Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.135
Filter
1.
Chem Asian J ; : e202400899, 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39391906

ABSTRACT

Effective separation of hexane (C6) isomers is critical for a variety of industrial applications but conventional distillation methods are energy-intensive. Adsorptive separations based on porous coordination polymers (PCPs) offer a promising alternative due to their exceptional porosity and tunable properties. However, there is still an urgent need to develop PCPs with high stability and separation performance. This study investigates how substituting a methyl (-CH3) group with a trifluoromethyl (-CF3) group can regulate pores and hydrophobicity in PCPs. This precise adjustment aims to enhance stability and improve the kinetic separation performance of hydrophobic C6 isomers by considering the size and hydrophobicity of the trifluoromethyl group. Two isostructural PCPs with pcu topology, PCP-CH3 and PCP-CF3, were synthesized to vary pore diameters and hydrophobicity based on the presence of -CH3 or -CF3 groups. PCP-CF3 showed greater stability in water compared to PCP-CH3. While PCP-CH3 had high adsorption capacities, it lacked selectivity, whereas PCP-CF3 demonstrated improved selectivity, particularly in excluding dibranched isomers. Dynamic column separation experiments revealed that PCP-CF3 could selectively adsorb linear and monobranched isomers over dibranched isomers at room temperature. These findings highlight the potential of fluorine-modified PCPs for efficient isomer separation and underscore the importance of stability improvement strategies.

2.
J Hazard Mater ; 480: 135932, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39388861

ABSTRACT

Hexachlorocyclohexane (HCH), a typical persistent organic pollutant, poses a serious threat to both human health and the environment. The degradability of HCH isomers (α, ß, γ, and δ) varies significantly under anoxic aqueous conditions and the corresponding reductive transformation mechanisms remain elusive. This work employed multi-element (2H, 13C, 37Cl) stable isotope analysis to characterize the reductive dehalogenation mechanisms of HCH isomers using cobalamin (vitamin B12) reduced with Ti3+ and Fe0 nanoparticles. The isotopic fractionation of HCH isomers varied from -2.8 ± 0.5 to -7.0 ± 0.7 ‰ for carbon (εC), from not significant to -62.4 ± 5.2 ‰ for hydrogen (εH), and from -1.4 ± 0.2 to -4.7 ± 0.5 ‰ for chlorine (εCl), respectively. Dual C-Cl isotopic fractionation values (ΛC/Cl) for α-, ß-, γ- and δ-HCH during the transformation by B12 were determined to be 2.0 ± 0.2, 1.5 ± 0.2, 1.1 ± 0.1, and 1.9 ± 0.3, respectively. The ΛC/Cl values of ß- and δ-HCH in the reaction with Fe0 nanoparticles were found to be similar (1.9 ± 0.3 and 1.9 ± 0.2). However, the apparent kinetic isotope effect AKIEC/AKIECl values suggested that the bond cleavage mechanism of δ-HCH may differ from that of other isomers. The comparison of the angles θ by multi-element isotope plot showed a distinct differentiation between the pathways of anaerobic transformation of HCH isomers and aerobic pathways reported in the literature. Therefore, multi-element isotope analysis could offer a new perspective for characterizing the fate of HCH isomers.

3.
Chemphyschem ; : e202400453, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39382835

ABSTRACT

The red/green cyanobacteriochrome (CBCR) slr1393g3 exhibits a quantum yield of only 8% for its forward photoconversion significantly lower than other species from the same CBCR subfamily. The cause for this reduced photoconversion is not yet clear, although in the related NpR6012g4 dark-state structural heterogeneity of a paramount Trp residue has been proposed to cause the formation of nonproductive subpopulation. However, there is no such information on the equivalent residue in slr1393g3, W496. Here we use solid-state NMR to explore all possible sidechain rotamers of this Trp residue and their local interactions at the atomic level. The indole nitrogen (Nε1) is used as an NMR probe, achieved by site-specific 15N-indole labeling of a quadruply Trp-deleted variant and trehalose vitrification technique. The data reveal a set of seven indole rotamers of W496 with four distinct environments for the Nε1-H group. Only a minority population of 20% is found to retain the π-stacking and hydrogen-bonding interactions with the chromophore in the dark state that has been assigned to account for complete forward photoconversion. Our results demonstrate the direct role of W496 in modulating the forward quantum yield of slr1393g3 via rearrangement of its sidechain rotameric conformations.

4.
J Hazard Mater ; 480: 135963, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39341188

ABSTRACT

The objective of this study was the isolation and enrichment of microbiomes capable of degrading the main hexachlorocyclohexane isomers quantified in environmental matrices, e.g.: the α, δ, ß and γ-HCH isomers. Four microbiomes were isolated and enriched from an HCH-contaminated dumpsite in Italy, both in the presence of HCH isomers (1:1:1:1) as the sole carbon sources and under co-metabolic growth conditions in presence of glucose (0.1 % v/v). The microbiomes were assessed for their relevant metabolic capabilities. A quantitative metabarcoding approach was employed to analyze the compositional evolution of the four microbiomes during the enrichment phase and the phase of testing of the HCH isomers degradation kinetics. The use of a co-metabolic substrate during enrichment process was essential for selecting microbiomes with higher biodiversity. All microbiomes efficiently degraded the α, δ, and γ-HCH isomers. The highest efficiency in the ß-HCH degradation capacity was positively correlated to the highest biodiversity of the microbiome, and the involvement of Chryseobacterium and Asinibacterium sps. have been proposed for a recorded increment in bacterial load during the HCH degradation process.

5.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 9): 942-946, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39267874

ABSTRACT

The cyclic peptide cyclo(Val-Leu-Leu-d-Phe-Pro)2 (peptide 1) was specifically designed for structural chemistry investigations, drawing inspiration from Gramicidin S (GS). Previous studies have shown that Pro residues within 1 adopt a down-puckering conformation of the pyrrolidine ring. By incorporating fluoride-Pro with 4-trans/cis-isomers into 1, an up-puckering conformation was successfully induced. In the current investigation, introducing hy-droxy-prolines with 4-trans/cis-isomer configurations (tHyp/cHyp) into 1 gave cyclo(Val-Leu-Leu-d-Phe-tHyp)2 methanol disolvate monohydrate, C62H94N10O12·2CH4O·H2O (4), and cyclo(Val-Leu-Leu-d-Phe-cHyp)2 monohydrate, C62H94N10O12·H2O (5), respectively. However, the puckering of 4 and 5 remained in the down conformation, regardless of the geometric position of the hydroxyl group. Although the backbone structure of 4 with trans-substitution was asymmetric, the asymmetric backbone of 5 with cis-substitution was unexpected. It is speculated that the anti-cipated influence of stress from the geometric positioning, which was expected to affect the puckering, may have been mitigated by inter-actions between the hydroxyl groups of hy-droxy-proline, the solvent mol-ecules, and peptides.

6.
J Chromatogr A ; 1736: 465377, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39293278

ABSTRACT

A nanospray emitter coupled to a supercritical fluid chromatograph (SFC-nSI-MS) for mass spectrometric (MS) analysis of fatty acids (FA) positional isomers is introduced. The experimental setup uses conventional bore columns before the SF back-pressure regulator (pre-BPR). The flow is then split and nanosprayed using a short emitter post-BPR. A C18 column was used to resolve positional isomers of unsaturated FA with a 5 min gradient. Chromatographic resolution of the nSFC was compared to a LC-MS system with superior resolving power demonstrated in the nSFC MS system. This system has proven quantitative performance for analyzing pharmaceutical effects on FA composition in a complex biological matrix like E coli lysate.

7.
Food Chem ; 463(Pt 2): 141169, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39276545

ABSTRACT

Rapid determination of amino acid isomer is very important for the evaluation of the amino acid nutrition in different foods, so a fast and sensitive electrochemiluminescence (ECL) sensor was innovatively fabricated for the determination of tyrosine isomers in foods based on N-Acetyl-L-cysteine/upconversion nanomaterials possessed a good particular selectivity to L-tyrosine. Under the optimal conditions, for L-tyrosine, the limit of detection (LOD) of the sensor for L-tyrosine was 2.87 × 10-6 M, detection range of 5.5 × 10-5-5.5 × 10-3 M, for D-tyrosine, LOD was 2.56 × 10-5 M, detection range was from 5.5 × 10-4 to 5.5 × 10-3 M. The developed chiral sensor was used to determinate the tyrosine isomers in foods successfully, which provided a convenient method to quickly evaluate the nutritional value of amino acids in food.

8.
Electrophoresis ; 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39286940

ABSTRACT

The large surface area, excellent thermal stability and easy modification make microporous organic networks (MONs) good candidates in the field of gas chromatography (GC). Due to the limited species and highly conjugated networks of MONs, their applications are still in infancy and restricted. To accelerate their developments and to enrich their types in GC, here we report the first example of synthesizing alkyl MON and its capillary column for GC separation of position isomers. Linear 1,8-dibromooctane is used as the alkyl monomer instead of traditional aromatic ones to construct novel alkyl MON to decrease the inherent conjugated characteristic of MONs. The alkyl MON exhibits good thermal stability (up to 350°C), large surface area (1173 m2 g-1), and non-polar character, allowing good resolution for alkanes, alkyl benzenes, alcohols, ketones, and diverse position isomers, including dichlorobenzene, trichlorobenzene, bromotoluene, nitrotoluene, methylbenzaldehyde, and ionone with the limits of detection (0.003 mg mL-1) and limits of quantitation of (0.10 mg mL-1). The in situ growth-prepared alkyl MON column demonstrates remarkable duration time and precisions for the retention relative standard deviations, (RSDs%, intra-day, n = 7), 0.06%-0.53% (intra-day, n = 7), and 2.87%-10.59% (column-to-column, n = 3). In addition, the fabricated alkyl MON-coated capillary column offers better resolution than three commercial GC columns for the resolution of methylbenzaldehyde, bromotoluene, and chlorotoluene isomers. This work reveals the practicability for synthesizing alkyl MONs and demonstrates their prospects for position isomers separation.

9.
J Mass Spectrom ; 59(10): e5084, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39262149

ABSTRACT

This study employs a high-dimensional consensus mass spectral (HDCMS) similarity scoring technique to discriminate isomers collected using an electron ionization mass spectrometer. The HDCMS method was previously introduced and applied to the discrimination of mass spectra of constitutional isomers, methamphetamine and phentermine, collected with direct analysis real-time mass spectrometry (DART-MS). The method formulates the problem of discriminating mass spectra in a mathematical Hilbert space and is hence called "high dimensional." It requires replicate mass spectra to build a Gaussian model and evaluate the inner products between these functions. The resulting measurement variability is used as a signature by which to discriminate spectra. In this work, HDCMS is tested on electron impact ionization (EI) mass spectra of 7 terpene and terpene-related (C10H16 and C10H14) isomers with experimental retention indices that differ by less than 30 and with traditional cosine similarity scores greater than 0.9, on a scale of 0 to 1, when compared with at least one other compound in the test set. Using identical instrument parameters, 15 replicate gas chromatography-electron ionization-mass spectrometry (GC-EI-MS) spectra of each isomer were collected and separated into distinct library and query sets. The HDCMS algorithm discriminated each isomer, indicating the method's potential. Because the method requires replicate measurements, observations from a simple heuristic study of the number of replicates required to discriminate these isomers is presented. The paper concludes with a discussion of compound discrimination using HDCMS and the benefits and drawbacks of applying the method to EI-MS data.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125053, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39241399

ABSTRACT

X-ray absorption spectroscopy (XAS) is a powerful tool for examining changes of the electronic and molecular structure following light-induced excitation of a molecule. Specifically, this method can be applied to investigate the ground (GS, RuNO) and metastable states (MS1, RuON and MS2, Ruη2(NO)) of the nitrosyl ligand (NO), which differ in their coordination mode to the metal. In this work, we report for the first time experimental and theoretical (DFT) Ru L3,2-edge XA spectra for the octahedral complex trans-[RuNOPy4F](ClO4)2 (1, Py = pyridine) in both ground and metastable states. The transition from GS to MS1 using 420 nm light excitation leads to a significant downshift of the 2p â†’ LUMO(+1) peaks by about 0.5-0.8 eV, attributed to the destabilisation of 2p orbitals and stabilization of LUMO(+1). Subsequent irradiation of MS1 at 920 nm produces isomer MS2, for which even greater stabilization of LUMO occurs, though without a significant change in 2p energy. The change in 2p energy is attributed to a variation in the charge on the Ru atom after NO isomerization, while LUMO(+1) stabilization is related to changes in the Ru(NO) bond length and the composition of this orbital.

11.
Front Pharmacol ; 15: 1450418, 2024.
Article in English | MEDLINE | ID: mdl-39234107

ABSTRACT

Background: L-Leucovorin (l-LV; 5-formyltetrahydrofolate, folinic acid) is a precursor for 5,10-methylenetetrahydrofolate (5,10-CH2-THF), which is important for the potentiation of the antitumor activity of 5-fluorouracil (5FU). LV is also used to rescue antifolate toxicity. LV is commonly administered as a racemic mixture of its l-LV and d-LV stereoisomers. We compared dl-LV with l-LV and investigated whether d-LV would interfere with the activity of l-LV. Methods: Using radioactive substrates, we characterized the transport properties of l-LV and d-LV, and compared the efficacy of l-LV with d-LV to potentiate 5FU-mediated thymidylate synthase (TS) inhibition. Using proliferation assays, we investigated their potential to protect cancer cells from cytotoxicity of the antifolates methotrexate, pemetrexed (Alimta), raltitrexed (Tomudex) and pralatrexate (Folotyn). Results: l-LV displayed an 8-fold and 3.5-fold higher substrate affinity than d-LV for the reduced folate carrier (RFC/SLC19A1) and proton coupled folate transporter (PCFT/SLC46A1), respectively. In selected colon cancer cell lines, the greatest enhanced efficacy of 5FU was observed for l-LV (2-fold) followed by the racemic mixture, whereas d-LV was ineffective. The cytotoxicity of antifolates in lymphoma and various solid tumor cell lines could be protected very efficiently by l-LV but not by d-LV. This protective effect of l-LV was dependent on cellular RFC expression as corroborated in RFC/PCFT-knockout and RFC/PCFT-transfected cells. Assessment of TS activity in situ showed that TS inhibition by 5FU could be enhanced by l-LV and dl-LV and only partially by d-LV. However, protection from inhibition by various antifolates was solely achieved by l-LV and dl-LV. Conclusion: In general l-LV acts similar to the dl-LV formulations, however disparate effects were observed when d-LV and l-LV were used in combination, conceivably by d-LV affecting (anti)folate transport and intracellular metabolism.

12.
Molecules ; 29(17)2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39274861

ABSTRACT

We report an extensive tabulation of several important topological invariants for all the isomers of carbon (5,6)-fullerenes Cn with n = 52-70. The topological invariants (including Kekulé count, Clar count, and Clar number) are computed and reported in the form of the corresponding Zhang-Zhang (ZZ) polynomials. The ZZ polynomials appear to be distinct for each isomer cage, providing a unique label that allows for differentiation between various isomers. Several chemical applications of the computed invariants are reported. The results suggest rather weak correlation between the Kekulé count, Clar count, Clar number invariants, and isomer stability, calling into doubt the predictive power of these topological invariants in discriminating the most stable isomer of a given fullerene. The only exception is the Clar count/Kekulé count ratio, which seems to be the most important diagnostic discovered from our analysis. Stronger correlations are detected between Pauling bond orders computed from Kekulé structures (or Clar covers) and the corresponding equilibrium bond lengths determined from the optimized DFTB geometries of all 30,579 isomers of C20-C70.

13.
J Agric Food Chem ; 72(38): 21254-21265, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39264724

ABSTRACT

Besides many other uses, dried Cannabis may be used for "tea" preparation. This study focused on a comprehensive characterization of an aqueous infusion prepared according to a common practice from three fairly different Cannabis cultivars. The transfer of 42 phytocannabinoids and 12 major bioactive compounds (flavonoids) into the infusion was investigated using UHPLC-HRMS/MS. Phytocannabinoid acids were transferred generally in a higher extent compared to their counterparts; in the case of Δ9-THC, it was only in the range of 0.4-1.9% of content in the Cannabis used. A dramatic increase of phytocannabinoids, mainly of the neutral species, occurred when cream was added during steeping, and the transfer of Δ9-THC into "tea" achieved a range of 53-64%. Under such conditions, drinking a 250 mL cup of such tea by a 70 kg person might lead to multiple exceedance of the Acute Reference Dose (ARfD), 1 µg/kg b.w., even in the case when using hemp with a Δ9-THC content below 1% in dry weight for preparation.


Subject(s)
Cannabis , Cannabis/chemistry , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry , Plant Extracts/chemistry , Cannabinoids/analysis , Cannabinoids/chemistry , Humans , Dronabinol/analysis , Dronabinol/chemistry , Tea/chemistry , Flavonoids/chemistry , Flavonoids/analysis
14.
J Comput Chem ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39311721

ABSTRACT

Formation of molecular complexes and subsequent heterolytic halogen-halogen bond splitting upon reactions of molecular Cl2 with nitrogen-containing Lewis bases (LB) are computationally studied at M06-2X/def2-TZVPD and for selected compounds at CCSD(T)/aug-cc-pvtz//CCSD/aug-cc-pvtz levels of theory. Obtained results are compared with data for ICl and I2 molecules. Reaction pathways indicate, that in case of Cl2∙LB complexes the activation energies for the heterolytic Cl-Cl bond splitting are lower than the activation energies of the homolytic splitting of Cl2 molecule into chlorine radicals. The heterolytic halogen splitting of molecular complexes of X2∙Py with formation of [XPy2]+… X 3 - $$ {\mathrm{X}}_3^{-} $$ contact ion pairs in the gas phase is slightly endothermic in case of Cl2 and I2, but slightly exothermic in the case of ICl. Formation of {[ClPy2]+… Cl 3 - $$ {\mathrm{Cl}}_3^{-} $$ }2 dimers makes the overall process exothermic. Taking into account that polar solvents favor ionic species, generation of donor-stabilized Cl+ in the presence of the Lewis bases is expected to be favorable. Thus, in polar solvents the oxidation pathway via donor-stabilized Cl+ species is viable alternative to the homolytic Cl-Cl bond breaking.

15.
Talanta ; 279: 126630, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39098242

ABSTRACT

Laccase is well-known for its eco-friendly applications in environmental remediation and biotechnology, but its high cost and low stability have limited its practical use. Therefore, there is an urgent need to develop efficient laccase mimetics. In this study, a novel laccase-mimicking nanozyme (MBI-Cu) was successfully synthesized using 2-methylbenzimidazole (MBI) coordinated with Cu2+ by mimicking the copper active site and electron transfer pathway of natural laccase. MBI-Cu nanozyme exhibited excellent catalytic activity and higher stability than laccase, and was utilized to oxidize a series of phenolic compounds. Environmental pollutant aminophenol isomers were found to display different color in solution when catalytically oxidized by MBI-Cu, which provided a simple and feasible method to identify them by the naked eye. Based on the distinct absorption spectra of the oxidized aminophenol isomers, a colorimetric method for quantitatively detecting o-AP, m-AP, and p-AP was established, with detection limits of 0.06 µM, 0.27 µM, and 0.18 µM, respectively. Furthermore, by integrating MBI-Cu-based cotton pad colorimetric strips with smartphone and utilizing color recognition software to identify and analyze the RGB values of the images, a portable colorimetric sensing platform was designed for rapid detection of aminophenol isomers without the need for any analytical instrument. This work provides an effective reference for the design of laccase nanozymes and holds significant potential for applications in the field of environmental pollutant monitoring.


Subject(s)
Aminophenols , Benzimidazoles , Colorimetry , Copper , Laccase , Laccase/chemistry , Laccase/metabolism , Colorimetry/methods , Copper/chemistry , Aminophenols/chemistry , Aminophenols/analysis , Benzimidazoles/chemistry , Isomerism
16.
Angew Chem Int Ed Engl ; : e202408817, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113149

ABSTRACT

Xylene separation is crucial but challenging, especially for the preferential separation of the intermediate-size m-xylene from xylene mixtures. Herein, exploiting the differences in molecular length and alkyl distribution among xylenes, we present a length-matched metal-organic framework, formulated as Al(OH)[O2C-C4H2O-CO2], featuring an effective pore size corresponding to m-xylene molecular length combined with multiple negative O hydrogen bond donors distribution, can serve as a molecular trap for efficient preferential separation of the intermediate-size m-xylene. Benchmark separation performance was achieved for separating m-xylene from a ternary mixture of m-xylene/o-xylene/p-xylene, with simultaneous record-high m-xylene uptake (1.3 mmol g-1) and m-xylene/p-xylene selectivity (5.3) in the liquid-phase competitive adsorption. Both vapor- and liquid-phase fixed-bed tests confirmed its practical separation capability with benchmark dynamic m-xylene/p-xylene and m-xylene/o-xylene selectivities, as well as excellent regenerability. The selective and strong m-xylene binding affinity among xylene molecules was further elucidated by simulations, validating the effectiveness of such a pore environment for the separation of intermediate-size molecules.

17.
J Comput Chem ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39151062

ABSTRACT

A system associated with several number of weak interactions supports numerous number of stable structures within a narrow range of energy. Often, a deterministic search method fails to locate the global minimum geometry as well as important local minimum isomers for such systems. Therefore, in this work, the stochastic search technique, namely parallel tempering, has been executed on the quantum chemical surface of the CNO (-) (H 2 O) n $$ {\mathrm{CNO}}^{\left(\hbox{-} \right)}{\left({\mathrm{H}}_2\mathrm{O}\right)}_n $$ system for n = 1 $$ n=1 $$ -8 to generate global minimum as well as several number of local minimum isomers. IR spectrum can act as the fingerprint property for such system to be identified. Thus, IR spectroscopic features have also been included in this work. Vertical detachment energy has also been calculated to obtain clear information about number of water molecules in several spheres around the central anion. In addition, in a real experimental scenario, not only the global but also the local minimum isomers play an important role in determining the average value of a particular physically observable property. Therefore, the relative conformational populations have been determined for all the evaluated structures for the temperature range between 20K and 400K. Further to understand the phase change behavior, the configurational heat capacities have also been calculated for different sizes.

18.
ACS Nano ; 18(32): 21534-21543, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39092525

ABSTRACT

The exploration of near-infrared photoluminescence (PL) from atomically precise nanoclusters is currently a prominent area of interest owing to its importance in both fundamental research and diverse applications. In this work, we investigate the near-infrared (NIR) photoluminescence mechanisms of two structural isomers of atomically precise gold nanoclusters of 28 atoms protected by cyclohexanethiolate (CHT) ligands, i.e., Au28i(CHT)20 and Au28ii(CHT)20. Based on their structures, analysis of 3O2 (triplet oxygen) quenching of the nanocluster triplet states, temperature-dependent photophysical studies, and theoretical calculations, we have elucidated the intricate processes governing the photoluminescence of these isomeric nanoclusters. For Au28i(CHT)20, its emission characteristics are identified as phosphorescence plus thermally activated delayed fluorescence (TADF) with a PL quantum yield (PLQY) of 0.3% in dichloromethane under ambient conditions. In contrast, the Au28ii(CHT)20 isomer exhibits exclusive phosphorescence with a PLQY of 3.7% in dichloromethane under ambient conditions. Theoretical simulations reveal a larger singlet (S1)-triplet (T1) gap in Au28ii than that in Au28i, and the higher T2 state plays a critical role in both isomers' photophysical processes. The insights derived from this investigation not only contribute to a more profound comprehension of the fundamental principles underlying the photoluminescence of atomically precise gold nanoclusters but also provide avenues for tailoring their optical properties for diverse applications.

19.
J Comput Chem ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177429

ABSTRACT

Cationic species, previously detected from ion-induced desorption of solid methane by plasma desorption mass spectrometry (PDMS), and neutral species, are investigated using high-level ab-initio approaches. From a set of 25 cationic and 26 neutral structures belonging to CnH2 (n = 2-6) families, it was obtained the energy, rotational constants, harmonic vibrational frequency, charge distribution and excitation energies. The ZPVE-corrected energies, at CCSD(T)-F12; CCSD(T)-F12/RI/(cc-pVTZ-F12, cc-pVTZ-F12-CABS, cc-pVQZ/C) (n = 2-5) and CCSD(T)/cc-pVTZ (n = 6) levels, reveal that the topology of the most stable isomer vary with n and the charge. Out of 674 harmonic frequencies, those with maximum intensity are generally in the 3000-3500 cm-1 range. Analysis of 169 vertical transition energies calculated with the EOM-CCSD approach, suggest three C6H2 species as potential carriers of the diffuse interstellar bands (DIB). Systematic comparison of properties between neutral and cationic species can assist in the structural description of complex matrices.

20.
Angew Chem Int Ed Engl ; : e202412494, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160133

ABSTRACT

The synthesis of zirconium MOFs with zeolite net is quite challenging due to the high connectivity of Zr6 clusters, which is far from tetrahedral connection, a requisite for zeolite net. In this work, we demonstrate a six-membered ring (6MR) strategy through mimicking of mineral zeolites with mixed ditopic and tritopic carboxylate linkers. With this strategy, the ditopic linker cross-links Zr6 clusters to form 4-connected zeolite-like nets, while the tritopic one is used to direct the formation of 6MR and simultaneously consumes extra coordination sites on the cluster. The feasibility of this strategy is shown by one zeolitic metal-organic framework (NNM-5) and this strategy has also led to the synthesis of the other dia-type zirconium MOF (NNM-6). Interestingly, as the tritopic linker not only directs the formation of 6-MR but also partitions 6-MR into small segments, NNM-5 with SOD topology shows a structural feature of small aperture and big cage, which has led to efficient separation of hexane isomers. With both exceptionally high n-hexane uptake (65.9 cm3·g-1) and size-exclusion selectivity, an exceptional separation capability is verified by breakthrough experiments. Calculation results demonstrate that the large difference of diffusion energy barrier due to the small aperture accounts for the underlying separation mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL