Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters











Publication year range
1.
Int J Pharm ; 661: 124456, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38986962

ABSTRACT

Indocyanine green is an FDA-approved fluorescent imaging dye used for determining cardiac output, hepatic function, liver blood flow, and retinal perfusion. It has been investigated preclinically in photoacoustic imaging and photothermal therapy (PTT); however, ICG photodegradation limits its biomedical applications. An aggregated form of ICG, known as J-aggregate (IJA), exhibits superior photoacoustic signals and thermal stability than the monomeric ICG. Nevertheless, IJA still suffers from low stability in the biological milieu, and short in vivo blood circulation. To address these limitations, a range of nanocarriers have been developed to enhance IJA stability and performance. This review focuses on IJA potentials and limitations, besides the recent development of IJA-loaded nanocarriers, particularly for cancer imaging and therapy.


Subject(s)
Indocyanine Green , Theranostic Nanomedicine , Indocyanine Green/administration & dosage , Humans , Animals , Theranostic Nanomedicine/methods , Neoplasms/therapy , Neoplasms/drug therapy , Neoplasms/diagnostic imaging , Nanoparticles , Fluorescent Dyes/chemistry , Fluorescent Dyes/administration & dosage , Photoacoustic Techniques/methods , Drug Carriers/chemistry
2.
Photochem Photobiol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953399

ABSTRACT

Aiming at the application to photodynamic therapy, natural bacteriochlorophyll-a was converted to chemically stable free-base derivatives possessing different kinds of hydrophilic C17-propionate residues. These semi-synthetic bacteriochlorins were found to have self-assembling ability in an aqueous environment and formed stable J-type aggregates in a cell culture medium containing 0.2% DMSO. The electronic absorption spectra of all the sensitizers showed Qy absorption maxima at 754 nm in DMSO as their monomeric states, while a drastic shift of the red-most bands to ca. 880 nm was observed in the aqueous medium. The circular dichroism spectra in the medium showed much intense signals compared to those measured in DMSO, supporting the formation of well-ordered supramolecular structures. By introducing hydrophilic side chains, the bacteriochlorin sensitizers could be dispersed in the aqueous medium as their J-aggregates without the use of any surfactants. Cellular uptake efficiencies as well as photodynamic activities were evaluated using human cervical adenocarcinoma HeLa cells. Among the 11 photosensitizers investigated, the best result was obtained for a charged derivative possessing trimethylammonium terminal (17-CH2CH2COOCH2CH2N+(CH3)3I-) and photocytotoxicity of EC50 = 0.09 µM was achieved by far-red light illumination of 35 J/cm2 from an LED panel (730 nm).

3.
Chemistry ; 30(34): e202400046, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38619364

ABSTRACT

Förster resonance energy transfer (FRET) has been widely applied in fluorescence imaging, sensing and so on, while developing useful strategy of boosting FRET efficiency becomes a key issue that limits the application. Except optimizing spectral properties, promoting orientation factor (κ2) has been well discussed but rarely utilized for boosting FRET. Herein, we constructed binary nano-assembling of two thermally activated delayed fluorescence (TADF) emitters (2CzPN and DMAC-DPS) with J-type aggregate of cyanine dye (C8S4) as doping films by taking advantage of their electrostatic interactions. Time-resolved spectroscopic measurements indicated that 2CzPN/Cy-J films exhibit an order of magnitude higher kFRET than DMAC-DPS/Cy-J films. Further quantitative analysing on kFRET and kDET indicated higher orientation factor (κ2) in 2CzPN/Cy-J films play a key role for achieving fast kFRET, which was subsequently confirmed by anisotropic measurements. Corresponding DFT/TDDFT calculation revealed strong "two-point" electrostatic anchoring in 2CzPN/Cy-J films that is responsible for highly orientated transitions. We provide a new strategy for boosting FRET in nano-assemblies, which might be inspired for designing FRET-based devices of sensing, imaging and information encryption.

4.
Chemistry ; 30(32): e202400899, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38576216

ABSTRACT

An amphiphilic aza-BODIPY dye (S)-1 bearing two chiral hydrophilic side chains with S-stereogenic centers was synthesized. This dye exhibited kinetic-controlled self-assembly pathways and supramolecular chiral polymorphism properties in MeOH/H2O (9/1, v/v) mixed solvent. The (S)-1 monomers first aggregated into a kinetic controlled, off-pathway species Agg. A, which was spontaneously transformed into an on-pathway metastable aggregate (Agg. B) and subsequently into the thermodynamic Agg. C. The three aggregate polymorphs of dye (S)-1 displayed distinct optical properties and nanomorphologies. In particular, chiral J-aggregation characteristics were observed for both Agg. B and Agg. C, such as Davydov-split absorption bands (Agg. B), extremely sharp and intense J-band with large bathochromic shift (Agg. C), non-diminished fluorescence upon aggregation, as well as strong bisignated Cotton effects. Moreover, the AFM and TEM studies revealed that Agg. A had the morphology of nanoparticle while fibril or rod-like helical nanostructures with left-handedness were observed respectively for Agg. B and Agg. C. By controlling the kinetic transformation process from Agg. B to Agg. C, thin films consisting of Agg. B and Agg. C with different ratios were prepared, which displayed tunable CPL with emission maxima at 788-805 nm and g-factors between -4.2×10-2 and -5.1×10-2.

5.
Adv Healthc Mater ; 13(23): e2400846, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38659315

ABSTRACT

J-aggregate is a promising strategy to enhance second near-infrared window (NIR-II) emission, while the controlled synthesis of J-aggregated NIR-II dyes is a huge challenge because of the lack of molecular design principle. Herein, bulk spiro[fluorene-9,9'-xanthene] functionalized benzobisthiadiazole-based NIR-II dyes (named BSFX-BBT and OSFX-BBT) are synthesized with different alkyl chains. The weak repulsion interaction between the donor and acceptor units and the S…N secondary interactions make the dyes to adopt a co-planar molecular conformation and display a peak absorption >880 nm in solution. Importantly, BSFX-BBT can form a desiring J-aggregate in the condensed state, and femtosecond transient absorption spectra reveal that the excited states of J-aggregate are the radiative states, and J-aggregate can facilitate stimulated emission. Consequently, the J-aggregated nanoparticles (NPs) display a peak emission at 1124 nm with a high relative quantum yield of 0.81%. The efficient NIR-II emission, good photothermal effect, and biocompatibility make the J-aggregated NPs demonstrate efficient antitumor efficacy via fluorescence/photoacoustic imaging-guided phototherapy. The paradigm illustrates that tuning the aggregate states of NIR-II dye via spiro-functionalized strategy is an effective approach to enhance photo-theranostic performance.


Subject(s)
Fluorescent Dyes , Photoacoustic Techniques , Phototherapy , Animals , Humans , Photoacoustic Techniques/methods , Mice , Phototherapy/methods , Fluorescent Dyes/chemistry , Nanoparticles/chemistry , Infrared Rays , Optical Imaging/methods , Cell Line, Tumor , Female , Mice, Nude , Mice, Inbred BALB C
6.
Photochem Photobiol ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38581225

ABSTRACT

Zinc methyl 3-hydroxymethyl-pyropheophorbides-a possessing an acylhydrazinylidene group at the 131-position were prepared by chemically modifying chlorophyll-a, which were models of bacteriochlorophyll-d as one of the light-harvesting pigments in photosynthetic green bacteria. Similar to the self-aggregation of natural bacteriochlorophyll-d in the antenna systems called chlorosomes, some of the synthetic models self-aggregated in an aqueous Triton X-100 solution to give red-shifted and broadened visible absorption bands. The newly appeared oligomeric bands were ascribable to the exciton coupling of the chlorin π-systems along the molecular y-axis, leading to intense circular dichroism bands in the red-shifted Qy and Soret regions. The self-aggregation in the aqueous micelle was dependent on the steric size of the terminal substituent at the 13-acylhydrazone moiety. An increase in the length of the oligomethylene chain as the terminal moved the red-shifted Qy maxima to shorter wavelengths, and branched alkyl and benzyl substitutes afforded no more self-aggregates to leave monomeric species in the hydrophobic environment inside the micelle. These results indicated that the acyl groups on the 13-hydrazone as the alternative of the natural 13-ketone regulated the chlorosome-like self-aggregation.

7.
Small ; 20(28): e2310797, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38368253

ABSTRACT

Molecularly woven materials with striking mechanical resilience, and 2D controlled topologies like textiles, fishing nets, and baskets are highly anticipated. Molecular weaving exclusively apprehended by the secondary interactions expanding to laterally grown 2D self-assemblies with retained crystalline arrangement is stimulating. The interlacing entails planar molecules screwed together to form 2D woven thin films. Here, secondary interactions led 2D interlaced molecularly woven material (2°MW) built by 1D helical threads of organic chromophores twisted together via end-to-end CH···O connections, held strongly at inter-crossing by multiple OH···N interactions to prevent slippage is presented. Whereas, 1D helical threads with face-to-face O-H···O connections sans interlacing led the non-woven material (2°NW). The polarity-driven directionality in 2°MW led the water-actuated epitaxial growth of 2D-sheets to lateral thin films restricted to nano-scale thickness. The molecularly woven thin film is self-healing, flexible, and mechanically resilient in nature, while maintaining the crystalline regularity is attributed to the supple secondary interactions (2°).

8.
Adv Mater ; 36(8): e2307725, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37792472

ABSTRACT

Realizing efficient red/near-infrared (NIR) electroluminescence (EL) by precisely modulating molecular aggregations of thermally activated delayed fluorescence (TADF) emitters is an attractive pathway, yet the molecular designs are elusive. Here, a new approach is proposed to manage molecular aggregation via a mild-twist acceptor-donor-acceptor (A-D-A)-type molecular design. A proof-of-concept TADF molecule, QCN-PhSAC-QCN, is developed that furnishes a fast radiative rate and obvious aggregation-induced emission feature. Its emission bands can be facilely shifted from intrinsic yellow to the red/NIR region via fine-tuning doping levels and molecular aggregates while maintaining elegant photoluminescence quantum yields benefiting from suppressed exciton annihilation processes. As a result, a QCN-PhSAC-QCN-based organic light-emitting diode (OLED) exhibits a record-setting external quantum efficiency (EQE) of 39.1% at a doping ratio of 10 wt.%, peaking at 620 nm. Moreover, its nondoped NIR OLED affords a champion EQE of 14.3% at 711 nm and retains outstanding EQEs of 5.40% and 2.35% at current densities of 10 and 100 mA cm-2 , respectively, which are the highest values among all NIR-TADF OLEDs at similar density levels. This work validates the feasibility of such mild-twist A-D-A-type molecular design for precisely controlling molecular aggregation while maintaining high efficiency, thus providing a promising pathway for high-performance red/NIR TADF OLEDs.

9.
Chem Asian J ; 19(1): e202300910, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37932879

ABSTRACT

To better understand the correlation between molecular structure and optical properties such as aggregation-induced emission (AIE) and mechanochromic luminescence (MCL) emission, two new pyrene-based derivatives with substitutions at the 4- and 5-positions (1HH) and at the 4-, 5-, 9-, and 10-positions (2HH) were designed and synthesized. Cyano groups were introduced at the periphery of the synthesized compounds (1HCN, 1OCN, 1BCN, 2HCN, 2OCN, and 2BCN) to investigate the influence of these groups on the emission properties of the pyrene derivatives both in solution and in the solid state. The fluorescence emission performance of these compounds in water/acetone mixtures was simultaneously studied, revealing outstanding aggregation-induced emission properties. The typical shift in emission maxima to higher values was attributed to J-aggregate formation in the aggregate state. Careful investigation of the crystal structures demonstrated abundant and intense intermolecular interactions, such as C-H…π and C-H…N hydrogen bonds, contributing to the remarkable mechanochromic luminescence performance of these compounds. The MCL properties of all the compounds were investigated using powder X-ray diffraction, and the remarkable mechanochromic properties were attributed to J-aggregate phenomena in the solid state. These results provide valuable insights into the structure-property relationship of organic MCL materials, guiding the design of efficient organic MCL materials.

10.
Angew Chem Int Ed Engl ; 62(52): e202314667, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37962230

ABSTRACT

J-aggregates are highly desired dye aggregates but so far there has been no general concept how to accomplish the required slip-stacked packing arrangement for dipolar merocyanine (MC) dyes whose aggregation commonly affords one-dimensional aggregates composed of antiparallel, co-facially stacked MCs with H-type coupling. Herein we describe a strategy for MC J-aggregates based on our results for an amphiphilic MC dye bearing alkyl and oligo(ethylene glycol) side chains. In an aqueous solvent mixture, we observe the formation of two supramolecular polymorphs for this MC dye, a metastable off-pathway nanoparticle showing H-type coupling and a thermodynamically favored nanosheet showing J-type coupling. Detailed studies concerning the self-assembly mechanism by UV-Vis spectroscopy and the packing structure by atomic force microscopy and wide-angle X-ray scattering show how the packing arrangement of such amphiphilic MC dyes can afford slip-stacked two-dimensional nanosheets whose macrodipole is compensated by the formation of a bilayer structure. As an additional feature we demonstrate how the size of the nanosheets can be controlled by seeded living supramolecular polymerization.

11.
Small ; : e2306045, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38009519

ABSTRACT

Plexcitonic nanoparticles exhibit strong light-matter interactions, mediated by localized surface plasmon resonances, and thereby promise potential applications in fields such as photonics, solar cells, and sensing, among others. Herein, these light-matter interactions are investigated by UV-visible and surface-enhanced Raman scattering (SERS) spectroscopies, supported by finite-difference time-domain (FDTD) calculations. Our results reveal the importance of combining plasmonic nanomaterials and J-aggregates with near-zero-refractive index. As plexcitonic nanostructures nanorattles are employed, based on J-aggregates of the cyanine dye 5,5,6,6-tetrachloro-1,1-diethyl-3,3-bis(4-sulfobutyl)benzimidazolocarbocyanine (TDBC) and plasmonic silver-coated gold nanorods, confined within mesoporous silica shells, which facilitate the adsorption of the J-aggregates onto the metallic nanorod surface, while providing high colloidal stability. Electromagnetic simulations show that the electromagnetic field is strongly confined inside the J-aggregate layer, at wavelengths near the upper plexcitonic mode, but it is damped toward the J-aggregate/water interface at the lower plexcitonic mode. This behavior is ascribed to the sharp variation of dielectric properties of the J-aggregate shell close to the plasmon resonance, which leads to a high opposite refractive index contrast between water and the TDBC shell, at the upper and the lower plexcitonic modes. This behavior is responsible for the high SERS efficiency of the plexcitonic nanorattles under both 633 nm and 532 nm laser illumination. SERS analysis showed a detection sensitivity down to the single-nanoparticle level and, therefore, an exceptionally high average SERS intensity per particle. These findings may open new opportunities for ultrasensitive biosensing and bioimaging, as superbright and highly stable optical labels based on the strong coupling effect.

12.
Chemistry ; 29(71): e202302897, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-37864280

ABSTRACT

Contamination of water supplies by polyfluoroalkyl substances, notably perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA), has serious health and environmental consequences. Therefore, the development of straightforward and effective means of monitoring and removing PFASs is urgently required. In this study, we report a rapid and sensitive method for the detection of PFOS and PFOA in water that rely on the J-aggregate formation of meso-ester-BODIPY dyes. The dye C10-mim, which contains a hydrophilic methylimidazolium group and a hydrophobic alkylated BODIPY, self-assembles in water into weakly green-emissive micellar assemblies. Upon binding to PFOS or PFOA, a spontaneous disassembly and reorganization forms orange-emissive J-aggregates. The rapid formation (≤5 s) of J-aggregates and the accompanying spectral shifts provide a superior sensing performance, with excellent sensitivity (limit of detection=0.18 ppb for PFOS) and distinct chromogenic and fluorogenic "turn-on" responses.

13.
Biomaterials ; 301: 122261, 2023 10.
Article in English | MEDLINE | ID: mdl-37531775

ABSTRACT

Photothermal therapy (PTT) represents a promising noninvasive tumor therapeutic modality, but the current strategies for enhancing photothermal effect have been mainly based on promoting thermal relaxation or suppressing radiative dissipation process of excited energy, leaving little room for further improvement in photothermal effect. Herein, as a proof of concept, we report the thermophoresis-enhanced photothermal effect with pure organic Janus-like nanoparticles (Janus-like NPs) for PTT. The Janus-like NPs are eccentrically loaded with compactly J-aggregated photothermal molecules (DMA-BDTO), which show red-shifted absorption wavelength and inhibited radiative decay as compared to individual molecules. Under NIR irradiation, the asymmetric heat generation at particle surface endows Janus-like NPs the active thermophoresis, which further increases collisions and converts kinetic energy into thermal energy, and Janus-like NPs exhibit significantly elevated temperature as compared to conventional NPs with homogenously distributed DMA-BDTO. Both in vitro and in vivo results confirm such thermophoresis-enhanced photothermal effect for improved PTT. Our new strategy of thermophoresis-enhanced photothermal effect shall open new insights for improving photothermal-related tumor therapy.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Neoplasms , Humans , Phototherapy/methods , Photothermal Therapy , Hyperthermia, Induced/methods , Neoplasms/therapy , Cell Line, Tumor
14.
Chem Asian J ; 18(7): e202201293, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36763001

ABSTRACT

A dimethylaniline (donor)-indanedione (acceptor) conjugate (sensor 1) with a very low molecular weight of 277 g mol-1 and intramolecular charge transfer (ICT) characteristics was synthesized. Sensor 1 shows weak ICT fluorescence in solution, but strong emission (Φ=16%) in the solid state owing to intramolecular and intermolecular C-H⋅⋅⋅O hydrogen bonds that inhibit the free rotation of the exocyclic C-C single bond. Compared to yellow emitter 1Y, which has a similar donor-acceptor structure, sensor 1 shows red fluorescence in the solid state owing to J-aggregate formation. The colorimetric and fluorometric responses of sensor 1 to cyanide in both solution and solid state are due to the nucleophilic addition of cyanide to the ß-conjugated carbon of the indanedione group, which prohibits ICT. Additionally, inexpensive portable paper-based test kits based on sensor 1 were easily prepared and could be used for fast and quantitative naked-eye cyanide detection in real time.

15.
Adv Opt Mater ; 11(2)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36846517

ABSTRACT

We demonstrate three general effective strategies to mitigate non-radiative losses in the superradiant emission from supramolecular assemblies. We focus on J-aggregates of 5,5',6,6'-tetrachloro-1,1'-diethyl-3,3'-di(4-sulfobutyl)-benzimidazolocarbocyanine (TDBC) and elucidate the nature of their nonradiative processes. We show that self-annealing at room temperature, photo-brightening, and the purification of the dye monomers all lead to substantial increases in emission quantum yields (QYs) and a concomitant lengthening of the emission lifetime, with purification of the monomers having the largest effect. We use structural and optical measurements to support a microscopic model that emphasizes the deleterious effects of a small number of impurity and defect sites that serve as non-radiative recombination centers. This understanding has yielded a room temperature molecular fluorophore in solution with an unprecedented combination of fast emissive lifetime and high QY. We obtain superradiant emission from J-aggregates of TDBC in solution at room temperature with a QY of 82% coupled with an emissive lifetime of 174 ps. This combination of high QY and fast lifetime at room temperature makes supramolecular assemblies of purified TDBC a model system for the study of fundamental superradiance phenomena. High QY J-aggregates are uniquely suited for the development of applications that require high speed and high brightness fluorophores such as devices for high speed optical communication.

16.
ACS Nano ; 16(11): 19523-19532, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36356301

ABSTRACT

Human retina- and brain-inspired optoelectronic synapses, which integrate light detection and signal memory functions for data processing, have significant interest because of their potential applications for artificial vision technology. In nature, many animals such as mantis shrimp use polarized light information as well as scalar information including wavelength and intensity; however, a spectropolarimetric organic optoelectronic synapse has been seldom investigated. Herein, we report an organic synaptic phototransistor, consisting of a charge trapping liquid-crystalline perylene bisimide J-aggregate and a charge transporting crystalline dichlorinated naphthalene diimide, that can detect both wavelength and polarization information. The device shows persistent positive and negative photocurrents under low and high voltage conditions, respectively. Furthermore, the aligned organic heterostructure in the thin-film enables linearly polarized light to be absorbed with a dichroic ratio of 1.4 and 3.7 under transverse polarized blue and red light illumination, respectively. These features allow polarized light sensitive postsynaptic functions in the device. Consequently, a simple polarization imaging sensor array is successfully demonstrated using photonic synapses, which suggests that a supramolecular material is an important candidate for the development of spectropolarimetric neuromorphic vision systems.


Subject(s)
Semiconductors , Synapses , Animals , Humans , Synapses/chemistry , Vision, Ocular , Light , Optics and Photonics
17.
Angew Chem Int Ed Engl ; 61(37): e202208635, 2022 09 12.
Article in English | MEDLINE | ID: mdl-35843908

ABSTRACT

A molecule featuring two distinct cooperatively grown J-aggregates is investigated. Interestingly, when cooling a hot monomer solution, the thermodynamically less stable J1 is exclusively formed even at a particularly slowed temperature dropping rate, which transforms to the more stable J2 at room temperature with very slow kinetics. This observation is ascribed to the differed nucleus sizes of J1 and J2 . During the cooling process, smaller J1 nuclei are formed first at a higher temperature, favored by the entropy effect. At intermediate temperatures, the elongation of J1 out-competes the nucleation of J2 . Then, below the elongation temperature of J2 , the formation of this thermodynamically stable aggregate is hindered kinetically, due to the depletion of monomer by the slow dissociation of J1 . Additional evidence proving the larger nucleus size of J2 is also identified with the varied-temperature spectral analyses and mathematic simulations.


Subject(s)
Hot Temperature , Kinetics , Phase Transition , Temperature
18.
Chemistry ; 28(24): e202104598, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35212059

ABSTRACT

Polycyclic aromatic hydrocarbon (PAH) structures with suitable electron-withdrawing groups are useful building blocks for developing optical and electron-transporting materials. Here, we report the application of a double benzannulation process to the syntheses of PAH diimides with enlarged π-frameworks featuring a central anthracene moiety. The preparations are realized by copper-catalyzed [4+2] cycloaddition of ethynyl-substituted aromatic dicarboximide to 2,5-bis(phenylethynyl)terephthalaldehyde, followed by intramolecular photocyclization or direct arylation via Heck cross coupling. A central symmetric benzo[1,2-k:4,5-k']-bis(fluoranthene)-3,4,12,13-tetracarboxyl diimide (BFDI) is acquired, with the single crystal structure revealing its completely planar polycyclic skeleton. Such a shape-persistent PAH expectedly exhibits a tendency to stack face-to-face and forms J-aggregates. Moreover, BFDI can be difunctionalized site-selectively at the reactive 9 and 10 positions of the anthracene unit and then applied to prepare conjugated polymers. When coupled with 1,4-diketopyrrolo[3,4-c]-pyrrole (DPP) via thiophene and dithiophene linkers, two polymers with significantly broadened absorption bands extended to the near-infrared regime are obtained, evidencing the effective π-conjugative extension ability of BFDI unit.

19.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35197296

ABSTRACT

Issues of molecular weight determination have been central to the development of supramolecular polymer chemistry. Whereas relationships between concentration and optical features are established for well-behaved absorptive and emissive species, for most supramolecular polymeric systems no simple correlation exists between optical performance and number-average molecular weight (Mn). As such, the Mn of supramolecular polymers have to be inferred from various measurements. Herein, we report an anion-responsive supramolecular polymer [M1·Zn(OTf)2]n that exhibits monotonic changes in the fluorescence color as a function of Mn Based on theoretical estimates, the calculated average degree of polymerization (DPcal) increases from 16.9 to 84.5 as the monomer concentration increases from 0.08 mM to 2.00 mM. Meanwhile, the fluorescent colors of M1 + Zn(OTf)2 solutions were found to pass from green to yellow and to orange, corresponding to a red shift in the maximum emission band (λmax ). Therefore, a relationship between DPcal and λmax could be established. Additionally, the anion-responsive nature of the present system meant that the extent of supramolecular polymerization could be regulated by introducing anions, with the resulting change in Mn being readily monitored via changes in the fluorescent emission features.

20.
Int J Med Sci ; 18(7): 1541-1553, 2021.
Article in English | MEDLINE | ID: mdl-33746570

ABSTRACT

Dual emissions at ~700 and 800 nm have been achieved from a single NIR-AZA fluorophore 1 by establishing parameters in which it can exist in either its isolated molecular or aggregated states. Dual near infrared (NIR) fluorescence color lymph node (LN) mapping with 1 was achieved in a large-animal porcine model, with injection site, channels and nodes all detectable at both 700 and 800 nm using a preclinical open camera system. The fluorophore was also compatible with imaging using two clinical instruments for fluorescence guided surgery. Methods: An NIR-AZA fluorophore with hydrophilic and phobic features was synthesised in a straightforward manner and its aggregation properties characterised spectroscopically and by TEM imaging. Toxicity was assessed in a rodent model and dual color fluorescence imaging evaluated by lymph node mapping in a large animal porcine models and in ex-vivo human tissue specimen. Results: Dual color fluorescence imaging has been achieved in the highly complex biomedical scenario of lymph node mapping. Emissions at 700 and 800 nm can be achieved from a single fluorophore by establishing molecular and aggregate forms. Fluorophore was compatible with clinical systems for fluorescence guided surgery and no toxicity was observed in high dosage testing. Conclusion: A new, biomedical compatible form of NIR-dual emission wavelength imaging has been established using a readily accessible fluorophore with significant scope for clinical translation.


Subject(s)
Endoscopy/methods , Fluorescent Dyes/administration & dosage , Lymph Nodes/diagnostic imaging , Optical Imaging/methods , Animals , Endoscopy/instrumentation , Female , Fluorescent Dyes/chemistry , Fluorescent Dyes/toxicity , HeLa Cells , Humans , Intraoperative Care/instrumentation , Intraoperative Care/methods , Intravital Microscopy/methods , Lymphatic Metastasis/diagnosis , Male , Models, Animal , Neoplasms/pathology , Neoplasms/surgery , Optical Imaging/instrumentation , Porphobilinogen/administration & dosage , Porphobilinogen/analogs & derivatives , Porphobilinogen/chemistry , Porphobilinogen/toxicity , Rats , Spectrophotometry, Infrared/instrumentation , Spectrophotometry, Infrared/methods , Sus scrofa , Toxicity Tests, Subacute/methods
SELECTION OF CITATIONS
SEARCH DETAIL