Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 210
Filter
1.
Discov Oncol ; 15(1): 408, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235679

ABSTRACT

Lung adenocarcinoma (LUAD) is the most important subtype of lung cancer. It is well known that the gut microbiome plays an important role in the pathophysiology of various diseases, including cancer, but little research has been done on the intestinal microbiome associated with LUAD. Utilizing bioinformatics tools and data analysis, we identified novel potential prognostic biomarkers for LUAD. To integrate differentially expressed genes and clinical significance modules, we used a weighted correlation network analysis system. According to the Peryton database and the gutMGene database, the composition and structure of gut microbiota in LUAD patients differed from those in healthy individuals. LUAD was associated with 150 gut microbiota and 767 gut microbiota targets, with Krüppel-like factor 5 (KLF5) being the most closely related. KLF5 was associated with immune status and correlated well with the prognosis of LUAD patients. The identification of KLF5 as a potential prognostic biomarker suggests its utility in improving risk stratification and guiding personalized treatment strategies for LUAD patients. Altogether, KLF5 could be a potential prognostic biomarker in LUAD.

2.
J Biomed Res ; : 1-10, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39187911

ABSTRACT

Hypertension (HT) is a major risk factor for cardiovascular diseases. Krüppel-like factors (KLFs) are important transcription factors in eukaryotes. Studies have reported that KLF4 and KLF5 are correlated with several cardiovascular diseases, whereas population studies for associations between HT and KLF4 or KLF5 have been rarely reported. Thus, the current study aimed to examines the association of genetic variants and mRNA expression levels of KLF4 and KLF5 with HT, as well as the effect of antihypertensive drugs on the expression levels. The associations of one single-nucleotide polymorphism (SNP) in KLF4 and three SNPs in KLF5 with HT were investigated using a combination of case-control and cohort studies. The study population were selected from a community-based population cohort in four different regions of Jiangsu Province. Risks of HT were estimated through logistic and Cox regression analyses, respectively. In addition, mRNA expression levels of KLF4 and KLF5 were measured in 246 controls and 385 HT cases selected from the cohort study as mentioned above. Among the HT cases, 263 were not taking antihypertensive drugs [AHD(-)] and 122 were taking antihypertensive drugs [AHD(+)]. In the case-control study, SNP rs9573096 (C>T) in KLF5 was significantly associated with an increased risk of HT in the additive model (adjusted odds ratio [OR], 1.106; 95% confidence interval [CI], 1.009 to 1.212). In the cohort study of the normotensive population, rs9573096 in KLF5 was also significantly associated with an increased risk of HT in the additive model (adjusted hazards ratio [HR], 1.199; 95% CI, 1.070 to 1.344). KLF4 and KLF5 mRNA expression levels were significantly higher in the AHD(-) group than in the control group ( P < 0.05), but lower in the AHD(+) group than in the AHD(-) group ( P < 0.05). The current study demonstrated the associations of KLF4 and KLF5 genetic variants with hypertension, and the indicative discriminations of mRNA expression levels of KLF4 and KLF5 for risk of hypertension and antihypertensive treatment.

3.
Cardiovasc Toxicol ; 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39181944

ABSTRACT

Circular RNAs (circRNAs) play an important role in the progression of atherosclerosis (AS). This study aimed to explore the exact role and mechanism of circ_0002984 in oxidized low-density lipoprotein (ox-LDL)-mediated human vascular smooth muscle cells (HVSMCs). The model of smooth muscle cell phenotype switching was constructed by treating HVSMCs with ox-LDL. The levels of circ_0002984, let-7a-5p, and kruppel-like factor 5 (KLF5) were measured by quantitative real-time PCR or western blot assay. Cell proliferation, migration, and apoptosis were detected by Cell Counting Kit-8 (CCK-8), EdU staining, wound healing assay, transwell assay, and flow cytometry. The expression of cleaved-caspase-3 and KLF5 was examined by western blot. The relationship between let-7a-5p and circ_0002984 or KLF5 was verified by dual-luciferase reporter assay or RIP assay. The results showed that circ_0002984 and KLF5 were up-regulated, while let-7a-5p was down-regulated in AS patients and ox-LDL-disposed HVSMCs. Silence of circ_0002984 suppressed proliferation and migration, and promoted apoptosis in ox-LDL-stimulated HVSMCs. Moreover, circ_0002984 sponged let-7a-5p to regulate the proliferation, migration, and apoptosis in ox-LDL-resulted HVSMCs. In addition, KLF5 was a target of let-7a-5p and its overexpression reversed the effect of let-7a-5p on the proliferation, migration, and apoptosis in ox-LDL-treated HVSMCs. Also, circ_0002984 positively regulated KLF5 expression by absorbing let-7a-5p. The promotion effect of circ_0002984 on the proliferation and migration of ox-LDL-treated HVSMCs was reversed by KLF5 silencing. Taken together, depletion of circ_0002984 inhibited the proliferation and migration of ox-LDL-stimulated HVSMCs, which might be achieved by modulating the let-7a-5p/KLF5 axis.

4.
J Orthop Surg Res ; 19(1): 480, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152444

ABSTRACT

BACKGROUND: Increasing evidence shows the pivotal significance of miRNAs in the pathogenesis of osteoporosis. miR-381-3p has been identified as an inhibitor of osteogenesis. This study explored the role and mechanism of miR-381-3p in postmenopausal osteoporosis (PMOP), the most common type of osteoporosis. METHODS: Bilateral ovariectomy (OVX) rat model was established and miR-381-3p antagomir was administrated through the tail vein in vivo. The pathological changes in rats were assessed through the evaluation of serum bone turnover markers (BALP, PINP, and CTX-1), hematoxylin and eosin (H&E) staining, as well as the expression of osteoblast differentiation biomarkers. Moreover, isolated bone marrow mesenchymal stem cells from OVX-induced rats (OVX-BMMSCs) were utilized to explore the impact of miR-381-3p on osteoblast differentiation. In addition, the target gene and downstream pathway of miR-381-3p were further investigated both in vivo and in vitro. RESULTS: miR-381-3p expression was elevated, whereas KLF5 was suppressed in OVX rats. miR-381-3p antagomir decreased serum levels of bone turnover markers, improved trabecular separation, promoted osteoblast differentiation biomarker expression in OVX rats. ALP activity and mineralization were suppressed, and levels of osteoblast differentiation biomarkers were impeded after miR-381-3p overexpression during osteoblast differentiation of OVX-BMMSCs. While contrasting results were found after inhibition of miR-381-3p. miR-381-3p targets KLF5, negatively affecting its expression as well as its downstream Wnt/ß-catenin pathway, both in vivo and in vitro. Silencing of KLF5 restored Wnt/ß-catenin activation induced by miR-381-3p antagomir. CONCLUSION: miR-381-3p aggravates PMOP by inhibiting osteogenic differentiation through targeting KLF5/Wnt/ß-catenin pathway. miR-381-3p appears to be a promising candidate for therapeutic intervention in PMOP.


Subject(s)
Cell Differentiation , Kruppel-Like Transcription Factors , MicroRNAs , Osteogenesis , Osteoporosis, Postmenopausal , Ovariectomy , Wnt Signaling Pathway , Animals , Female , Humans , Rats , Cells, Cultured , Disease Models, Animal , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Mesenchymal Stem Cells/metabolism , MicroRNAs/genetics , Osteoblasts/metabolism , Osteogenesis/genetics , Osteogenesis/physiology , Osteoporosis/genetics , Osteoporosis/etiology , Osteoporosis/metabolism , Osteoporosis, Postmenopausal/genetics , Osteoporosis, Postmenopausal/metabolism , Ovariectomy/adverse effects , Rats, Sprague-Dawley , Wnt Signaling Pathway/physiology , Wnt Signaling Pathway/genetics
6.
Redox Biol ; 75: 103246, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38925041

ABSTRACT

High levels of urinary lactate are an increased risk of progression in patients with diabetic kidney disease (DKD). However, it is still unveiled how lactate drive DKD. Epithelial-mesenchymal transition (EMT), which is characterized by the loss of epithelial cells polarity and cell-cell adhesion, and the acquisition of mesenchymal-like phenotypes, is widely recognized a critical contributor to DKD. Here, we found a switch from oxidative phosphorylation (OXPHOS) toward glycolysis in AGEs-induced renal tubular epithelial cells, thus leading to elevated levels of renal lactic acid. We demonstrated that reducing the lactate levels markedly delayed EMT progression and improved renal tubular fibrosis in DKD. Mechanically, we observed lactate increased the levels of histone H3 lysine 14 lactylation (H3K14la) in DKD. ChIP-seq & RNA-seq results showed histone lactylation contributed to EMT process by facilitating KLF5 expression. Moreover, KLF5 recognized the promotor of cdh1 and inhibited its transcription, which accelerated EMT of DKD. Additionally, nephro-specific knockdown and pharmacological inhibition of KLF5 diminished EMT development and attenuated DKD fibrosis. Thus, our study provides better understanding of epigenetic regulation of DKD pathogenesis, and new therapeutic strategy for DKD by disruption of the lactate-drived H3K14la/KLF5 pathway.


