Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
1.
Biochem Biophys Res Commun ; 733: 150434, 2024 Nov 12.
Article in English | MEDLINE | ID: mdl-39068818

ABSTRACT

Ca2+-activated KCa3.1 channels are known to contribute to slow afterhyperpolarization in pyramidal neurons of several brain areas, while Ca2+-permeable AMPA receptors (CP-AMPARs) may provide a subthreshold source of Ca2+ elevation in the cytoplasm. The functionality of these two types of channels has also been shown to be altered by epileptic disorders. However, the link between KCa3.1 channels and CP-AMPARs is poorly understood, and their potential interaction in epilepsy remains unclear. Here, we address this issue by overexpressing the KCNN4 gene, which encodes the KCa3.1 channel, using patch clamp, imaging, and channel blockers in an in vitro model of epilepsy in neuronal culture. We show that KCNN4 overexpression causes strong hyperpolarization and substantial silencing of neurons during epileptiform activity events, which also prevents KCNN4-positive neurons from firing action potentials (APs) during experimentally induced status epilepticus. Intracellular blocker application experiments showed that the amplitude of hyperpolarization was strongly dependent on CP-AMPARs, but not on NMDA receptors. Taken together, our data strongly suggest that subthreshold Ca2+ elevation produced by CP-AMPARs can trigger KCa3.1 channels to hyperpolarize neurons and protect them from seizures.


Subject(s)
Calcium , Intermediate-Conductance Calcium-Activated Potassium Channels , Neurons , Receptors, AMPA , Animals , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Intermediate-Conductance Calcium-Activated Potassium Channels/genetics , Intermediate-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Calcium/metabolism , Receptors, AMPA/metabolism , Receptors, AMPA/genetics , Neurons/metabolism , Epilepsy/metabolism , Epilepsy/genetics , Epilepsy/physiopathology , Cells, Cultured , Action Potentials , Rats
2.
Arch Biochem Biophys ; 759: 110105, 2024 09.
Article in English | MEDLINE | ID: mdl-39059600

ABSTRACT

OBJECTIVES: Potassium channels in the endoplasmic reticulum (ER) are crucial for maintaining calcium balance during calcium fluxes. Disruption in ER calcium balance leads to ER stress, implicated in diseases like diabetes and Alzheimer's disease (AD). However, limited data exists on ER potassium channels in excitable tissues such as the brain. To fill this gap, we aimed to evaluate potassium currents in rat brain rough endoplasmic reticulum (RER). METHODS: Rats were euthanized under deep anesthesia and their brains were immediately removed. The brains were then homogenized in ice-cold sucrose buffer, followed by the extraction of RER microsomes through a series of centrifugation processes. Purity of sample was evaluated using western blotting technique. Single channel recordings were done in voltage steps from +50 to -60 mV following incorporation of rat brain RER vesicles into planar bilayers. RESULTS: We observed a voltage-dependent potassium channel with an approximate conductance of 188 pS. Channel open probability was low at negative voltages, increasing at positive voltages. The channel was blocked by Charybdotoxin but not by Iberiotoxin. Additionally, TRAM-34, a specific KCa3.1 channel blocker, suppressed channel current amplitude and open probability. Western blot analysis revealed specific bands for anti-KCa3.1 antibody, approximately 50 kDa in brain homogenate and RER fraction. CONCLUSION: Our study provides strong evidence for the presence of an KCa3.1 channel on the RER membrane in rat brain, exhibiting distinct electro-pharmacological profile compared to plasma membrane and other organelles.


Subject(s)
Brain , Animals , Rats , Brain/metabolism , Male , Rats, Wistar , Potassium Channels, Calcium-Activated/metabolism , Endoplasmic Reticulum/metabolism
3.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791278

ABSTRACT

Recent advancements in understanding the intricate molecular mechanisms underlying immunological responses have underscored the critical involvement of ion channels in regulating calcium influx, particularly in inflammation. Nootkatone, a natural sesquiterpenoid found in Alpinia oxyphylla and various citrus species, has gained attention for its diverse pharmacological properties, including anti-inflammatory effects. This study aimed to elucidate the potential of nootkatone in modulating ion channels associated with calcium signaling, particularly CRAC, KV1.3, and KCa3.1 channels, which play pivotal roles in immune cell activation and proliferation. Using electrophysiological techniques, we demonstrated the inhibitory effects of nootkatone on CRAC, KV1.3, and KCa3.1 channels in HEK293T cells overexpressing respective channel proteins. Nootkatone exhibited dose-dependent inhibition of channel currents, with IC50 values determined for each channel. Nootkatone treatment did not significantly affect cell viability, indicating its potential safety for therapeutic applications. Furthermore, we observed that nootkatone treatment attenuated calcium influx through activated CRAC channels and showed anti-proliferative effects, suggesting its role in regulating inflammatory T cell activation. These findings highlight the potential of nootkatone as a natural compound for modulating calcium signaling pathways by targeting related key ion channels and it holds promise as a novel therapeutic agent for inflammatory disorders.


