ATCC 49840T) were 19.8-24.5 % and 76.6-80.7 %, respectively. The predominant cellular fatty acids were C16 : 0, C18 : 1 ω9c and C16 : 0 N alcohol. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified aminophospholipid and two unidentified lipids. The major isoprenoid quinone was ubiquinone-9. The genomic DNA G+C content was 62.2 mol%. Based on genomic and gene function analysis, strain ASW11-75T had lower protein isoelectric points with higher ratios of acidic residues to basic residues and possessed genes related to ion transport and organic osmoprotectant uptake, implying its potential tolerance to salt. The results of polyphasic characterization indicated strain ASW11-75T represents a novel Marinobacter species, for which the name Marinobacter qingdaonensis sp. nov. with the type strain ASW11-75T is proposed. The type strain is ASW11-75T (=KCTC 82497T=MCCC 1K05587T).


Subject(s)
Fatty Acids , Marinobacter , Fatty Acids/chemistry , Phospholipids/chemistry , Seawater/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Base Composition , DNA, Bacterial/genetics , Bacterial Typing Techniques
20.
Sci Rep ; 14(1): 8538, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38609456

ABSTRACT

Characterisation of genomic variation among corals can help uncover variants underlying trait differences and contribute towards genotype prioritisation in coastal restoration projects. For example, there is growing interest in identifying resilient genotypes for transplantation, and to better understand the genetic processes that allow some individuals to survive in specific conditions better than others. The coral species Pocillopora acuta is known to survive in a wide range of habitats, from reefs artificial coastal defences, suggesting its potential use as a starter species for ecological engineering efforts involving coral transplantation onto intertidal seawalls. However, the intertidal section of coastal armour is a challenging environment for corals, with conditions during periods of emersion being particularly stressful. Here, we scanned the entire genome of P. acuta corals to identify the regions harbouring single nucleotide polymorphisms (SNPs) and copy number variations (CNVs) that separate intertidal colonies (n = 18) from those found in subtidal areas (n = 21). Findings revealed 74,391 high quality SNPs distributed across 386 regions of the P. acuta genome. While the majority of the detected SNPs were in non-coding regions, 12% were identified in exons (i.e. coding regions). Functional SNPs that were significantly associated with intertidal colonies were found in overrepresented genomic regions linked to cellular homeostasis, metabolism, and signalling processes, which may represent local environmental adaptation in the intertidal. Interestingly, regions that exhibited CNVs were also associated with metabolic and signalling processes, suggesting P. acuta corals living in the intertidal have a high capacity to perform biological functions critical for survival in extreme environments.


Subject(s)
Anthozoa , DNA Copy Number Variations , Humans , Animals , Genotype , Genomics , Anthozoa/genetics , Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...