Subject(s)
Diabetic Nephropathies , Epithelial-Mesenchymal Transition , Kruppel-Like Transcription Factors , Lactic Acid , Animals , Humans , Male , Mice , Cell Line , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/genetics , Epigenesis, Genetic , Epithelial Cells/metabolism , Epithelial Cells/pathology , Fibrosis , Gene Expression Regulation , Histones/metabolism , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Lactic Acid/metabolism , Signal Transduction
7.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119789, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38909912

ABSTRACT

The transcriptional regulator Krüppel-like factor 5 (KLF5) is highly expressed in squamous epithelial cells of the esophagus. Increased KLF5 activity induces tumorigenesis and promotes metastasis in several cancers, although this function appears to be context-dependent. Here, we demonstrate that acute KLF5 inhibition, both genetically and with the potent KLF5 inhibitor ML264, causes non-transformed human primary esophageal squamous epithelial cells to enter the epithelial to mesenchymal transition (EMT). Moreover, chronic KLF5 inhibition with ML264 leads to the development of cells with a mesenchymal phenotype characterized by the expression of mesenchymal markers and functionally by reduced cell growth and increased migration and cellular invasion. This EMT resulting from chronic KLF5 inhibition is not driven by ß-Catenin or TGF-ß signaling. Pharmacologically, ML264 inhibits KLF5 by promoting proteasomal-mediated degradation. Taken together, we demonstrate that reduced KLF5 activity reprograms epithelial cells towards a mesenchymal phenotype and enhances their migratory and invasive potential. These findings have potential implications not only for esophageal cancers but also for normal processes such as esophageal tissue repair following injury.


Subject(s)
Cell Movement , Epithelial Cells , Epithelial-Mesenchymal Transition , Kruppel-Like Transcription Factors , Humans , Epithelial-Mesenchymal Transition/genetics , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Epithelial Cells/metabolism , Epithelial Cells/pathology , Cell Proliferation , Esophagus/metabolism , Esophagus/pathology , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Esophageal Neoplasms/genetics , Signal Transduction
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167210, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38704001

ABSTRACT

Oxaliplatin has been included as a basal drug in various chemotherapy regimens for colorectal cancer (CRC), a global health concern. However, acquired resistance to oxaliplatin affects the prognosis. This study aimed to determine whether the consumption of a KD increases the sensitivity of CRC cells to oxaliplatin via the inhibition of a classical stem cell marker, Krupple-like factor 5 (KLF5). KLF5 functions as a transcription factor for the leukemia inhibitory factor (LIF) and directly binds to its promoter region. LIF upregulation induces dephosphorylation of metal regulatory transcription factor 1 (MTF1), which is recruited to the promoter area of Ferroportin (FPN1), the only cellular iron exporter. FPN1 upregulation reduces the labile iron pool (LIP) and ferroptosis in CRC cells. KLF5 knockdown inhibits the LIF/MTF1/FPN1 axis and induces iron overload, thereby conferring sensitivity to oxaliplatin to CRC cells. KD mimicked KLF5 silencing and sensitized CRC cells to oxaliplatin via a similar mechanism. Thus, potential correlations were observed among ketogenesis, stemness, and iron homeostasis. This finding can be used to formulate a new strategy for overcoming oxaliplatin resistance in patients with CRC.


Subject(s)
Cation Transport Proteins , Colorectal Neoplasms , Drug Resistance, Neoplasm , Homeostasis , Iron , Kruppel-Like Transcription Factors , Leukemia Inhibitory Factor , Oxaliplatin , Humans , Oxaliplatin/pharmacology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Iron/metabolism , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Homeostasis/drug effects , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Leukemia Inhibitory Factor/metabolism , Leukemia Inhibitory Factor/genetics , Ferroptosis/drug effects , Ferroptosis/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Antineoplastic Agents/pharmacology , Animals
9.
J Gene Med ; 26(5): e3692, 2024 May.
Article in English | MEDLINE | ID: mdl-38745073

ABSTRACT

BACKGROUND: Sevoflurane (Sevo) preconditioning and postconditioning play a protective role against injury induced by hepatic ischemia/reperfusion (I/R). At the same time, the involvement of macrophage infiltration in this process and the precise mechanisms are unclear. Here, we designed this research to elucidate the protective effects of Sevo against hepatic I/R injury and the molecules involved. METHODS: The alleviating effect of Sevo on the liver injury was analyzed by liver function analysis, hematoxylin and eosin staining, Masson trichrome staining, terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end labeling, western blot analysis and an enzyme-linked immunosorbent assay. An in vitro cell model was developed using alpha mouse liver 12 (AML12) cells, and the cell model was treated with oxygen-glucose deprivation and reoxygenation and Sevo. Multiple bioinformatics databases were used to screen transcriptional regulators related to hepatic I/R injury and the targets of Krueppel-like factor 5 (KLF5). KLF5 expression was artificially upregulated alone or with integrin beta-2 (ITGB2) knockdown to substantiate their involvement in Sevo-mediated hepatoprotection. RESULTS: Sevo protected the liver against I/R injury by reducing cell apoptosis and inflammatory response. KLF5 was upregulated in liver tissues following I/R injury, whereas KLF5 overexpression aggravated macrophage infiltration and liver injury induced by I/R injury. KLF5 bound to the promoter of ITGB2 to enhance ITGB2 transcription. Knockdown of ITGB2 reversed the aggravation of injury caused by KLF5 overexpression in mice and AML12 cells. CONCLUSIONS: Sevo blocked KLF5-mediated transcriptional activation of ITGB2, thereby inhibiting macrophage infiltration in hepatic I/R injury.


Subject(s)
Integrin beta Chains , Kruppel-Like Transcription Factors , Liver , Macrophages , Reperfusion Injury , Sevoflurane , Animals , Mice , Apoptosis , CD18 Antigens/metabolism , CD18 Antigens/genetics , Cell Line , Disease Models, Animal , Gene Expression Regulation , Kruppel-Like Transcription Factors/drug effects , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Liver/metabolism , Liver/pathology , Macrophages/metabolism , Mice, Inbred C57BL , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Sevoflurane/pharmacology , Transcriptional Activation , Integrin beta Chains/drug effects , Integrin beta Chains/genetics , Integrin beta Chains/metabolism
10.
Cell Rep ; 43(5): 114240, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38753486

ABSTRACT

Adipose tissue remodeling and dysfunction, characterized by elevated inflammation and insulin resistance, play a central role in obesity-related development of type 2 diabetes (T2D) and cardiovascular diseases. Long intergenic non-coding RNAs (lincRNAs) are important regulators of cellular functions. Here, we describe the functions of linc-ADAIN (adipose anti-inflammatory), an adipose lincRNA that is downregulated in white adipose tissue of obese humans. We demonstrate that linc-ADAIN knockdown (KD) increases KLF5 and interleukin-8 (IL-8) mRNA stability and translation by interacting with IGF2BP2. Upregulation of KLF5 and IL-8, via linc-ADAIN KD, leads to an enhanced adipogenic program and adipose tissue inflammation, mirroring the obese state, in vitro and in vivo. KD of linc-ADAIN in human adipose stromal cell (ASC) hTERT adipocytes implanted into mice increases adipocyte size and macrophage infiltration compared to implanted control adipocytes, mimicking hallmark features of obesity-induced adipose tissue remodeling. linc-ADAIN is an anti-inflammatory lincRNA that limits adipose tissue expansion and lipid storage.


Subject(s)
Adipogenesis , Interleukin-8 , Kruppel-Like Transcription Factors , RNA Stability , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Adipogenesis/genetics , Animals , RNA Stability/genetics , Interleukin-8/metabolism , Interleukin-8/genetics , Mice , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Adipocytes/metabolism , Adipose Tissue/metabolism , Obesity/metabolism , Obesity/genetics , Obesity/pathology , RNA, Messenger/metabolism , RNA, Messenger/genetics , Male , Inflammation/pathology , Inflammation/genetics , Inflammation/metabolism
11.
Article in English | MEDLINE | ID: mdl-38727937

ABSTRACT

Diagnostic and prognostic values of Kruppel-like factor 5 (KLF5) and Runt-related transcription factor 1 (RUNX1) were determined in sepsis-induced acute kidney injury (SI-AKI). The study included 120 septic patients and set two groups: SI-AKI group (n = 60) or non-AKI group (n = 60). Fasting venous blood was drawn, and KLF5 and RUNX1 levels were measured. The receiver operating characteristic curve was plotted for diagnostic evaluation of KLF5 and RUNX1 in SI-AKI. The correlation between KLF5 and RUNX1 and serum creatinine (Scr), cystatin C (Cys-C), and kidney injury molecule 1 (KIM-1) were assessed by Pearson method. Predictive values of KLF5 and RUNX1 in 28-day survival of SI-AKI patients were considered by Kaplan-Meier survival curves and multivariate Cox regression analysis. Serum KLF5 and RUNX1 in SI-AKI patients were upregulated. Serum KLF5 and RUNX1 were of high diagnostic value in distinguishing SI-AKI patients from non-AKI patients. KLF5 and RUNX1 were in a positive correlation with Scr, Cys-C, and KIM-1, respectively. The 28-day survival of SI-AKI patients with high serum KLF5 or RUNX1 expression was poor, and serum KLF5 and RUNX1 expression were independently correlated with SI-AKI patients' survival. KLF5 and RUNX1 have diagnostic and prognostic values in SI-AKI patients.