Subject(s)
Calcium Signaling , Intermediate-Conductance Calcium-Activated Potassium Channels , Polycyclic Sesquiterpenes , T-Lymphocytes , Humans , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Polycyclic Sesquiterpenes/pharmacology , HEK293 Cells , Calcium Signaling/drug effects , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Cell Proliferation/drug effects , Calcium Release Activated Calcium Channels/metabolism , Calcium/metabolism , Kv1.3 Potassium Channel/metabolism , Kv1.3 Potassium Channel/antagonists & inhibitors , Cell Survival/drug effects , Lymphocyte Activation/drug effects , Sesquiterpenes/pharmacology
4.
PNAS Nexus ; 3(5): pgae192, 2024 May.
Article in English | MEDLINE | ID: mdl-38783894

ABSTRACT

Atrial fibrillation (AF), the most common cardiac arrhythmia, is strongly associated with several comorbidities including heart failure (HF). AF in general, and specifically in the context of HF, is progressive in nature and associated with poor clinical outcomes. Current therapies for AF are limited in number and efficacy and do not target the underlying causes of atrial remodeling such as inflammation or fibrosis. We previously identified the calcium-activated SK4 K+ channels, which are preferentially expressed in the atria relative to the ventricles in both rat and human hearts, as attractive druggable target for AF treatment. Here, we examined the ability of BA6b9, a novel allosteric inhibitor of SK4 channels that targets the specific calmodulin-PIP2 binding domain, to alter AF susceptibility and atrial remodeling in a systolic HF rat postmyocardial infarction (post-MI) model. Daily BA6b9 injection (20 mg/kg/day) for 3 weeks starting 1-week post-MI prolonged the atrial effective refractory period, reduced AF induction and duration, and dramatically prevented atrial structural remodeling. In the post-MI left atrium (LA), pronounced upregulation of the SK4 K+ channel was observed, with corresponding increases in collagen deposition, α-SMA levels, and NLRP3 inflammasome expression. Strikingly, BA6b9 treatment reversed these changes while also significantly reducing the lateralization of the atrial connexin Cx43 in the LA of post-MI rats. Our findings indicate that the blockade of SK4 K+ channels using BA6b9 not only favors rhythm control but also remarkably reduces atrial structural remodeling, a property that is highly desirable for novel AF therapies, particularly in patients with comorbid HF.

5.
Front Pharmacol ; 15: 1286069, 2024.
Article in English | MEDLINE | ID: mdl-38783950

ABSTRACT

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that affects the synovial joint, which leads to inflammation, loss of function, joint destruction, and disability. The disease biology of RA involves complex interactions between genetic and environmental factors and is strongly associated with various immune cells, and each of the cell types contributes differently to disease pathogenesis. Several immunomodulatory molecules, such as cytokines, are secreted from the immune cells and intervene in the pathogenesis of RA. In immune cells, membrane proteins such as ion channels and transporters mediate the transport of charged ions to regulate intracellular signaling pathways. Ion channels control the membrane potential and effector functions such as cytotoxic activity. Moreover, clinical studies investigating patients with mutations and alterations in ion channels and transporters revealed their importance in effective immune responses. Recent studies have shown that voltage-gated potassium channels and calcium-activated potassium channels and their subtypes are involved in the regulation of immune cells and RA. Due to the role of these channels in the pathogenesis of RA and from multiple pieces of clinical evidence, they can be considered therapeutic targets for the treatment of RA. Here, we describe the role of voltage-gated and calcium-activated potassium channels and their subtypes in RA and their pharmacological application as drug targets.

6.
Front Pharmacol ; 15: 1380655, 2024.
Article in English | MEDLINE | ID: mdl-38638868

ABSTRACT

Background: The unique microenvironment in tumors inhibits the normal functioning of tumor-infiltrating lymphocytes, leading to immune evasion and cancer progression. Over-activation of KCa3.1 using positive modulators has been proposed to rescue the anti-tumor response. One of the key characteristics of the tumor microenvironment is extracellular acidity. Herein, we analyzed how intra- and extracellular pH affects K+ currents through KCa3.1 and if the potency of two of its positive modulators, Riluzole and SKA-31, is pH sensitive. Methods: Whole-cell patch-clamp was used to measure KCa3.1 currents either in activated human peripheral lymphocytes or in CHO cells transiently transfected with either the H192A mutant or wild-type hKCa3.1 in combination with T79D-Calmodulin, or with KCa2.2. Results: We found that changes in the intra- and extracellular pH minimally influenced the KCa3.1-mediated K+ current. Extracellular pH, in the range of 6.0-8.0, does not interfere with the capacity of Riluzole and SKA-31 to robustly activate the K+ currents through KCa3.1. Contrariwise, an acidic intracellular solution causes a slow, but irreversible loss of potency of both the activators. Using different protocols of perfusion and depolarization we demonstrated that the loss of potency is strictly time and pH-dependent and that this peculiar effect can be observed with a structurally similar channel KCa2.2. While two different point mutations of both KCa3.1 (H192A) and its associated protein Calmodulin (T79D) do not limit the effect of acidity, increasing the cytosolic Ca2+ concentration to saturating levels eliminated the loss-of-potency phenotype. Conclusion: Based on our data we conclude that KCa3.1 currents are not sensitive the either the intracellular or the extracellular pH in the physiological and pathophysiological range. However, intracellular acidosis in T cells residing in the tumor microenvironment could hinder the potentiating effect of KCa3.1 positive modulators administered to boost their activity. Further research is warranted both to clarify the molecular interactions between the modulators and KCa3.1 at different intracellular pH conditions and to define whether this loss of potency can be observed in cancer models as well.

7.
Cell Physiol Biochem ; 58(2): 107-127, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38623063

ABSTRACT

Anomalous expression of potassium channels in cancer tissues is associated with several cancer hallmarks that support deregulated proliferation and tumor progression. Ion channels seem to influence cell proliferation; however, the crucial molecular mechanisms involved remain elusive. Some results show how extracellular mitogenic signals modulate ion channel activity through intracellular secondary messengers. It is relevant because we are beginning to understand how potassium channels can affect the proliferative capacity of cells, either in normal mitogen-dependent proliferation or in mitogen-unresponsive proliferation. Calciumdependent potassium channels have been implicated in cell cycle signaling in many cancerous cell lines. In particular, the so-called intermediate conductance KCa3.1 (IKCa) is reported to play a significant role in uncontrolled cell cycle signaling, among other malignant processes driven by cancer hallmarks. In addition to these features, this channel can be subjected to specific pharmacological regulation, making it a promising cornerstone for understanding the signaling behavior of several types of cancer and as a target for chemotherapeutic approaches. This review is dedicated to the connection of KCa3.1 activity, in canonical and non-canonical ways, to the cell cycle signaling, including the cooperation with calcium channels to generate calcium signals and its role as a mediator of proliferative signals.


Subject(s)
Intermediate-Conductance Calcium-Activated Potassium Channels , Neoplasms , Humans , Intermediate-Conductance Calcium-Activated Potassium Channels/genetics , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Mitogens , Cell Proliferation , Ion Channels
8.
Front Cell Neurosci ; 18: 1354095, 2024.
Article in English | MEDLINE | ID: mdl-38633445

ABSTRACT

Vasoactive intestinal peptide (VIP) is an important component of the suprachiasmatic nucleus (SCN) which relays circadian information to neuronal populations, including GnRH neurons. Human and animal studies have shown an impact of disrupted daily rhythms (chronic shift work, temporal food restriction, clock gene disruption) on both male and female reproduction and fertility. To date, how VIP modulates GnRH neurons remains unknown. Calcium imaging and electrophysiology on primary GnRH neurons in explants and adult mouse brain slice, respectively, were used to address this question. We found VIP excites GnRH neurons via the VIP receptor, VPAC2. The downstream signaling pathway uses both Gs protein/adenylyl cyclase/protein kinase A (PKA) and phospholipase C/phosphatidylinositol 4,5-bisphosphate (PIP2) depletion. Furthermore, we identified a UCL2077-sensitive target, likely contributing to the slow afterhyperpolarization current (IAHP), as the PKA and PIP2 depletion target, and the KCa3.1 channel as a specific target. Thus, VIP/VPAC2 provides an example of Gs protein-coupled receptor-triggered excitation in GnRH neurons, modulating GnRH neurons likely via the slow IAHP. The possible identification of KCa3.1 in the GnRH neuron slow IAHP may provide a new therapeutical target for fertility treatments.

9.
Mol Med Rep ; 29(4)2024 04.
Article in English | MEDLINE | ID: mdl-38334149

ABSTRACT

The present study was designed to explore the role of M2 macrophage­derived exosomes (M2­exos) on the KCa3.1 channel in a cellular atrial fibrillation (AF) model using rapidly paced HL­1 myocytes. M2 macrophages and M2­exos were isolated and identified. MicroRNA (miR)­146a­5p levels in M2 macrophages and M2­exos were quantified using reverse transcription­quantitative PCR (RT­qPCR). HL­1 myocytes were randomly divided into six groups: Control group, pacing group, pacing + coculture group (pacing HL­1 cells cocultured with M2­exos), pacing + mimic­miR­146a­5p group, pacing + NC­miR­146a­5p group and pacing + pyrrolidine dithiocarbamate (PDTC; a special blocker of the NF­κB signaling pathway) group. Transmission electron microscopy, nanoparticle tracking analysis, western blotting, RT­qPCR and immunohistochemistry were performed in the present study. A whole­cell clamp was also applied to record the current density of KCa3.1 and action potential duration (APD) in each group. The results revealed that miR­146a­5p was highly expressed in both M2 macrophages and M2­exos. Pacing HL­1 cells led to a shorter APD, an increased KCa3.1 current density and higher protein levels of KCa3.1, phosphorylated (p­)NF­κB p65, p­STAT3 and IL­1ß compared with the control group. M2­exos, miR­146a­5p­mimic and PDTC both reduced the protein expression of KCa3.1, p­NF­κB p65, p­STAT3 and IL­1ß and the current density of KCa3.1, resulting in a longer APD in the pacing HL­1 cells. In conclusion, M2­exos and their cargo, which comprised miR­146a­5p, decreased KCa3.1 expression and IL­1ß secretion in pacing HL­1 cells via the NF­κB/STAT3 signaling pathway, limiting the shorter APD caused by rapid pacing.


Subject(s)
Atrial Fibrillation , Exosomes , MicroRNAs , Proline , Thiocarbamates , Humans , Atrial Fibrillation/metabolism , Cardiac Pacing, Artificial , Exosomes/metabolism , Macrophages/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , NF-kappa B/metabolism , Proline/analogs & derivatives , Signal Transduction , STAT3 Transcription Factor/metabolism , Animals , Mice , Cell Line
10.
Int J Mol Sci ; 24(22)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38003471

ABSTRACT

Many studies highlighted the importance of the IK channel for the proliferation and the migration of different types of cancer cells, showing how IK blockers could slow down cancer growth. Based on these data, we wanted to characterize the effects of IK blockers on melanoma metastatic cells and to understand if such effects were exclusively IK-dependent. For this purpose, we employed two different blockers, namely clotrimazole and senicapoc, and two cell lines: metastatic melanoma WM266-4 and pancreatic cancer Panc-1, which is reported to have little or no IK expression. Clotrimazole and senicapoc induced a decrease in viability and the migration of both WM266-4 and Panc-1 cells irrespective of IK expression levels. Patch-clamp experiments on WM266-4 cells revealed Ca2+-dependent, IK-like, clotrimazole- and senicapoc-sensitive currents, which could not be detected in Panc-1 cells. Neither clotrimazole nor senicapoc altered the intracellular Ca2+ concentration. These results suggest that the effects of IK blockers on cancer cells are not strictly dependent on a robust presence of the channel in the plasma membrane, but they might be due to off-target effects on other cellular targets or to the blockade of IK channels localized in intracellular organelles.


Subject(s)
Clotrimazole , Melanoma , Humans , Clotrimazole/pharmacology , Potassium Channel Blockers/pharmacology , Acetamides
11.
Cells ; 12(16)2023 08 15.
Article in English | MEDLINE | ID: mdl-37626875

ABSTRACT

Degranulation mediated killing mechanism by NK cells is dependent on store-operated Ca2+ entry (SOCE) and has optimum at moderate intracellular Ca2+ elevations so that partial block of SOCE optimizes the killing process. In this study, we tested the effect of the selective blocker of KCa3.1 channel NS6180 on SOCE and the killing efficiency of NK cells from healthy donors and NK-92 cells against T-ALL cell line Jurkat. Patch-clamp analysis showed that only one-quarter of resting NK cells functionally express KCa3.1 current, which increases 3-fold after activation by interleukins 15 and 2. Nevertheless, blockage of KCa3.1 significantly reduced SOCE and intracellular Ca2+ rise induced by IL-15 or target cell recognition. NS6180 (1 µM) decreased NK degranulation at zero time of coculture with Jurkat cells but already after 1 h, the degranulation reached the same level as in the control. Monitoring of target cell death by flow cytometry and confocal microscopy demonstrated that NS6180 significantly improved the killing ability of NK cells after 1 h in coculture with Jurkat cells and increased the Jurkat cell fraction with apoptotic and necrotic markers. Our data evidence a strong dependence of SOCE on KCa3.1 activity in NK cells and that KCa3.1 specific block can improve NK cytotoxicity.


Subject(s)
Antineoplastic Agents , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Thiazines , Humans , Jurkat Cells , Killer Cells, Natural
12.
Am J Physiol Cell Physiol ; 324(6): C1249-C1262, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37125772

ABSTRACT

Control of the movement of ions and water across epithelia is essential for homeostasis. Changing the number or activity of ion channels at the plasma membrane is a significant regulator of epithelial transport. In polarized epithelia, the intermediate-conductance calcium-activated potassium channel, KCa3.1 is delivered to the basolateral membrane where it generates and maintains the electrochemical gradients required for epithelial transport. The mechanisms that control the delivery of KCa3.1 to the basolateral membrane are still emerging. Herein, we investigated the role of the highly conserved tethering complex exocyst. In epithelia, exocyst is involved in the tethering of post-Golgi secretory vesicles with the basolateral membrane, which is required before membrane fusion. In our Fisher rat thyroid cell line that stably expresses KCa3.1, siRNA knockdown of either of the exocyst subunits Sec3, Sec6, or Sec8 significantly decreased KCa3.1-specific current. In addition, knockdown of exocyst complex subunits significantly reduced the basolateral membrane protein level of KCa3.1. Finally, co-immunoprecipitation experiments suggest associations between Sec6 and KCa3.1, but not between Sec8 and KCa3.1. Collectively, based on these data and our previous studies, we suggest that components of exocyst complex are crucially important in the tethering of KCa3.1 to the basolateral membrane. After which, Soluble N-ethylmaleimide-sensitive factor (SNF) Attachment Receptors (SNARE) proteins aid in the insertion of KCa3.1-containing vesicles into the basolateral membrane of polarized epithelia.NEW & NOTEWORTHY Our Ussing chamber and immunoblot experiments demonstrate that when subunits of the exocyst complex were transiently knocked down, this significantly reduced the basolateral population and functional expression of KCa3.1. These data suggest, combined with our protein association experiments, that the exocyst complex regulates the tethering of KCa3.1-containing vesicles to the basolateral membrane prior to the SNARE-dependent insertion of channels into the basolateral membrane of epithelial cells.


Subject(s)
Epithelial Cells , Membrane Fusion , Rats , Animals , Cell Membrane/metabolism , Epithelium , Epithelial Cells/metabolism , SNARE Proteins/genetics , SNARE Proteins/metabolism
13.
Transl Stroke Res ; 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37088858

ABSTRACT

Senicapoc, a small molecule inhibitor of the calcium-activated potassium channel KCa3.1, was safe and well-tolerated in clinical trials for sickle cell anemia. We previously reported proof-of-concept data suggesting that both pharmacological inhibition and genetic deletion of KCa3.1 reduces infarction and improves neurologic recovery in rodents by attenuating neuroinflammation. Here we evaluated the potential of repurposing senicapoc for ischemic stroke. In cultured microglia, senicapoc inhibited KCa3.1 currents with an IC50 of 7 nM, reduced Ca2+ signaling induced by the purinergic agonist ATP, suppressed expression of pro-inflammatory cytokines and enzymes (iNOS and COX-2), and prevented induction of the inflammasome component NLRP3. When transient middle cerebral artery occlusion (tMCAO, 60 min) was induced in male C57BL/6 J mice, twice daily administration of senicapoc at 10 and 40 mg/kg starting 12 h after reperfusion dose-dependently reduced infarct area determined by T2-weighted magnetic resonance imaging (MRI) and improved neurological deficit on day 8. Ultra-high-performance liquid chromatography/mass spectrometry analysis of total and free brain concentrations demonstrated sufficient KCa3.1 target engagement. Senicapoc treatment significantly reduced microglia/macrophage and T cell infiltration and activation and attenuated neuronal death. A different treatment paradigm with senicapoc started at 3 h and MRI on day 3 and day 8 revealed that senicapoc reduces secondary infarct growth and suppresses expression of inflammation markers, including T cell cytokines in the brain. Lastly, we demonstrated that senicapoc does not impair the proteolytic activity of tissue plasminogen activator (tPA) in vitro. We suggest that senicapoc could be repurposed as an adjunctive immunocytoprotective agent for combination with reperfusion therapy for ischemic stroke.

14.
Br J Pharmacol ; 180(17): 2266-2279, 2023 09.
Article in English | MEDLINE | ID: mdl-37005734

ABSTRACT

BACKGROUND AND PURPOSE: High-fat diet (HFD) induces dysregulated pathways in coronary artery endothelial cells (CAECs), which leads to altered regulation of vascular tone, tissue perfusion and increases the risk of coronary artery diseases. Ca2+ -activated K+ (KCa ) channels are known to be associated with transient receptor potential (TRP) channels, which are important for regulating endothelial function. But how TRPV4 channels interacts with KCa channels in regulating coronary vascular tone in HFD mice requires further exploration. EXPERIMENTAL APPROACH: TRPV4 channel activity was assessed by fluorescent Ca2+ imaging. Interactions between TRPV4 and KCa 3.1 channels were verified by co-immunoprecipitation and immunofluorescence resonance energy transfer (FRET), and their binding site was found by site-directed mutagenesis. Endothelium-specific TRPV4 knockout (TRPV4EC -/- ) mice were used to study the effect of the interactions between TRPV4-KCa 3.1 channels on coronary vascular tone. Coronary blood flow was measured by Doppler ultrasound device. KEY RESULTS: TRPV4 channels were involved in regulating coronary vascular tone, through coupling with a Ca2+ -sensitive K+ channel (KCa 3.1) in CAECs, affecting vasodilation and coronary blood flow. In mice fed a HFD diet, the coupling was damaged by a high concentration of plasma 1-heptadecanoyl-2-hydroxy-sn-glycero-3-phosphocholine. Using a bridging approach, we then identified folic acid as an effective drug to repair the uncoupled TRPV4-KCa 3.1 channels and to improve coronary arterial function. CONCLUSION AND IMPLICATIONS: Our data highlight the importance of coupling between TRPV4 and KCa 3.1 channels in the regulation of coronary vascular tone and provide a novel strategy for developing new drugs to reduce the incidence of cardiovascular events.


Subject(s)
Coronary Vessels , Transient Receptor Potential Channels , Mice , Animals , Coronary Vessels/metabolism , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Endothelial Cells/metabolism , Transient Receptor Potential Channels/metabolism , Vasodilation , Endothelium/metabolism , Endothelium, Vascular
15.
Toxins (Basel) ; 15(1)2023 01 05.
Article in English | MEDLINE | ID: mdl-36668861

ABSTRACT

A novel peptide, Cm39, was identified in the venom of the scorpion Centruroides margaritatus. Its primary structure was determined. It consists of 37 amino acid residues with a MW of 3980.2 Da. The full chemical synthesis and proper folding of Cm39 was obtained. Based on amino acid sequence alignment with different K+ channel inhibitor scorpion toxin (KTx) families and phylogenetic analysis, Cm39 belongs to the α-KTx 4 family and was registered with the systematic number of α-KTx 4.8. Synthetic Cm39 inhibits the voltage-gated K+ channel hKV1.2 with high affinity (Kd = 65 nM). The conductance-voltage relationship of KV1.2 was not altered in the presence of Cm39, and the analysis of the toxin binding kinetics was consistent with a bimolecular interaction between the peptide and the channel; therefore, the pore blocking mechanism is proposed for the toxin-channel interaction. Cm39 also inhibits the Ca2+-activated KCa2.2 and KCa3.1 channels, with Kd = 502 nM, and Kd = 58 nM, respectively. However, the peptide does not inhibit hKV1.1, hKV1.3, hKV1.4, hKV1.5, hKV1.6, hKV11.1, mKCa1.1 K+ channels or the hNaV1.5 and hNaV1.4 Na+ channels at 1 µM concentrations. Understanding the unusual selectivity profile of Cm39 motivates further experiments to reveal novel interactions with the vestibule of toxin-sensitive channels.


Subject(s)
Scorpion Venoms , Humans , Animals , Scorpion Venoms/chemistry , Phylogeny , Potassium Channel Blockers/chemistry , Amino Acid Sequence , Peptides/chemistry , Scorpions/chemistry
16.
Molecules ; 28(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36677942

ABSTRACT

The Ca2+ ion is used ubiquitously as an intracellular signaling molecule due to its high external and low internal concentration. Many Ca2+-sensing ion channel proteins have evolved to receive and propagate Ca2+ signals. Among them are the Ca2+-activated potassium channels, a large family of potassium channels activated by rises in cytosolic calcium in response to Ca2+ influx via Ca2+-permeable channels that open during the action potential or Ca2+ release from the endoplasmic reticulum. The Ca2+ sensitivity of these channels allows internal Ca2+ to regulate the electrical activity of the cell membrane. Activating these potassium channels controls many physiological processes, from the firing properties of neurons to the control of transmitter release. This review will discuss what is understood about the Ca2+ sensitivity of the two best-studied groups of Ca2+-sensitive potassium channels: large-conductance Ca2+-activated K+ channels, KCa1.1, and small/intermediate-conductance Ca2+-activated K+ channels, KCa2.x/KCa3.1.


Subject(s)
Intermediate-Conductance Calcium-Activated Potassium Channels , Potassium Channels , Potassium Channels/metabolism , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Small-Conductance Calcium-Activated Potassium Channels/metabolism , Cell Membrane/metabolism , Membrane Potentials/physiology , Calcium/metabolism , Potassium/metabolism
17.
Acta Pharmacol Sin ; 44(2): 259-267, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35715699

ABSTRACT

Small- and intermediate-conductance Ca2+-activated K+ (KCa2.x/KCa3.1 also called SK/IK) channels are gated exclusively by intracellular Ca2+. The Ca2+ binding protein calmodulin confers sub-micromolar Ca2+ sensitivity to the channel-calmodulin complex. The calmodulin C-lobe is constitutively associated with the proximal C-terminus of the channel. Interactions between calmodulin N-lobe and the channel S4-S5 linker are Ca2+-dependent, which subsequently trigger conformational changes in the channel pore and open the gate. KCNN genes encode four subtypes, including KCNN1 for KCa2.1 (SK1), KCNN2 for KCa2.2 (SK2), KCNN3 for KCa2.3 (SK3), and KCNN4 for KCa3.1 (IK). The three KCa2.x channel subtypes are expressed in the central nervous system and the heart. The KCa3.1 subtype is expressed in the erythrocytes and the lymphocytes, among other peripheral tissues. The impact of dysfunctional KCa2.x/KCa3.1 channels on human health has not been well documented. Human loss-of-function KCa2.2 mutations have been linked with neurodevelopmental disorders. Human gain-of-function mutations that increase the apparent Ca2+ sensitivity of KCa2.3 and KCa3.1 channels have been associated with Zimmermann-Laband syndrome and hereditary xerocytosis, respectively. This review article discusses the physiological significance of KCa2.x/KCa3.1 channels, the pathophysiology of the diseases linked with KCa2.x/KCa3.1 mutations, the structure-function relationship of the mutant KCa2.x/KCa3.1 channels, and potential pharmacological therapeutics for the KCa2.x/KCa3.1 channelopathy.


Subject(s)
Channelopathies , Small-Conductance Calcium-Activated Potassium Channels , Humans , Small-Conductance Calcium-Activated Potassium Channels/genetics , Small-Conductance Calcium-Activated Potassium Channels/metabolism , Intermediate-Conductance Calcium-Activated Potassium Channels/genetics , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Calmodulin/genetics , Calmodulin/metabolism , Mutation
18.
ChemMedChem ; 18(2): e202200551, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36315933

ABSTRACT

The Ca2+ activated K+ channel KCa 3.1 is overexpressed in several human tumor cell lines, e. g. clear cell renal carcinoma, prostate cancer, non-small cell lung cancer. Highly aggressive cancer cells use this ion channel for key processes of the metastatic cascade such as migration, extravasation and invasion. Therefore, small molecules, which are able to image this KCa 3.1 channel in vitro and in vivo represent valuable diagnostic and prognostic tool compounds. The [18 F]fluoroethyltriazolyl substituted senicapoc was used as positron emission tomography (PET) tracer and showed promising properties for imaging of KCa 3.1 channels in lung adenocarcinoma cells in mice. The novel senicapoc BODIPY conjugates with two F-atoms (9 a) and with a F-atom and a methoxy moiety (9 b) at the B-atom led to the characteristic punctate staining pattern resulting from labeling of single KCa 3.1 channels in A549-3R cells. This punctate pattern was completely removed by preincubation with an excess of senicapoc confirming the high specificity of KCa 3.1 labeling. Due to the methoxy moiety at the B-atom and the additional oxyethylene unit in the spacer, 9 b exhibits higher polarity, which improves solubility and handling without reduction of fluorescence quantum yield. Docking studies using a cryo-electron microscopy (EM) structure of the KCa 3.1 channel confirmed the interaction of 9 a and 9 b with a binding pocket in the channel pore.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Male , Mice , Humans , Animals , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Fluorescent Dyes , Cryoelectron Microscopy , Positron-Emission Tomography , Cell Line, Tumor
19.
Biol Chem ; 404(4): 339-353, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36571487

ABSTRACT

Ion channels play an important role for regulation of the exocrine and the endocrine pancreas. This review focuses on the Ca2+-regulated K+ channel KCa3.1, encoded by the KCNN4 gene, which is present in both parts of the pancreas. In the islets of Langerhans, KCa3.1 channels are involved in the regulation of membrane potential oscillations characterizing nutrient-stimulated islet activity. Channel upregulation is induced by gluco- or lipotoxic conditions and might contribute to micro-inflammation and impaired insulin release in type 2 diabetes mellitus as well as to diabetes-associated renal and vascular complications. In the exocrine pancreas KCa3.1 channels are expressed in acinar and ductal cells. They are thought to play a role for anion secretion during digestion but their physiological role has not been fully elucidated yet. Pancreatic carcinoma, especially pancreatic ductal adenocarcinoma (PDAC), is associated with drastic overexpression of KCa3.1. For pharmacological targeting of KCa3.1 channels, we are discussing the possible benefits KCa3.1 channel inhibitors might provide in the context of diabetes mellitus and pancreatic cancer, respectively. We are also giving a perspective for the use of a fluorescently labeled derivative of the KCa3.1 blocker senicapoc as a tool to monitor channel distribution in pancreatic tissue. In summary, modulating KCa3.1 channel activity is a useful strategy for exo-and endocrine pancreatic disease but further studies are needed to evaluate its clinical suitability.


Subject(s)
Diabetes Mellitus, Type 2 , Islets of Langerhans , Pancreatic Neoplasms , Humans , Pancreas , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms
20.
Front Immunol ; 13: 997621, 2022.
Article in English | MEDLINE | ID: mdl-36275686

ABSTRACT

Rheumatoid arthritis (RA) is a common autoimmune disease characterized by chronic inflammation. Immune dysfunction is an essential mechanism in the pathogenesis of RA and directly linked to synovial inflammation and cartilage/bone destruction. Intermediate conductance Ca2+-activated K+ channel (KCa3.1) is considered a significant regulator of proliferation, differentiation, and migration of immune cells by mediating Ca2+ signal transduction. Earlier studies have demonstrated abnormal activation of KCa3.1 in the peripheral blood and articular synovium of RA patients. Moreover, knockout of KCa3.1 reduced the severity of synovial inflammation and cartilage damage to a significant extent in a mouse collagen antibody-induced arthritis (CAIA) model. Accumulating evidence implicates KCa3.1 as a potential therapeutic target for RA. Here, we provide an overview of the KCa3.1 channel and its pharmacological properties, discuss the significance of KCa3.1 in immune cells and feasibility as a drug target for modulating the immune balance, and highlight its emerging role in pathological progression of RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Mice , Animals , Synovial Membrane , Arthritis, Experimental/pathology , Inflammation , Disease Models, Animal , Collagen
SELECTION OF CITATIONS
SEARCH DETAIL