Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biochem Pharmacol ; 225: 116279, 2024 07.
Article in English | MEDLINE | ID: mdl-38740221

ABSTRACT

Berberine, a natural isoquinoline alkaloid, exhibits a variety of pharmacological effects, but the pharmacological targets and mechanisms remain elusive. Here, we report a novel finding that berberine inhibits acetylcholine (ACh)-induced intracellular Ca2+ oscillations, mediated through an inhibition of the muscarinic subtype 3 (M3) receptor. Patch-clamp recordings and confocal Ca2+ imaging were applied to acute dissociated pancreatic acinar cells prepared from CD1 mice to examine the effects of berberine on ACh-induced Ca2+ oscillations. Whole-cell patch-clamp recordings showed that berberine (from 0.1 to 10 µM) reduced ACh-induced Ca2+ oscillations in a concentration-dependent manner, and this inhibition also depended on ACh concentrations. The inhibitory effect of berberine neither occurred in intracellular targets nor extracellular cholecystokinin (CCK) receptors, chloride (Cl-) channels, and store-operated Ca2+ channels. Together, the results demonstrate that berberine directly inhibits the muscarinic M3 receptors, further confirmed by evidence of the interaction between berberine and M3 receptors in pancreatic acinar cells.


Subject(s)
Acinar Cells , Berberine , Calcium Signaling , Receptor, Muscarinic M3 , Animals , Berberine/pharmacology , Receptor, Muscarinic M3/metabolism , Receptor, Muscarinic M3/antagonists & inhibitors , Mice , Acinar Cells/drug effects , Acinar Cells/metabolism , Calcium Signaling/drug effects , Calcium Signaling/physiology , Pancreas/drug effects , Pancreas/metabolism , Male , Acetylcholine/metabolism , Calcium/metabolism , Dose-Response Relationship, Drug
2.
Biochem Biophys Res Commun ; 527(1): 200-206, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32446367

ABSTRACT

Insulin-like growth factor 1 (IGF-1), a multifunctional peptide that involves in cell proliferation and differentiation, can induce strong osteogenic differentiation in bone marrow mesenchymal stem cells (BMMSCs). However, it remains unknown whether intracellular Ca2+ signal contributes to the IGF-1-induced osteogenic differentiation of BMMSCs. In this study, we attempted to investigate the effect of IGF-1 on the gene expression of intracellular Ca2+-handling proteins and figure out whether the intracellular Ca2+ signal affects IGF-1-induced osteogenic differentiation. We found that IGF-1 treatment significantly increased cell proliferation and induced cell morphological changes with an increase of cell surface area. Quantitative PCR and Western blot analysis showed that osteoblast marker proteins, including alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN) were significantly upregulated by IGF-1 treatment, indicating IGF-1 induced osteogenic differentiation in BMMSCs. Interestingly, the expression levels of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 3 and inositol-1,4,5-triphosphate receptor (IP3R) 2 were dramatically elevated during the IGF-1-induced osteogenic differentiation. Consistently, IGF-1-treated cells exhibited greater Ca2+ response to ATP. Importantly, blocking SERCA by thapsigargin markedly impaired IGF-1-induced osteogenic differentiation, indicating that intracellular Ca2+ mediated IGF-1-induced osteogenic differentiation in BMMSCs, probably via Akt signal pathway, which may provide new insight for the treatment of osteoporosis.


Subject(s)
Bone Marrow/metabolism , Calcium Signaling , Cell Differentiation , Insulin-Like Growth Factor I/metabolism , Mesenchymal Stem Cells/metabolism , Osteoblasts/metabolism , Calcium/metabolism , Cell Proliferation , Cells, Cultured , Humans , Mesenchymal Stem Cells/cytology , Osteoblasts/cytology , Osteogenesis , Proto-Oncogene Proteins c-akt/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL