Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 941
Filter
1.
J Ethnopharmacol ; : 118786, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39244174

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Synovial inflammatory hyperplasia is the key pathological process that leads to further joint damage in rheumatoid arthritis (RA) progress. Kadsura heteroclita (Roxb) Craib, also called Xuetong in Chinese Tujia ethnomedicine, is utilized for its medicinal properties, including promoting blood circulation, dispelling "wind evil", and relieving "damp evil". It has been used in the treatment of arthralgia and RA, within Tujia ethnomedicinal practices. Xuetongsu (XTS), the main component of Xuetong, has been shown to inhibit the proliferation of RA fibroblast-like synovial cells (RAFLS) cells. However, the molecular mechanism of XTS in RA treatment requires further investigation. AIM OF THE STUDY: To observe the therapeutic effect of XTS on synovial inflammatory hyperplasia in rheumatoid arthritis, focusing on its underlying molecular mechanisms involving the janus kinase 2 (JAK2)/transducer/activator of transcription 3 (STAT3) and nuclear factor kappa B (NF-κB) signaling pathways. MATERIALS AND METHODS: Protein-protein interaction (PPI) and molecular docking were used to find the main targets of XTS treatment for RA. In lipopolysaccharide (LPS)-induced RAFLS and RAW264.7 cells in vitro models, the levels of inflammatory cytokines were analyzed using enzyme linked immunosorbent assay (ELISA), and the expression of JAK2, STAT3, and NF-κB signaling pathways, as well as cyclooxygenase-2 (COX-2), were analyzed through western blotting test. A hemolysis assay was used to certify the biosecurity of XTS. A model of adjuvant arthritis (AIA) was established in 40 male rats, and different doses of XTS were administered, followed by an automatic blood routine, ELISA assay, hematoxylin and eosin (H&E) staining, and radiological analysis of the effect of no XTS on blood cytokines, histological changes, and improvement of posterior paw bone destruction in AIA rats. The protein levels of inflammatory cytokines were analyzed by immunofluorescence, immunohistochemistry, or western blot. Finally, H&E staining was used to detect the damage of XTS on the heart, liver, spleen, lung, and kidney of AIA rats. RESULTS: Our results demonstrate that XTS effectively inhibited LPS-induced inflammatory responses in RAFLS and RAW264.7 cells by modulating the JAK2/STAT3 and NF-κB signaling pathways. Moreover, XTS administration in the AIA rats model significantly ameliorated paw swelling. Histological analysis revealed that XTS also suppressed the inflammatory response in paw tissue by modulating the JAK2/STAT3 and NF-κB signaling pathways. Importantly, during the treatment, XTS exhibited excellent safety profiles, as it did not induce any abnormalities in blood routine parameters or cause organ damage in the rats. CONCLUSIONS: Our findings highlight XTS as a promising natural agent for inhibiting synovial hyperplasia in RA. XTS holds great potential as an unprecedented natural agent for developing novel therapeutic strategies to target synovial hyperplasia in RA.

2.
Development ; 151(17)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39250533

ABSTRACT

The cell-intrinsic mechanisms underlying the decision of a stem/progenitor cell to either proliferate or differentiate remain incompletely understood. Here, we identify the transmembrane protein Lrig1 as a physiological homeostatic regulator of FGF2-driven proliferation and self-renewal of neural progenitors at early-to-mid embryonic stages of cortical development. We show that Lrig1 is expressed in cortical progenitors (CPs), and its ablation caused expansion and increased proliferation of radial/apical progenitors and of neurogenic transit-amplifying Tbr2+ intermediate progenitors. Notably, our findings identify a previously unreported EGF-independent mechanism through which Lrig1 negatively regulates neural progenitor proliferation by modulating the FGF2-induced IL6/Jak2/Stat3 pathway, a molecular cascade that plays a pivotal role in the generation and maintenance of CPs. Consistently, Lrig1 knockout mice showed a significant increase in the density of pyramidal glutamatergic neurons placed in superficial layers 2 and 3 of the postnatal neocortex. Together, these results support a model in which Lrig1 regulates cortical neurogenesis by influencing the cycling activity of a set of progenitors that are temporally specified to produce upper layer glutamatergic neurons.


Subject(s)
Janus Kinase 2 , Membrane Glycoproteins , Mice, Knockout , Neural Stem Cells , Neurogenesis , Neurons , STAT3 Transcription Factor , Signal Transduction , Animals , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Janus Kinase 2/metabolism , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Mice , Neurogenesis/genetics , Neurons/metabolism , Neurons/cytology , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Cell Proliferation , Cerebral Cortex/metabolism , Cerebral Cortex/cytology , Cerebral Cortex/embryology , Cell Differentiation , Fibroblast Growth Factors/metabolism , Nerve Tissue Proteins
3.
Discov Oncol ; 15(1): 421, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39254762

ABSTRACT

BACKGROUND: Existing studies have already revealed the involvement of C-C chemokine receptor type 7 (CCR7) in diverse human cancers, including esophageal cell squamous carcinoma (ESCA). Our current study, aims to explore the relevant mechanisms implicated. METHODS: ESCA cell lines were collected for CCR7 expression quantification using western blot. Following the transfection, the viability, migration and invasion of ESCA cells were evaluated via cell counting kit-8 and Transwell assays. The specific molecular mechanisms underlying the effects of CCR7 in ESCA cells were explored via calculating the expressions of proteins related to metastasis and Janus kinase 2/signal transduction and transcription activation 3 (JAK2/STAT3) signaling pathway via western blot. The correlation between CCR7 and metastasis-related proteins was explored via Pearson's correlation test. RESULTS: CCR7 was high-expressed in ESCA cells and CCR7 knockdown repressed the viability, migration and invasion of ESCA cells, concurrent with the increased expression of E-cadherin (E-cad, which was also known as CDH1 and lowly expressed in ESCA cells) and the decreased expressions of vimentin (Vim, which was highly expressed in ESCA cells) and matrix metalloproteinase-9 (MMP-9, which was also highly expressed in ESCA cells). Meanwhile, CCR7 was positively correlated with Vim and MMP-9 yet negatively correlated with E-cad in ESCA cells, which indicated that CCR7 has a role in promoting tumor progression in ESCA cells. Besides, the phosphorylation of STAT3 and JAK2 in ESCA cells was elevated, which was diminished following CCR7 knockdown. CONCLUSION: This study proves the modulation of CCR7 on ESCA in vitro, which was achieved via JAK2/STAT3 signaling pathway. Our discovery will provide new therapeutic basis and insights for ESCA.

4.
J Cancer ; 15(16): 5288-5307, 2024.
Article in English | MEDLINE | ID: mdl-39247606

ABSTRACT

In the dynamic landscape of cervical cancer (CC) pathophysiology, this study aimed to elucidate the role of necroptosis in modulating tumor proliferation, invasion, and the immune microenvironment in CC. In this study, the impact of necroptosis on CC was evaluated through a series of bioinformatical analyses and experimental approaches. The impact of necroptosis on CC was illustrated by analyzing its effects on tumor aggression, immune responses, and the JAK2-STAT3 signaling pathway. Bevacizumab, a monoclonal antibody targeting vascular endothelial growth factor (VEGF), was also evaluated for its potential induction of necroptosis in CC cells and its interaction with necroptosis inhibitors. Additionally, the study assessed the influence of necroptosis on the immune microenvironment, particularly in T-cell-related pathways and the expression of tumor suppressor genes in CC. Necroptosis was found to enhance VEGFA expression through the activation of the JAK2-STAT3 pathway, promoting tumor proliferative and invasive capabilities in CC. Bevacizumab induced necroptosis in CC cells, potentially leading to resistance to therapy. The combination of bevacizumab with necroptosis inhibitors attenuated VEGFA expression, suggesting a novel therapeutic strategy. Additionally, necroptosis activated T-cell-related pathways and promoted the infiltration and activation of Jurkat T cells. CD3D-a tumor suppressor gene in CC-was identified as a critical marker and its expression could be upregulated by necroptosis via the JAK2-STAT3 pathway in Jurkat T cells. Treatment of CC cells with supernatants from necroptosis-induced Jurkat cells resulted in reduced tumor cell proliferation and invasion. This study reveals a complex interaction between necroptosis, tumor progression, and the immune response in CC. The findings propose a nuanced approach to leveraging necroptosis for therapeutic interventions, highlighting the potential of combining necroptosis inhibitors with existing therapies to improve treatment outcomes in CC.

5.
J Ethnopharmacol ; 337(Pt 1): 118779, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39244177

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The Danshen-Shanzha Decoction (DSD) is a renowned herbal combination consisting of the root of Salvia miltiorrhiza Bunge (known as Danshen in Chinese) and the fruits of Crataegus pinnatifida Bunge (known as Shanzha in Chinese), which has exhibited remarkable clinical efficacy in the treatment of coronary heart disease (CHD) in traditional Chinese medicine, with its earliest recorded application dating to around 202 BCE during the Han Dynasty. Despite significant advancements in the fundamental research and clinical applications of DSD over the past few decades, the precise bioactive components as well as the underlying mechanisms responsible for its protective effect on CHD remain unelucidated. AIM OF THE STUDY: The present study was designed to elucidate the bioactive components and potential mechanism of DSD in the treatment of CHD using in silico technologies integrated with pharmacoinformatic methods and experimental validation. MATERIALS AND METHODS: The chemical components of DSD were analyzed and identified using UPLC-Q-TOF-MS. Pharmacoinformatic-based methods were employed to comprehensively investigate the principal active components and targets of DSD for treating CHD. GO and KEGG pathway analyses were utilized to elucidate the underlying mechanism responsible for DSD's efficacy against CHD. Molecular docking and molecular dynamics simulation were performed to assess the binding affinity between active components and putative targets. Furthermore, surface plasmon resonance (SPR) was carried out to verify the affinity and kinetic characteristics of major components to STAT3 protein. Subsequently, a series of in vitro experiments, including cell viability test, flow cytometric analysis, ELISA and western blotting, were conducted to validate the predicted results in an oxygen-glucose deprivation (OGD)-stimulated H9c2 model. RESULTS: A total of 96 compounds were characterized by UPLC-Q-TOF-MS, and 281 overlapping targets were identified through pharmacoinformatic-based methods. Among these, ten critical compounds were determined as the core active components of DSD. The core targets associated with the development of CHD included STAT3, SRC, TP53, JUN, and AKT1. Notably, Dihydrotanshinone I and (+)-Epicatechin exhibited strong binding affinity towards STAT3. The potential mechanisms by which DSD modulates the pathological progression of CHD were predicted to involve inflammation, oxidative stress, and apoptosis. Importantly, the cytoprotective effect of DSD against apoptosis was confirmed in OGD-stimulated H9c2 cells, as evidenced by the upregulation of Bcl-2 expression and downregulation of both Bax and cleaved caspase-3 expressions upon DSD treatment. Furthermore, DSD significantly enhanced the phosphorylated protein expressions of JAK2 and STAT3 compared to the OGD group, suggesting its potential role in modulating related signaling pathways. CONCLUSIONS: The current study successfully fills the gap in the understanding of the chemical profiles of DSD, predicting its active components, potential targets, and molecular mechanisms in the treatment of CHD. These findings not only provide a valuable strategy but also robust data support for future investigations into DSD, thereby facilitating the identification of novel therapeutic targets for traditional Chinese medicines in the battle against CHD.

6.
Cell Biochem Biophys ; 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39240442

ABSTRACT

Cerebral ischemia/reperfusion injury (IRI) is a primary pathophysiological basis of ischemic stroke, a dreadful cerebrovascular event carrying substantial disability and lethality. Triggering receptor expressed on myeloid cells 2 (TREM2) is a membrane glycoprotein that has been notified as a protective factor for cerebral ischemic stroke. On this basis, the paper is thereby goaled to interpret the probable activity and downstream mechanism of TREM2 against cerebral IRI. Cerebral IRI was simulated in murine microglial BV2 cells under oxygen-glucose deprivation and reperfusion (OGD/R) conditions. Western blotting ascertained the expressions of TREM2 and janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) axis-associated proteins. ELISA and RT-qPCR assayed the secretion of inflammatory cytokines. Immunofluorescence and western blotting estimated macrophage polarization. Glycolysis activation was measured through evaluating lactic acid and extracellular acidification rate (ECAR). RT-qPCR and western blotting examined the expressions of glycolytic genes. TREM2 was abnormally expressed and JAK2/STAT3 axis was aberrantly activated in BV2 cells in response to OGD/R. Elevation of TREM2 repressed the inflammatory reaction and glycolysis, inhibited the JAK2/STAT3 axis, whereas promoted M1-to-M2 polarization in OGD/R-injured BV2 cells. Upregulated TREM2 inactivated the glycolytic pathway to relieve OGD/R-induced inflammatory injury and M1 macrophage polarization. Besides, STAT3 activator, colivelin, aggravated the glycolysis, inflammatory injury and drove M1-like macrophage polarization in TREM2-overexpressing BV2 cells exposed to OGD/R. Collectively, TREM2 might produce anti-inflammatory potential in cerebral IRI, which might dependent on the inactivation of glycolytic pathway via intermediating the JAK2/STAT3 axis.

7.
Article in English | MEDLINE | ID: mdl-39219239

ABSTRACT

Neuropathic pain (NP) significantly impacts the quality of life due to its prolonged duration and lack of effective treatment. Recent findings suggest that targeting neuroinflammation is a promising approach for treating NP. G protein-coupled receptor 55 (GPR55), a member of the GPCR family, plays an important role in neuroinflammatory regulation. CID16020046, a GPR55 agonist, possesses promising anti-neuroinflammatory effects. Herein, the therapeutic effect of CID16020046 on NP was investigated in an NP rat model. The NP model was established using the unilateral sciatic nerve chronic constriction injury (CCI) assay. Both sham and CCI rats were intraperitoneally administered with 20 mg/kg CID16020046. NP was assessed using paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). First, we showed that GPR55 was downregulated in the spinal dorsal horn of CCI rats. After CCI rats were treated with CID16020046, the values of PWT and PWL were increased, indicating their effect on pain relief. The treated rats had attenuated release of inflammatory cytokines in the spinal cord, decreased spinal malondialdehyde (MDA) levels, and increased spinal glutathione peroxidase (GSH-PX) activity. Additionally, the increased levels of phosphorylated nuclear factor (NF)-κB p65 in CCI rats were significantly alleviated by CID16020046 treatment. Mechanistically, we showed that CID16020046 significantly suppressed the activation of the Janus kinase (JAK2)/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway in the spinal cord of CCI-treated rats. However, Colivelin TFA (a STAT3 agonist) abolished the effect of CID16020046 on JAK2/STAT3 activation. In conclusion, our data demonstrate that the activation of GPR55 by CID16020046 alleviates NP and neuroinflammation in CCI rats by mediating the JAK2/STAT3 pathway.

8.
BMC Cancer ; 24(1): 957, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39103776

ABSTRACT

PURPOSE: Exosomal microRNAs have been identified as important mediators of communication between tumor cells and macrophages in the microenvironment. miR-541-5p was reported to be involved in hepatocellular carcinoma progression, but its role in gastric cancer (GC) and in GC cell-macrophage crosstalk is unknown. METHODS: Cell proliferation, migration and invasion were respectively assessed by CCK-8 assay, scratch and Transwell assays. RT-qPCR was used to detect the level of miR-541-5p, macrophage markers and DUSP3. The percentage of CD11b+CD206+ cell population was analyzed by flow cytometry. Western blotting was employed to evaluate DUSP3-JAK2/STAT3 pathway proteins and exosome markers. The interaction between miR-541-5p and DUSP3 was verified by luciferase assay. RESULTS: The results showed that miR-541-5p was upregulated in GC tissues and cells, and stimulated GC cell growth, migration and invasion in vitro. GC cells induce M2 macrophage polarization by secreting the exosomal miR-541-5p. Exosomal miR-541-5p maintained JAK2/STAT3 pathway activation in macrophages by targeting negative regulation of DUSP3. Inhibiting miR-541-5p significantly limited tumor growth in vivo. CONCLUSION: In conclusion, miR-541-5p promotes GC cell progression. GC cells may induce macrophage M2 polarization through the exosomal miR-541-5p-mediated DUSP3/JAK2/STAT3 pathway. miR-541-5p may be a potential therapeutic target for GC.


Subject(s)
Cell Proliferation , Dual Specificity Phosphatase 3 , Exosomes , Janus Kinase 2 , Macrophages , MicroRNAs , STAT3 Transcription Factor , Stomach Neoplasms , Humans , Janus Kinase 2/metabolism , Janus Kinase 2/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Exosomes/metabolism , Exosomes/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Mice , Animals , Macrophages/metabolism , Dual Specificity Phosphatase 3/metabolism , Dual Specificity Phosphatase 3/genetics , Cell Line, Tumor , Signal Transduction , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Mice, Nude , Male , Female
9.
Heliyon ; 10(14): e34115, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39108922

ABSTRACT

Leukemia is a malignant tumor of the hematologic system. Studies have shown that cernuumolide J (TMJ-105), an extract of Carpesium cernuum, has anti-cancer effects, but the underlying mechanism is unclear. In this study, we investigated the effect of TMJ-105 on the proliferation of human leukemia HEL cells and its molecular mechanism. MTT analysis showed TMJ-105 had revealed that it shows significant IC50 in HEL cells at lower doses (1.79 ± 0.29 µmol/L) than in K562 cells (3.89 ± 0.80 µmol/L), and the suppression of HEL cell proliferation was time- and concentration-dependent. Meanwhile, TMJ-105 induced G2/M phase blockage, leading to DNA damage in HEL cells. TMJ-105 promoted HEL cells to release of reactive oxygen species (ROS) and changed mitochondrial membrane potential (MMP). Furthermore, TMJ-105 induced apoptosis by upregulating the cleaved-caspase9 and cleaved-caspase3 protein expression, while caspase pan inhibitor (Z-VAD-FMK) blocked the inhibition effect. Finally, TMJ-105 downregulated the phosphorylation of JAK2, STAT3 and Erk, and activated the phosphorylation of JNK and p38. Collectively, these results demonstrated that TMJ-105 inhibited proliferation of leukemia cells and the underlying mechanism via the JAK2/STAT3 axis and MAPKs signaling pathway. Based on these results, the present study suggested the sesquiterpene lactone TMJ-105 is a new chemotherapeutic agent for the treatment of leukemia.

10.
J Physiol Biochem ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39155330

ABSTRACT

Acute kidney injury is a serious public health problem worldwide, being ischemia and reperfusion (I/R) the main lesion-aggravating factor that contributes to the evolution towards chronic kidney disease. Nonetheless, intervention approaches currently available are just considered palliative options. In order to offer an alternative treatment, it is important to understand key factors involved in the development of the disease including the rescue of the affected cells and/or the release of paracrine factors that are crucial for tissue repair. Bioactive lipids such as sphingosine 1-phosphate (S1P) have significant effects on the modulation of signaling pathways involved in tissue regeneration, such as cell survival, proliferation, differentiation, and migration. The main objective of this work was to explore the protective effect of S1P using human kidney proximal tubule cells submitted to a mimetic I/R lesion, via ATP depletion. We observed that the S1P pre-treatment increases cell survival by 50% and preserves the cell proliferation capacity of injured cells. We showed the presence of different bioactive lipids notably related to tissue repair but, more importantly, we noted that the pre-treatment with S1P attenuated the ischemia-induced effects in response to the injury, resulting in higher endogenous S1P production. All receptors but S1PR3 are present in these cells and the protective and proliferative effect of S1P/S1P receptors axis occur, at least in part, through the activation of the SAFE pathway. To our knowledge, this is the first time that S1PR4 and S1PR5 are referred in these cells and also the first indication of JAK2/STAT3 pathway involvement in S1P-mediated protection in an I/R renal model.

11.
Mol Divers ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158620

ABSTRACT

The pachysandra alkaloids found in Sarcococca ruscifolia demonstrate notable anti-hepatocellular carcinoma activity. Despite their efficacy, the structural diversity of these compounds remains limited, and their precise antitumor mechanism is still unclear. In pursuit of identifying novel lead compounds with high efficacy and low toxicity for combating hepatocellular carcinoma, twenty-three compounds of C20-ketone pachysandra alkaloid derivatives were designed and synthesized by using 3-dimethylamine pachysandra alkaloids as scaffolds. Subsequent in vitro anticancer activity experiments showed that synthetic pachysandra alkaloids had a stronger effect on HepG2 cells than did their natural counterparts, with low toxicity and high selectivity. The most potent derivative, 6k, had an IC50 value of 0.75 µM, demonstrating 25.7-fold greater anticancer activity than sarcovagine D against HepG2 cells. Through network pharmacology and molecular docking analysis, it was revealed that synthetic pachysandra alkaloids may exert their effects by inhibiting the JAK2/STAT3 pathway, thereby preventing the proliferation of liver cancer cells. Further research through scratch tests, immunofluorescence experiments, and Western blot analysis revealed that compound 6k effectively inhibited the migration of HepG2 cells and induced mitochondria-mediated intrinsic apoptosis of HepG2 cells by regulating the JAK2/STAT3 signaling pathway. The aforementioned results indicate that compound 6k could be developed as a potential candidate for the treatment of hepatocellular carcinoma.

12.
Chem Biol Drug Des ; 104(2): e14611, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39152534

ABSTRACT

Radiation resistance is a crucial factor influencing therapeutic outcomes in colorectal cancer (CRC). Baicalein (BE), primarily derived from Scutellaria baicalensis, has demonstrated anti-CRC properties. However, the impact of BE on the radiosensitivity of CRC remains unclear. This study aimed to evaluate the radiosensitization effects of BE and elucidate its mechanism in CRC radiotherapy. We established an in vitro radioresistant cell model (CT26-R) using parental CRC cells (CT26) subjected to ionizing radiation (IR). CT26-R cells were pretreated with or without BE, followed by transfection with pcDNA-NC and pcDNA-JAK2. The proliferation of CT26-R cells treated with BE and IR was assessed using a colony formation assay. A CRC animal model was developed in BALB/c mice via CT26-R cell transplantation. The radiosensitizing effect of BE on CRC was evaluated in vivo. TUNEL assay was conducted to detect apoptosis in tumor tissue. The expression levels of p-STAT3, JAK2, PD-L1, and SOCS3 in vitro and in vivo were measured by western blotting. Our results demonstrated that BE significantly increased radiosensitivity in vitro and in vivo and enhanced apoptosis in tumor tissues. Additionally, BE significantly downregulated the expression of p-STAT3, JAK2, and PD-L1, and significantly upregulated SOCS3 expression. These in vivo effects were reversed by pcDNA-JAK2. In summary, our data suggest that BE enhances CRC radiosensitivity by inhibiting the JAK2/STAT3 pathway.


Subject(s)
Apoptosis , Colorectal Neoplasms , Flavanones , Janus Kinase 2 , Mice, Inbred BALB C , Radiation Tolerance , STAT3 Transcription Factor , Signal Transduction , Janus Kinase 2/metabolism , Flavanones/pharmacology , Flavanones/chemistry , Flavanones/therapeutic use , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/radiotherapy , Animals , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , Mice , Radiation Tolerance/drug effects , Cell Line, Tumor , Signal Transduction/drug effects , Apoptosis/drug effects , Humans , Cell Proliferation/drug effects , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/therapeutic use , Radiation-Sensitizing Agents/chemistry
13.
Ren Fail ; 46(2): 2378210, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39090966

ABSTRACT

Objectives: To explore the therapeutic effects of M2 macrophages in diabetic nephropathy (DN) and their mechanism.Methods: We infused M2 macrophages stimulated with IL-4 into 10-week-old db/db mice once a week for 4 weeks through the tail vein as M2 group. Then we investigated the role of M2 macrophages in alleviating the infammation of DN and explored the mechanism.Results: M2 macrophages hindered the progression of DN, reduced the levels of IL-1ß (DN group was 34%, M2 group was 13%, p < 0.01) and MCP-1 (DN group was 49%, M2 group was 16%, p < 0.01) in the glomeruli. It was also proven that M2 macrophages alleviate mesangial cell injury caused by a high glucose environment. M2 macrophage tracking showed that the infused M2 macrophages migrated to the kidney, and the number of M2 macrophages in the kidney reached a maximum on day 3. Moreover, the ratio of M2 to M1 macrophages was 2.3 in the M2 infusion group, while 0.4 in the DN group (p < 0.01). Mechanistically, M2 macrophages downregulated Janus kinase (JAK) 2 and signal transducer and activator of transcription (STAT) 3 in mesangial cells.Conclusions: Multiple infusions of M2 macrophages significantly alleviated inflammation in the kidney and hindered the progression of DN at least partially by abrogating the M1/M2 homeostasis disturbances and suppressing the JAK2/STAT3 pathway in glomerular mesangial cells. M2 macrophage infusion may be a new therapeutic strategy for DN treatment.


Subject(s)
Diabetic Nephropathies , Janus Kinase 2 , Macrophages , STAT3 Transcription Factor , Signal Transduction , Animals , Janus Kinase 2/metabolism , Diabetic Nephropathies/metabolism , STAT3 Transcription Factor/metabolism , Mice , Macrophages/metabolism , Male , Mesangial Cells/metabolism , Disease Models, Animal , Kidney Glomerulus/pathology , Kidney Glomerulus/metabolism , Chemokine CCL2/metabolism , Mice, Inbred C57BL , Interleukin-1beta/metabolism
14.
J Agric Food Chem ; 72(32): 17964-17976, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39096281

ABSTRACT

Spinal cord injury (SCI) is one of the most serious health problems, with no effective therapy. Recent studies indicate that Fisetin, a natural polyphenolic flavonoid, exhibits multiple functions, such as life-prolonging, antioxidant, antitumor, and neuroprotection. However, the restorative effects of Fisetin on SCI and the underlying mechanism are still unclear. In the present study, we found that Fisetin reduced LPS-induced apoptosis and oxidative damage in PC12 cells and reversed LPS-induced M1 polarization in BV2 cells. Additionally, Fisetin safely and effectively promoted the motor function recovery of SCI mice by attenuating neurological damage and promoting neurogenesis at the lesion. Moreover, Fisetin administration inhibited glial scar formation, modulated microglia/macrophage polarization, and reduced neuroinflammation. Network pharmacology, RNA-seq, and molecular biology revealed that Fisetin inhibited the activation of the JAK2/STAT3 signaling pathway. Notably, Colivelin TFA, an activator of JAK2/STAT3 signaling, attenuated Fis-mediated neuroinflammation inhibition and therapeutic effects on SCI mice. Collectively, Fisetin promotes functional recovery after SCI by inhibiting microglia/macrophage M1 polarization and the JAK2/STAT3 signaling pathway. Thus, Fisetin may be a promising therapeutic drug for the treatment of SCI.


Subject(s)
Flavonols , Janus Kinase 2 , Macrophages , Microglia , STAT3 Transcription Factor , Signal Transduction , Spinal Cord Injuries , Animals , Humans , Male , Mice , Rats , Cell Polarity/drug effects , Flavonoids/pharmacology , Flavonoids/administration & dosage , Flavonols/pharmacology , Janus Kinase 2/metabolism , Janus Kinase 2/genetics , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Microglia/immunology , PC12 Cells , Recovery of Function/drug effects , Signal Transduction/drug effects , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/genetics , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/immunology , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics
15.
Nat Prod Bioprospect ; 14(1): 44, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133435

ABSTRACT

Xiaoyankangjun tablet (XYKJP) is a traditional Chinese medicine formulation used to treat intestinal disorders in clinical practice. However, the specific therapeutic mechanism of action of XYKJP in colitis has not yet been elucidated. This study aimed to reveal the multifaceted mechanisms of action of XYKJP in treating colitis. The model established based on DSS-induced colitis in C57BL/6 mice was employed to estimate the effect of XYKJP on colitis, which was then followed by histological assessment, 16S rRNA sequencing, RT-qPCR, ELISA, and Western blot. XYKJP alleviated the symptoms of DSS-induced colitis mainly by reducing oxidative stress, inflammatory responses, and intestinal mucosal repair in colitis tissues. In addition, XYKJP regulated the intestinal flora by increasing the relative abundance of Akkermansia and Bifidobacterium and reducing the relative abundance of Coriobacteriaceae_UCG-002. Mechanistically, XYKJP increased the content of short-chain fatty acids (SCFAs) in the feces, particularly propanoic acid and butyric acid, activated their specific receptor GPR43/41, furthermore activated the Nrf2/HO-1 pathway, and suppressed the JAK2/STAT3 pathway. XYKJP significantly alleviated the symptoms of experimental colitis and functioned synergistically by regulating the intestinal flora, increasing the production of SCFAs, and activating their specific receptors, thereby repressing oxidative stress and inflammation.

16.
Article in English | MEDLINE | ID: mdl-39129292

ABSTRACT

BACKGROUND: Cisplatin is a key therapeutic agent for bladder cancer, yet the emergence of cisplatin resistance presents a significant clinical challenge. OBJECTIVE: This study aims to investigate the potential and mechanisms of cyclanoline (Cyc) in overcoming cisplatin resistance. METHODS: Cisplatin-resistant T24 and BIU-87 cell models (T24/DR and BIU-87/DR) were established by increasing gradual concentration. Western Blot (WB) assessed the phosphorylation of STAT3, JAK2, and JAK3. T24/DR and BIU-87/DR cell lines were treated with selective STAT3 phosphorylation modulators, and cell viability was evaluated by CCK-8. Cells were subjected to cisplatin, Cyc, or their combination. Immunofluorescence (IHC) examined p-STAT3 expression. Protein and mRNA levels of apoptosis-related and cell cycle-related factors were measured. Changes in proliferation, invasion, migration, apoptosis, and cell cycle were monitored. In vivo, subcutaneous tumor transplantation models in nude mice were established, assessing tumor volume and weight. Changes in bladder cancer tissues were observed through HE staining, and the p-STAT3 was assessed via WB and IHC. RESULTS: Cisplatin-resistant cell lines were successfully established, demonstrating increased phosphorylation of STAT3, JAK2, and JAK3. Cisplatin or Cyc treatment decreased p-STAT3, inhibited invasion and migration, and induced apoptosis and cell cycle arrest in the G0/G1 phase in vitro. In vivo, tumor growth was significantly suppressed, with extensive tumor cell death. IHC and WB consistently showed a substantial downregulation of STAT3 phosphorylation. These changes were more pronounced when cisplatin and Cyc were administered in combination. CONCLUSION: Cyc reverses cisplatin resistance via JAK/STAT3 inhibition in bladder cancer, offering a potential clinical strategy to enhance cisplatin efficacy in treating bladder cancer.

17.
Vet Microbiol ; 298: 110235, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39213728

ABSTRACT

Porcine epidemic diarrhea (PED) is an acute, virulent, and highly contagious disease caused by the porcine epidemic diarrhea virus (PEDV). The high mutation rate of PEDV makes it difficult to effectively control using traditional vaccines, emphasizing the need for novel anti-PEDV-specific drugs. Therefore, this study aimed to investigate the activity and mechanism of action of andrographolide (AND) against PEDV in vitro and in vivo. In vitro experiments showed that AND treatment significantly inhibited PEDV replication in a cell model. The mechanism is that AND treatment significantly suppressed PEDV-induced activation of the JAK2-STAT3 pathway, which promoted apoptosis and inhibited the proliferation of the virus. Moreover, PEDV-infected 3-day-old piglets were treated with AND, and clinical symptoms, intestinal morphology, and viral load were examined. In vivo experiments showed that AND treatment reduced clinical symptoms, ameliorated intestinal damage, and increased the survival rate of infected piglets by 16.7 %. Conclusively, this study contributes to the field of PEDV antiviral drug development and provides new directions for PED prevention and treatment.

18.
Toxicol Appl Pharmacol ; 491: 117077, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39181414

ABSTRACT

BACKGROUND: Celastrol is a natural triterpene exhibiting significant and extensive antitumor activity in a wide range of cancer. Due to unfavorable toxicity profile and undefined mechanism, Celastrol's application in clinical cancer therapy remains limited. Herein, we elucidate the pharmacological mechanism of Celastrol's anticancer effects, with a focus on STAT3 signaling pathway in cancers with high incidence of metastasis. METHODS: The safety profile of Celastrol were assessed in mice. In vitro analysis was performed in gastric cancer and ovarian cancer to assess the cytotoxicity, induction of reactive oxygen species (ROS) of Celastrol using STAT3 knockout cancer cells. Effects of Celastrol on STAT3 activation and transcription activity, JAK2/STAT3 signaling protein expression were assessed. Additionally, proteomic contrastive analysis was performed to explore the molecular association of Celastrol with STAT3 deletion in cancer cells. RESULTS: Celastrol has no obvious toxic effect at 1.5 mg/kg/day in a 15 days' administration. Celastrol inhibits tumor growth and increases ROS in a STAT3 dependent manner in gastric and ovarian cancer celllines. On molecular level, it downregulates IL-6 level and inhibits the JAK2/STAT3 signaling pathway by suppressing STAT3' activation and transcription activity. Proteomic contrastive analysis suggests a similar cellular mechanism of action between Celastrol and STAT3 deletion on regulating cancer progression pathways related to migration and invasion. CONCLUSION: Our research elucidates the anti-cancer mechanism of Celastrol through targeting the JAK2/STAT3 signaling pathway in cancer with high incidence of metastasis. This study provides a solid theoretical basis for the application of Celastrol in cancer therapy.


Subject(s)
Janus Kinase 2 , Ovarian Neoplasms , Pentacyclic Triterpenes , STAT3 Transcription Factor , Signal Transduction , Stomach Neoplasms , Triterpenes , Janus Kinase 2/metabolism , Female , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/genetics , Animals , Humans , Signal Transduction/drug effects , Triterpenes/pharmacology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Cell Line, Tumor , Mice , Antineoplastic Agents/pharmacology , Mice, Nude , Reactive Oxygen Species/metabolism , Mice, Inbred BALB C
19.
Nutrients ; 16(16)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39203920

ABSTRACT

Rosa sterilis (RS) is a characteristic fruit in southwestern China that has numerous health benefits; however, its pharmacological effect needs further clarification, especially with respect to the exploration of its potential anti-breast-cancer effect, as there are still knowledge gaps in this regard. This study was designed to investigate the protective effects of Rosa sterilis juice (RSJ) on breast cancer (BC) through in vitro cellular experiments and by establishing mouse 4T1 breast xenograft tumors. This study also had the aim of elucidating RSJ's underlying mechanisms. RSJ can inhibit cell proliferation, affect cell morphology, and impact the clone formation ability of BC; furthermore, it can promote apoptosis by triggering the mitochondrial apoptosis pathway. In mouse 4T1 breast xenograft tumors, RSJ markedly inhibited tumor growth, relieved the pathological lesions, lowered the expression of Ki67, and regulated the expression of the apoptosis-associated protein. Moreover, we observed that RSJ can inhibit the Jak2/Stat3 signaling pathway both in vivo and in vitro. Overall, our research reveals that RSJ can alleviate BC by triggering the mitochondrial apoptosis pathway and suppressing the Jak2/Stat3 pathway, providing new dietary intervention strategies for BC.


Subject(s)
Apoptosis , Breast Neoplasms , Janus Kinase 2 , Mitochondria , Rosa , STAT3 Transcription Factor , Signal Transduction , Janus Kinase 2/metabolism , Animals , Apoptosis/drug effects , STAT3 Transcription Factor/metabolism , Female , Mitochondria/drug effects , Mitochondria/metabolism , Breast Neoplasms/pathology , Signal Transduction/drug effects , Mice , Humans , Cell Line, Tumor , Rosa/chemistry , Cell Proliferation/drug effects , Fruit and Vegetable Juices , Mice, Inbred BALB C , Xenograft Model Antitumor Assays
20.
Article in English | MEDLINE | ID: mdl-39207680

ABSTRACT

An upregulated histocompatibility minor 13 (HM13) has been studied in various tumors, yet the exact mechanism of HM13 in non-small cell lung cancer (NSCLC) is unclear. In view of same, the present study investigates crucial role and action mechanism of HM13 in human NSCLC. HM13 expression was higher in NSCLC tissue and cells through the Western blotting technique along with qRT-PCR. As per data from The Cancer Genome Atlas (TCGA), NSCLC patients having high HM13 expression show lower overall survival. 5-ethynyl-2-deoxyuridine (EdU), Cell Counting Kit-8 (CCK-8), and transwell tests were assessed for NSCLC cell growth, and invasion, and we found that silencing of HM13 inhibited the NSCLC cell proliferation, invasion. Additionally, to investigate the effects of HM13 on THP-1 macrophage polarization, a co-culture model of NSCLC and THP-1 macrophages were used. The CD206 + macrophages were examined using flow cytometry. As the markers of M2 macrophage, the mRNA levels of IL-10 and TGF-ß of THP-1 cells were also detected by qRT-PCR. Knockdown of HM13 could inhibit the M2 polarization. Further experiments demonstrated that downregulated HM13 could inhibit the JAK2/STAT3 signaling pathway. RO8191 (activator of JAK/STAT3 pathway) influenced the invasion, proliferation, and expression of JAK2/STAT3 signaling pathway and Epithelial-mesenchymal transition (EMT) markers induced by HM13 silencing. HM13 knockdown also inhibited the tumor growth in vivo by xenograft nude mouse model. By inhibiting JAK2/STAT3 signaling pathway, HM13 knockdown inhibited the NSCLC cell proliferation, metastasis tumor growth, and tumor-associated macrophage M2 polarization. In NSCLC, HM13 could be a therapeutic target to treat the NSCLC.

SELECTION OF CITATIONS
SEARCH DETAIL