12.
Int J Biol Macromol ; 270(Pt 2): 132116, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723803

ABSTRACT

Developing effective methods for alveolar bone defect regeneration is a significant challenge in orthopedics. Exosomes from human umbilical cord mesenchymal stem cells (HUMSC-Exos) have shown potential in bone repair but face limitations due to undefined application methods and mechanisms. To address this, HUMSC-Exos were encapsulated in polyvinyl alcohol (PVA) hydrogel (Exo@PVA) to create a novel material for alveolar bone repair. This combination enhanced the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and human umbilical vein endothelial cells (HUVECs) more effectively than Exos alone. Additionally, Exo@PVA significantly improved alveolar bone regeneration and defect repair in rats. The microRNA-21-5p (miR-21-5p) in Exo@PVA, identified through the GEO database and analyzed via in silico methods, played a crucial role. miR-21-5p promoted BMSC osteogenic differentiation by inhibiting WWP1-mediated KLF5 ubiquitination and enhanced HUVEC angiogenesis by targeting ATP2B4. These findings underscore the potential of an Exo-based approach with PVA hydrogel scaffolds for bone defect repair, operating through the miR-21-5p/WWP1/ATP2B4 signaling axis.


Subject(s)
Bone Regeneration , Cell Differentiation , Exosomes , Human Umbilical Vein Endothelial Cells , Mesenchymal Stem Cells , MicroRNAs , Neovascularization, Physiologic , Osteogenesis , Polyvinyl Alcohol , Umbilical Cord , Humans , Polyvinyl Alcohol/chemistry , Osteogenesis/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Bone Regeneration/drug effects , Exosomes/metabolism , Cell Differentiation/drug effects , Umbilical Cord/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Rats , Animals , Neovascularization, Physiologic/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Male , Hydrogels/chemistry , Hydrogels/pharmacology , Rats, Sprague-Dawley , Angiogenesis
13.
Int J Biol Sci ; 20(7): 2727-2747, 2024.
Article in English | MEDLINE | ID: mdl-38725857

ABSTRACT

Phenotypic switching (from contractile to synthetic) of vascular smooth muscle cells (VSMCs) is essential in the progression of atherosclerosis. The damaged endothelium in the atherosclerotic artery exposes VSMCs to increased interstitial fluid shear stress (IFSS). However, the precise mechanisms by which increased IFSS influences VSMCs phenotypic switching are unrevealed. Here, we employed advanced numerical simulations to calculate IFSS values accurately based on parameters acquired from patient samples. We then carefully investigated the phenotypic switching and extracellular vesicles (EVs) secretion of VSMCs under various IFSS conditions. By employing a comprehensive set of approaches, we found that VSMCs exhibited synthetic phenotype upon atherosclerotic IFSS. This synthetic phenotype is the upstream regulator for the enhanced secretion of pro-calcified EVs. Mechanistically, as a mechanotransducer, the epidermal growth factor receptor (EGFR) initiates the flow-based mechanical cues to MAPK signaling pathway, facilitating the nuclear accumulation of the transcription factor krüppel-like factor 5 (KLF5). Furthermore, pharmacological inhibiting either EGFR or MAPK signaling pathway blocks the nuclear accumulation of KLF5 and finally results in the maintenance of contractile VSMCs even under increased IFSS stimulation. Collectively, targeting this signaling pathway holds potential as a novel therapeutic strategy to inhibit VSMCs phenotypic switching and mitigate the progression of atherosclerosis.


Subject(s)
ErbB Receptors , Extracellular Vesicles , Kruppel-Like Transcription Factors , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Stress, Mechanical , Extracellular Vesicles/metabolism , ErbB Receptors/metabolism , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Humans , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Extracellular Fluid/metabolism , Phenotype , Animals , Atherosclerosis/metabolism , MAP Kinase Signaling System , Signal Transduction
14.
Mol Immunol ; 170: 9-18, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593669

ABSTRACT

Asthma is viewed as an airway disease and an inflammatory condition. This study aims to reveal the role of Kruppel-like factor 5 (KLF5)-mediated pyroptosis of airway epithelial cells in airway inflammation in asthma. The asthmatic mouse model was established. The mice were infected with the lentivirus containing sh-KLF5, antagomiR-182-5p, and pc-Toll-like receptor 4 (TLR4). Airway hyperresponsiveness was measured, and the cells in bronchoalveolar lavage fluid (BALF) were sorted and counted. The expression levels of interleukin (IL)-4/IL-13/IL-6/IL-18/IL-1ß/NOD-like receptor family pyrin domain containing 3 (NLRP3)/N-gasdermin D (GSDMD-N)/cleaved caspase-1 were detected. The pathological changes in lung tissue were observed. The enrichment of KLF5 in the miR-182-5p promoter region was measured. The binding relationship among KLF5, miR-182-5p, and TLR4 were analyzed. KLF5 was highly expressed in asthmatic mice. Silencing KLF5 improved airway resistance and lung dynamic compliance, reduced the cells in BALF and the expression of IL-4/IL-13/IL-6/NLRP3/GSDMD-N/cleaved caspase-1/IL-18/IL-1ß, and alleviated the pathological changes. Mechanistically, KLF5 bonded to the miR-182-5p promoter to inhibit miR-182-5p expression, and miR-182-5p inhibited TLR4. Silencing miR-182-5p or TLR4 overexpression reversed the improvement of silencing KLF5 on airway inflammation and pyroptosis in asthmatic mice. In conclusion, KLF5 inhibited miR-182-5p to promote TLR4 expression, thus aggravating pyroptosis and airway inflammation in asthmatic mice.


Subject(s)
Asthma , Epithelial Cells , Kruppel-Like Transcription Factors , MicroRNAs , Pyroptosis , Toll-Like Receptor 4 , Animals , Mice , Asthma/metabolism , Asthma/genetics , Asthma/pathology , Disease Models, Animal , Epithelial Cells/metabolism , Inflammation/pathology , Inflammation/genetics , Inflammation/metabolism , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Mice, Inbred BALB C , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction , Toll-Like Receptor 4/metabolism
15.
BMC Nephrol ; 25(1): 130, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609873

ABSTRACT

OBJECTIVE: Diabetic nephropathy (DN) manifests a critical aspect in the form of renal tubular injury. The current research aimed to determine the function and mechanism of long non-coding ribonucleic acid (LncRNA) differentiation antagonising non-protein coding RNA (DANCR), with a focus on its impact on renal tubular injury. METHODS: Quantitative reverse transcription polymerase chain reaction was employed to analyze the RNA levels of DANCR in the serum of patients with DN or human proximal tubular epithelial cells (human kidney 2 [HK2]). The diagnostic significance of DANCR was assessed using a receiver operating characteristic curve. A DN model was established by inducing HK-2 cells with high glucose (HG). Cell proliferation, apoptosis, and the levels of inflammatory factors, reactive oxygen species (ROS), and malondialdehyde (MDA) were detected using the Cell Counting Kit - 8, flow cytometry, and enzyme-linked immunosorbent assay. The interaction between microRNA (miR)-214-5p and DANCR or Krüppel-like factor 5 (KLF5) was investigated using RNA immunoprecipitation and dual-luciferase reporter assays. RESULTS: Elevated levels of DANCR were observed in the serum of patients with DN and HG-inducted HK-2 cells (P < 0.05). DANCR levels effectively identified patients with DN from patients with type 2 diabetes mellitus. Silencing of DANCR protected against HG-induced tubular injury by restoring cell proliferation, inhibiting apoptosis, and reducing the secretion of inflammatory factors and oxidative stress production (P < 0.05). DANCR functions as a sponge for miR-214-5p, and the mitigation of DANCR silencing on HG-induced renal tubular injury was partially attenuated with reduced miR-214-5p (P < 0.05). Additionally, KLF5 was identified as the target of miR-214-5p. CONCLUSION: DANCR was identified as diagnostic potential for DN and the alleviation of renal tubular injury via the miR-214-5p/KLF5 axis, following DANCR silencing, introduces a novel perspective and approach to mitigating DN.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , MicroRNAs , RNA, Long Noncoding , Humans , Diabetic Nephropathies/genetics , Kruppel-Like Transcription Factors/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Transcription Factors
16.
J Orthop Surg Res ; 19(1): 244, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38622696

ABSTRACT

BACKGROUND: Ossification of ligamentum flavum (OLF) is a prevalent degenerative spinal disease, typically causing severe neurological dysfunction. Kruppel-like factor 5 (KLF5) plays an essential role in the regulation of skeletal development. However, the mechanism KLF5 plays in OLF remains unclear, necessitating further investigative studies. METHODS: qRT-PCR, immunofluorescent staining and western blot were used to measure the expression of KLF5. Alkaline Phosphatase (ALP) staining, Alizarin red staining (ARS), and the expression of Runt-related transcription factor 2 (RUNX2), osteopontin (OPN), and osteocalcin (OCN) were used to evaluate the osteogenic differentiation. Luciferase activity assay and ChIP-PCR were performed to investigate the molecular mechanisms. RESULTS: KLF5 was significantly upregulated in OLF fibroblasts in contrast to normal ligamentum flavum (LF) fibroblasts. Silencing KLF5 diminished osteogenic markers and mineralized nodules, while its overexpression had the opposite effect, confirming KLF5's role in promoting ossification. Moreover, KLF5 promotes the ossification of LF by activating the transcription of Connexin 43 (CX43), and overexpressing CX43 could reverse the suppressive impact of KLF5 knockdown on OLF fibroblasts' osteogenesis. CONCLUSION: KLF5 promotes the OLF by transcriptionally activating CX43. This finding contributes significantly to our understanding of OLF and may provide new therapeutic targets.


Subject(s)
Ligamentum Flavum , Ossification, Heterotopic , Humans , Cells, Cultured , Connexin 43/genetics , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Ossification, Heterotopic/genetics , Ossification, Heterotopic/metabolism , Osteogenesis/genetics , Transcription Factors/metabolism
17.
Zhonghua Gan Zang Bing Za Zhi ; 32(2): 148-154, 2024 Feb 20.
Article in Chinese | MEDLINE | ID: mdl-38514264

ABSTRACT

Objective: To analyze and evaluate the expressions and clinical value of tuftelin (TUFT1) and Krüppel-like factor 5 (KLF5) in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) tissues. Method: KLF5 mRNA and TUFT1 mRNA transcriptional status in cancer and non-cancer groups were compared according to the Cancer Genome Atlas (TCGA) database. The differences and prognostic value between the groups were analyzed. Postoperative liver cancer and its paired pericancerous tissues, with the approval of the ethics committee, were collected to build tissue chips. The expression of KLF5 and TUFT1 and their intracellular localization were verified by immunohistochemistry. Tissue expression and clinicopathological characteristics were analyzed by immunoblotting. SPSS software was used to analyze the relationship between SPSS and patient prognosis. Results: The transcription level of TUFT1 or KLF5 mRNA was significantly higher in the HCC group than the non-cancer group (P < 0.001), according to TCGA data. Immunohistochemistry and Western blotting examination confirmed the overexpression of TUFT1 and KLF5 in human HCC tissues, which were mainly localized in the cytoplasm and cell membrane. The positivity rates of TUFT1 and KLF5 were 87.1% ( χ(2) = 18.563, P < 0.001) and 95.2% ( χ(2) = 96.435, P < 0.001) in HCC tissues, and both were significantly higher than those in the adjacent group. The expression intensity was higher in stage III-IV than stage I-II of the International Union Against Cancer standard (P < 0.01). The clinicopathological features showed that the abnormalities of the two were significantly related to HBV infection, tumor size, extrahepatic metastasis, TNM stage, and ascites. Univariate analysis was related to tumor size, HBV infection, and survival. Multivariate analysis was an independent prognostic factor for patients with HCC. Conclusion: TUFT1 and KLF5 may both be novel markers possessing clinical value in the diagnosis and prognosis of HBV-related HCC.


Subject(s)
Carcinoma, Hepatocellular , Dental Enamel Proteins , Hepatitis B , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/virology , Dental Enamel Proteins/genetics , Dental Enamel Proteins/metabolism , Gene Expression Regulation, Neoplastic , Hepatitis B/complications , Hepatitis B/genetics , Hepatitis B virus/genetics , Liver Neoplasms/pathology , Prognosis , RNA, Messenger , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism
18.
Environ Toxicol ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470012

ABSTRACT

Recurrence of breast cancer may be due to the presence of breast cancer stem cells (BCSC). Abnormal tumor cell growth is closely associated with increased reactive oxygen species (ROS) and disruption of redox homeostasis, and BCSCs exhibit low levels of ROS. The detailed mechanism between the low levels of ROS in BCSCs and their maintenance of stemness characteristics has not been reported. A growing number of studies have shown that tumor development is often accompanied by metabolic reprogramming, which is an important hallmark of tumor cells. As the first rate-limiting enzyme of pentose phosphate pathway (PPP), the expression of G6PD is precisely regulated in tumor cells, and there is a certain correlation between PPP and BCSCs. MiR-375 has been shown to inhibit stem cell-like properties in breast cancer, but the exact mechanism is not clear. Here, KLF5, as a transcription factor, was identified to bind to the promoter of G6PD to promote its expression, whereas miR-375 inhibited the expression of KLF5 by binding to the 3'UTR region of KLF5 mRNA and thus reduced the expression of G6PD expression, inhibits PPP to reduce NADPH, and increases ROS levels in breast cancer cells, thereby weakening breast cancer cell stemness. Our study reveals the specific mechanism by which miR-375 targets the KLF5/G6PD signaling axis to diminish the stemness of breast cancer cells, providing a therapeutic strategy against BCSCs.

19.
Article in English | MEDLINE | ID: mdl-38472369

ABSTRACT

Myocardial fibrosis (MF), which is an inevitable pathological manifestation of many cardiovascular diseases in the terminal stage, often contributes to severe cardiac dysfunction and sudden death. Morroniside (MOR) is the main active component of Cornus officinalis with a variety of biological activities. This study was designed to explore the efficacy of MOR in MF and to investigate its pharmacological mechanism. The viability of MOR-treated human cardiac fibroblast (HCF) cells with or without Angiotensin II (AngII) induction was assessed with Cell Counting Kit-8 (CCK-8). The migration of AngII-induced HCF cells was appraised with a transwell assay. Gelatin zymography analysis was adopted to evaluate the activities of MMP2 and MMP9, while immunofluorescence assay was applied for the estimation of Collagen I and Collagen III. By means of western blot, the expressions of migration-, fibrosis-, and p38/c-Jun N-terminal kinase (JNK) signal pathway-related proteins were resolved. The transfection efficacy of oe-Kruppel-like factor 5 (KLF5) was examined with reverse transcription-quantitative PCR (RT-qPCR) and western blot. In this study, it was found that MOR treatment inhibited AngII-induced hyperproliferation, migration, and fibrosis of HCF cells, accompanied with decreased activities of matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 9 (MMP9), connective tissue growth factor (CTGF), Fibronectin, and α-SMA, which were all reversed by KLF5 overexpression. Collectively, MOR exerted protective effects on MF by blocking p38/JNK signal pathway through the downregulation of KLF5.

20.
Breast Cancer Res ; 26(1): 44, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38468288

ABSTRACT

BACKGROUND: Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme that regulates ERα expression in triple-negative cancer (TNBC). This study aimed to explore the deubiquitination substrates of UCHL1 related to endocrine therapeutic responses and the mechanisms of UCHL1 dysregulation in TNBC. METHODS: Bioinformatics analysis was conducted using online open databases. TNBC representative MDA-MB-468 and SUM149 cells were used for in vitro and in-vivo studies. Co-immunoprecipitation was used to explore the interaction between UCHL1 and KLF5 and UCHL1-mediated KIF5 deubiquitination. CCK-8, colony formation and animal studies were performed to assess endocrine therapy responses. The regulatory effect of TET1/3 on UCHL1 promoter methylation and transcription was performed by Bisulfite sequencing PCR and ChIP-qPCR. RESULTS: UCHL1 interacts with KLF5 and stabilizes KLF5 by reducing its polyubiquitination and proteasomal degradation. The UCHL1-KLF5 axis collaboratively upregulates EGFR expression while downregulating ESR1 expression at both mRNA and protein levels in TNBC. UCHL1 knockdown slows the proliferation of TNBC cells and sensitizes the tumor cells to Tamoxifen and Fulvestrant. KLF5 overexpression partially reverses these trends. Both TET1 and TET3 can bind to the UCHL1 promoter region, reducing methylation of associated CpG sites and enhancing UCHL1 transcription in TNBC cell lines. Additionally, TET1 and TET3 elevates KLF5 protein level in a UCHL1-dependent manner. CONCLUSION: UCHL1 plays a pivotal role in TNBC by deubiquitinating and stabilizing KLF5, contributing to endocrine therapy resistance. TET1 and TET3 promote UCHL1 transcription through promoter demethylation and maintain KLF5 protein level in a UCHL1-dependent manner, implying their potential as therapeutic targets in TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Animals , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Cell Line, Tumor , Promoter Regions, Genetic , Cell Proliferation , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Proto-Oncogene Proteins/genetics , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL