Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Environ Int ; 191: 108971, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39180775

ABSTRACT

There is no safe level of air pollution for human health. Traffic-related particulate matter (PM2.5) is a major in-utero toxin, mechanisms of action of which are not fully understood. BALB/c dams were exposed to an Australian level of traffic PM2.5 (5 µg/mouse/day, intranasal, 6 weeks before mating, during gestation and lactation). Male offspring had reduced memory in adulthood, whereas memory was normal in female littermates, similar to human responses. Maternal PM2.5 exposure resulted in oxidative stress and abnormal mitochondria in male, but not female, brains. RNA-sequencing analysis showed unique sex-related changes in newborn brains. Two X-chromosome-linked histone lysine demethylases, Kdm6a and Kdm5c, demonstrated higher expression in female compared to male littermates, in addition to upregulated genes with known functions to support mitochondrial function, synapse growth and maturation, cognitive function, and neuroprotection. No significant changes in Kdm6a and Kdm5c were found in male littermates, nor other genes, albeit significantly impaired memory function after birth. In primary foetal cortical neurons, PM2.5 exposure suppressed neuron and synaptic numbers and induced oxidative stress, which was prevented by upregulation of Kdm6a or Kdm5c. Therefore, timely epigenetic adaptation by histone demethylation to open DNA for translation before birth may be the key to protecting females against prenatal PM2.5 exposure-induced neurological disorders, which fail to occur in males associated with their poor cognitive outcomes.


Subject(s)
Air Pollution , Maternal Exposure , Memory , Particulate Matter , Animals , Mice , Mice, Inbred BALB C , Particulate Matter/toxicity , Male , Female , Sex Characteristics , Neurons/cytology , Brain/pathology , Mitochondria/pathology , Gene Expression , Animals, Newborn , Histone Demethylases/genetics , Cells, Cultured
2.
Cell Rep ; 43(8): 114506, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39052479

ABSTRACT

Functional and phenotypic heterogeneity of dendritic cells (DCs) play crucial roles in facilitating the development of diverse immune responses essential for host protection. Here, we report that KDM5C, a histone lysine demethylase, regulates conventional or classical DC (cDC) and plasmacytoid DC (pDC) population heterogeneity and function. Mice deficient in KDM5C in DCs have increased proportions of cDC2Bs and cDC1s, which is partly dependent on type I interferon (IFN) and pDCs. Loss of KDM5C results in an increase in Ly6C- pDCs, which, compared to Ly6C+ pDCs, have limited ability to produce type I IFN and more efficiently stimulate antigen-specific CD8 T cells. KDM5C-deficient DCs have increased expression of inflammatory genes, altered expression of lineage-specific genes, and decreased function. In response to Listeria infection, KDM5C-deficient mice mount reduced CD8 T cell responses due to decreased antigen presentation by cDC1s. Thus, KDM5C is a key regulator of DC heterogeneity and critical driver of the functional properties of DCs.


Subject(s)
CD8-Positive T-Lymphocytes , Dendritic Cells , Histone Demethylases , Dendritic Cells/metabolism , Dendritic Cells/immunology , Animals , Mice , Histone Demethylases/metabolism , Histone Demethylases/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mice, Inbred C57BL , Transcription, Genetic , Interferon Type I/metabolism , Antigen Presentation
3.
J Endocr Soc ; 8(4): bvae029, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38425435

ABSTRACT

Body fat accumulation differs between males and females and is influenced by both gonadal sex (ovaries vs testes) and chromosomal sex (XX vs XY). We previously showed that an X chromosome gene, Kdm5c, is expressed at higher levels in females compared to males and correlates with adiposity in mice and humans. Kdm5c encodes a KDM5 histone demethylase that regulates gene expression by modulating histone methylation at gene promoters and enhancers. Here, we use chemical inhibition and genetic knockdown to identify a role for KDM5 activity during early stages of white and brown preadipocyte differentiation, with specific effects on white adipocyte clonal expansion, and white and brown adipocyte gene expression and mitochondrial activity. In white adipogenesis, KDM5 activity modulates H3K4 histone methylation at the Dlk1 gene promoter to repress gene expression and promote progression from preadipocytes to mature adipocytes. In brown adipogenesis, KDM5 activity modulates H3K4 methylation and gene expression of Ucp1, which is required for thermogenesis. Unbiased transcriptome analysis revealed that KDM5 activity regulates genes associated with cell cycle regulation and mitochondrial function, and this was confirmed by functional analyses of cell proliferation and cellular bioenergetics. Using genetic knockdown, we demonstrate that KDM5C is the likely KDM5 family member that is responsible for regulation of white and brown preadipocyte programming. Given that KDM5C levels are higher in females compared to males, our findings suggest that sex differences in white and brown preadipocyte gene regulation may contribute to sex differences in adipose tissue function.

4.
Brain Res Bull ; 202: 110748, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37657612

ABSTRACT

T cell-driven autoimmune responses are subject to striking sex-dependent effects. While the contributions of sex hormones are well-understood, those of sex chromosomes are meeting with increased appreciation. Here, we outline what is known about the contribution of sex chromosome-linked factors to experimental autoimmune encephalomyelitis (EAE), a mouse model that recapitulates many of the T cell-driven mechanisms of multiple sclerosis (MS) pathology. Particular attention is paid to the KDM family of histone demethylases, several of which - KDM5C, KDM5D and KDM6A - are sex chromosome encoded. Finally, we provide evidence that functional inhibition of KDM5 molecules can suppress interferon (IFN)γ production from murine male effector T cells, and that an increased ratio of inflammatory Kdm6a to immunomodulatory Kdm5c transcript is observed in T helper 17 (Th17) cells from women with the autoimmune disorder ankylosing spondylitis (AS). Histone lysine demethlyases thus represent intriguing targets for the treatment of T cell-driven autoimmune disorders.


Subject(s)
Autoimmunity , Encephalomyelitis, Autoimmune, Experimental , Animals , Female , Humans , Male , Mice , Central Nervous System , Histone Demethylases , Minor Histocompatibility Antigens , T-Lymphocytes
5.
Am J Cancer Res ; 13(5): 2116-2125, 2023.
Article in English | MEDLINE | ID: mdl-37293154

ABSTRACT

Vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR-TKIs) are key antiangiogenic drugs for renal cancer treatment. While Von Hippel-Lindau dysfunction constitutes the base for VEGFR-TKIs sensitivity, the role for individual and concurrent mutations in the genes encoding for the chromatin remodelers Polybromo-1 (PBRM1) and Lysine Demethylase 5C (KDM5C) is poorly understood. Here, we analyzed the tumor mutational and expression profiles of 155 unselected clear cell RCC (ccRCC) cases treated with first-line VEGFR-TKIs and the ccRCC cases of IMmotion151 trial were used for validation. We found that concurrent PBRM1 and KDM5C (PBRM1&KDM5C) mutations occurred in 4-9% of cases and were enriched in Memorial Sloan Kettering Cancer Center favorable-risk patients. In our cohort, tumors only mutated in PBRM1 or concurrently mutated in PBRM1 and KDM5C had increased angiogenesis (P=0.0068 and 0.039; respectively), and tumors only mutated in KDM5C showed a similar trend. Best response to VEGFR-TKIs corresponded to PBRM1&KDM5C mutated cases, followed by those mutated only in KDM5C or only in PBRM1 (P=0.050, 0.040 and 0.027 versus non-mutated cases, respectively), with a trend for longer progression free survival (PFS) in the group with only PBRM1 mutated (HR=0.64; P=0.059). Validation in the IMmotion151 trial revealed a similar correlation with increased angiogenesis and the PFS of patients in the VEGFR-TKI-arm was the longest in PBRM1&KDM5C mutated cases, intermediate for only PBRM1 or only KDM5C mutated patients and the shortest in non-mutated cases (P=0.009 and 0.025, for PBRM1&KDM5C and PBRM1 versus non-mutated cases). In conclusion, somatic PBRM1 and KDM5C mutations are common in patients with metastatic ccRCC and likely cooperate increasing tumor angiogenesis and VEGFR-TKI-based antiangiogenic therapy benefit.

6.
Hum Pathol ; 138: 1-11, 2023 08.
Article in English | MEDLINE | ID: mdl-37209920

ABSTRACT

Prostate cancer (PCa) remains the most commonly diagnosed cancer in men worldwide and is still the second leading cause of cancer-related death. One major cause of PCa development is epigenetic aberration, including histone modification. We have previously demonstrated that Lysine Demethylase 5C (KDM5C) plays an essential role in the development of PCa and drives PCa progression by promoting epithelial-mesenchymal transition. Epigenetic regulators often work in concert, for example, to regulate transcription. We identified Paraspeckle Component 1 (PSPC1) as an interacting protein of KDM5C, suggesting that these proteins might function together in PCa. Here, we systematically investigate the expression patterns of KDM5C and PSPC1 in 2 independent prostate cohorts (432 and 205 prostate tumors in total for PSPC1 and KDM5C, respectively) by immunohistochemistry. We demonstrate that the expression of PSPC1 correlates with that of KDM5C. In addition, PSPC1 is up-regulated in primary and metastatic PCa. Elevated PSPC1 expression correlates with a higher-grade group and an advanced T-stage. Patients with high PSPC1 expression have a worse biochemical recurrence-free survival. In addition, PSPC1 expression is an independent prognostic parameter. Our data indicate that KDM5C and PSPC1 are involved in PCa progression, and therapeutic inhibition of KDM5C and PSPC1 by selective compounds might be a promising approach for the treatment of PCa.


Subject(s)
Prostatic Neoplasms , Male , Humans , Prostate , Epithelial-Mesenchymal Transition , RNA-Binding Proteins , Histone Demethylases
7.
Biotechniques ; 74(3): 149-152, 2023 03.
Article in English | MEDLINE | ID: mdl-36856081

ABSTRACT

The need to take sex into account in biomedical research is now recognized and mandated by funding institutions. In laboratory rodents, such as mice, sexing is usually performed anatomically or by genotyping using multiplex or simplex PCR techniques on genomic DNA. Here we present a simple RT-PCR-based method targeting Kdm5c and Kdm5d to determine genetic sex in mouse cDNA samples, allowing for retrospective sex determination.


Subject(s)
DNA , Animals , Mice , DNA, Complementary/genetics , Retrospective Studies , DNA/genetics , Polymerase Chain Reaction/methods
8.
Int J Surg Pathol ; 31(8): 1485-1494, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36911986

ABSTRACT

The last decade has seen great advances in genomic profiling and prognosis-associated factors of clear cell renal cell carcinoma (RCC), the most common entity in kidney cancer. Following VHL, PBRM1, SETD2, BAP1, and KDM5C have been validated as the most common co-occurring gene mutations in clear cell RCC by multicenter studies. However, the morphological features of clear cell RCC with co-occurring gene mutations remain unclear. In this study, we presented 20 clear cell RCCs that underwent next-generation sequencing, of which 1 tumor was reclassified as ELOC-mutated RCC. PBRM1, SETD2, BAP1, and KDM5C were the most common mutations, following VHL. Morphologically, clear cell RCC with PBRM1 or KDM5C mutation usually displayed a low-grade pattern. Cystic changes and hyalinized stroma were often observed. The Ki67 index was <10%. These observations indicated good prognosis. However, mutated SETD2 may increase the malignancy of clear cell RCC with PBRM1 mutation. Two clear cell RCCs with mutated PBRM1 and SETD2 developed local or distant metastases. Clear cell RCC with BAP1 mutations always had high-grade patterns, and rhabdoid differentiation was also observed, indicating that BAP1 mutation was associated with poor outcomes. Papillary architecture was often a feature of BAP1 mutation, which is uncommon in clear cell RCC. PDL1 was positive in only one tumor with BAP1 mutation, and the positivity rate was limited to 5%. B7H3 was negative in all tumors. Morphologic findings in this small cohort may suggest why PBRM1 mutation does not correlate with decreased survival, whereas BAP1 mutation usually predicts poor outcomes.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Tumor Suppressor Proteins/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Mutation , DNA-Binding Proteins/genetics , Transcription Factors/genetics , Ubiquitin Thiolesterase/genetics , Histone Demethylases/genetics
9.
Front Oncol ; 13: 1091635, 2023.
Article in English | MEDLINE | ID: mdl-36845747

ABSTRACT

Background: Renal cell carcinoma (RCC) is the most common renal malignancy, and may metastasize to different sites in the body via hematogenous and lymphomatous routes. The pancreas is a rare metastatic site of metastatic RCC (mRCC) and isolated pancreatic metastasis of RCC (isPMRCC) is even rarer. Results: The present report describes a case of isPMRCC that recurred 16 years after surgery. The patient responded well to the treatment with pancreaticoduodenectomy and systemic therapy, and no recurrence was recorded after 2 years. Conclusions: isPMRCC is a distinct subgroup of RCC with unique clinical characteristics that may be explained by its underlying molecular mechanisms. Surgery and systemic therapy confer survival benefits to patients with isPMRCCs, although the recurrence problem has to be paid attention to.

10.
Genes (Basel) ; 14(1)2023 01 14.
Article in English | MEDLINE | ID: mdl-36672956

ABSTRACT

Histone lysine methyltransferase and demethylase enzymes play a central role in chromatin organization and gene expression through the dynamic regulation of histone lysine methylation. Consistent with this, genes encoding for histone lysine methyltransferases (KMTs) and demethylases (KDMs) are involved in complex human syndromes, termed congenital regulopathies. In this report, we present several lines of evidence for the involvement of these genes in developmental ocular phenotypes, suggesting that individuals with structural eye defects, especially when accompanied by craniofacial, neurodevelopmental and growth abnormalities, should be examined for possible variants in these genes. We identified nine heterozygous damaging genetic variants in KMT2D (5) and four other histone lysine methyltransferases/demethylases (KMT2C, SETD1A/KMT2F, KDM6A and KDM5C) in unrelated families affected with developmental eye disease, such as Peters anomaly, sclerocornea, Axenfeld-Rieger spectrum, microphthalmia and coloboma. Two families were clinically diagnosed with Axenfeld-Rieger syndrome and two were diagnosed with Peters plus-like syndrome; others received no specific diagnosis prior to genetic testing. All nine alleles were novel and five of them occurred de novo; five variants resulted in premature truncation, three were missense changes and one was an in-frame deletion/insertion; and seven variants were categorized as pathogenic or likely pathogenic and two were variants of uncertain significance. This study expands the phenotypic spectra associated with KMT and KDM factors and highlights the importance of genetic testing for correct clinical diagnosis.


Subject(s)
Eye Abnormalities , Histones , Humans , Histones/genetics , Lysine/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Eye Abnormalities/genetics , Histone Demethylases/genetics , Histone Demethylases/metabolism
11.
Genes (Basel) ; 13(12)2022 12 01.
Article in English | MEDLINE | ID: mdl-36553533

ABSTRACT

As a consequence of the implementation of NGS technologies, the diagnostic yield of neurodevelopmental disorders has dramatically increased during the past two decades. Among neurodevelopmental genes, transcription-related genes and chromatin remodeling genes are the most represented category of disease-causing genes. Indeed, the term "chromatinopathies" is now widely used to describe epigenetic disorders caused by mutations in these genes. We hereby describe a twenty-seven-year-old female patient diagnosed with moderate intellectual disability comorbid with other neuropsychiatric and behavioral issues carrying a de novo heterozygous stop variant in the KDM5C gene (NM_004187.5: c. 3847G>T, p.Glu1283*), encoding a histone demethylase that specifically acts on the H3K4 lysines. The gene is located on the X chromosome and has been associated with Claes-Jensen-type intellectual disability, an X-linked syndromic disorder. We discuss our case in relation to previously reported affected females harboring pathogenic mutations in the KDM5C gene with the objective of delineating genotype-phenotype correlations and further defining a common recognizable phenotype. We also highlight the importance of reverse phenotyping in relation to whole-exome sequencing results.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Female , Humans , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Histone Demethylases/genetics , Mutation , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Genetic Association Studies
12.
BMC Neurol ; 22(1): 491, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36536324

ABSTRACT

BACKGROUND: Lysine(K)-specific demethylase 5C (KDM5C) dysfunction causes X-linked syndromic intellectual developmental disorder Claes-Jensen type in male patients. The clinical presentations of female individuals with heterozygous KDM5C variations vary widely and are only now beginning to be characterized in detail. CASE PRESENTATION: Herein, we identified a novel de novo heterozygous nonsense variation of KDM5C (c.3533C > A, p.S1178X) in a sporadic 4-year-old Chinese girl, who presented with Claes-Jensen type-like phenotypes, such as moderate developmental delay, serious expressive language delay, short stature, microcephaly, and typical facial particularities. Moreover, X-chromosome inactivation (XCI) analysis showed no significant skewed X-inactivation. CONCLUSION: The report expands the genotype of KDM5C variation in female patients, delineates the phenotype of affected females in this well-known X-linked disorder, and also reinforces the necessity to consider this X-linked gene, KDM5C, in sporadic female patients.


Subject(s)
Mental Retardation, X-Linked , Male , Female , Humans , Mutation , Mental Retardation, X-Linked/genetics , Phenotype , Histone Demethylases/genetics
13.
Int J Mol Sci ; 23(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36142158

ABSTRACT

Glioblastoma multiforme (GBM) is a fatal brain tumor without effective drug treatment. In this study, we highlight, for the first time, the contribution of chromatin remodeling gene Lysine (K)-specific demethylase 5C (KDM5C) in GBM via an extensive analysis of clinical, expression, and functional data, integrated with publicly available omic datasets. The expression analysis on GBM samples (N = 37) revealed two informative subtypes, namely KDM5CHigh and KDM5CLow, displaying higher/lower KDM5C levels compared to the controls. The former subtype displays a strong downregulation of brain-derived neurotrophic factor (BDNF)-a negative KDM5C target-and a robust overexpression of hypoxia-inducible transcription factor-1A (HIF1A) gene, a KDM5C modulator. Additionally, a significant co-expression among the prognostic markers HIF1A, Survivin, and p75 was observed. These results, corroborated by KDM5C overexpression and hypoxia-related functional assays in T98G cells, suggest a role for the HIF1A-KDM5C axis in the hypoxic response in this tumor. Interestingly, fluorescence-guided surgery on GBM sections further revealed higher KDM5C and HIF1A levels in the tumor rim niche compared to the adjacent tumor margin, indicating a regionally restricted hyperactivity of this regulatory axis. Analyzing the TCGA expression and methylation data, we found methylation changes between the subtypes in the genes, accounting for the hypoxia response, stem cell differentiation, and inflammation. High NANOG and IL6 levels highlight a distinctive stem cell-like and proinflammatory signature in the KDM5CHigh subgroup and GBM niches. Taken together, our results indicate HIF1A-KDM5C as a new, relevant cancer axis in GBM, opening a new, interesting field of investigation based on KDM5C as a potential therapeutic target of the hypoxic microenvironment in GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Cell Line, Tumor , Chromatin/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/metabolism , Histone Demethylases/genetics , Histone Demethylases/metabolism , Humans , Hypoxia/genetics , Interleukin-6/metabolism , Lysine/metabolism , Oxygen/metabolism , Survivin/genetics , Transcription Factors/metabolism , Tumor Microenvironment/genetics
14.
Eur J Med Genet ; 65(9): 104556, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35781022

ABSTRACT

KDM5C encodes a demethylase of the histone H3 lysine 4 residue, involved in chromatin regulation and gene expression. Hemizygous KDM5C pathogenic variants cause X-linked intellectual disability of Claes-Jensen type. Because of its mode of inheritance and the low specificity of the clinical phenotype, interpretation of variants can be difficult, hence the need for functional studies and biomarkers specific to this disorder. We present the case of a male patient with intellectual disability, behavioral abnormalities and subtle dysmorphic features, in which genetic investigation identified a hemizygous novel missense KDM5C variant of uncertain significance (VUS), inherited from his asymptomatic mother and present in his paucisymptomatic sister. We assessed the global genomic DNA methylation status from a whole blood sample of the proband. Global DNA methylation profiling specifically identified the recently discovered epi-signature of Claes-Jensen syndrome. This result served as a biomarker which independently highlighted KDM5C as the cause of the disorder in this patient. Because of the X-linked mode of inheritance, variant reclassification had a high impact on genetic counseling in this family. This example highlights the value of global methylome profiling in situations of variants of uncertain significance in genes with a known specific epi-signature.


Subject(s)
Hearing Loss, Central , Intellectual Disability , Optic Atrophy , DNA Methylation , Genes, X-Linked , Hearing Loss, Central/genetics , Histone Demethylases/genetics , Histone Demethylases/metabolism , Humans , Intellectual Disability/genetics , Male , Optic Atrophy/genetics
15.
Autophagy ; 18(8): 1749-1751, 2022 08.
Article in English | MEDLINE | ID: mdl-35758243

ABSTRACT

Hypoxia is a type of stress caused by an insufficient supply of oxygen. Macroautophagy/autophagy, a well-conserved pathway, is induced during hypoxia; however, the exact mechanism by which autophagy is regulated in a hypoxic environment remains to be elucidated. A recent study by Li et al. shed light on how hypoxia can regulate early steps of autophagy induction. In this study, the authors discovered a novel symmetrical dimethylation of ULK1 at arginine 170 (R170me2s) that accumulates during hypoxia and increases ULK1 kinase activity by promoting autophosphorylation of ULK1 at T180. The authors identified PRMT5 and KDM5C as the primary methyltransferase and demethylase regulating ULK1 R170me2s and show that the lack of oxygen directly leads to reduced activity of KDM5C, which is likely the cause of accumulation of ULK1 R170me2s during hypoxia. Furthermore, the authors showed that ULK1 R170me2s promotes mitochondrial turnover and maintains cell viability in response to hypoxia stress. Together these data provide a new perspective on how the oxygen level regulates autophagy induction and show the physiological role of ULK1 R170me2s.


Subject(s)
Autophagy , Lysine , Autophagy/physiology , Autophagy-Related Protein-1 Homolog/metabolism , Humans , Hypoxia , Intracellular Signaling Peptides and Proteins/metabolism , Lysine/metabolism , Oxidative Stress , Oxygen , Phosphorylation , Protein-Arginine N-Methyltransferases/metabolism
16.
Cancers (Basel) ; 14(8)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35454801

ABSTRACT

Prostate cancer (PCa) poses a major public health problem in men. Metastatic PCa is incurable, and ultimately threatens the life of many patients. Mutations in tumor suppressor genes and oncogenes are important for PCa progression, whereas the role of epigenetic factors in prostate carcinogenesis is insufficiently examined. The histone demethylase KDM5C exerts important roles in tumorigenesis. KDM5C has been reported to be highly expressed in various cancer cell types, particularly in primary PCa. Here, we could show that KDM5C is highly upregulated in metastatic PCa. Functionally, in KDM5C knockdown cells migratory and invasion capacity was reduced. Interestingly, modulation of KDM5C expression influences several EMT signaling pathways (e.g., Akt/mTOR), expression of EMT transcription factors, epigenetic modifiers, and miR-205, resulting in increased expression of E-cadherin and reduced expression of N-cadherin. Mouse xenografts of KDM5C knockdown cells showed reduced tumor growth. In addition, the Akt/mTOR pathway is one of the classic signaling pathways to mediate tumor metabolic homeostasis, which is beneficial for tumor growth and metastasis. Taken together, our findings indicate that a combination of a selective KDM5C- and Akt/mTOR-inhibitor might be a new promising therapeutic strategy to reduce metastatic burden in PCa.

17.
Cancer Cell Int ; 22(1): 109, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35248043

ABSTRACT

BACKGROUND: Abnormal expression of splicing factor 3A subunit 3 (SF3A3), a component of the spliceosome, has been confirmed to be related to the occurrence and development of various cancers. However, the expression and function of SF3A3 in bladder cancer (BC) remains unclear. METHODS: The SF3A3 mRNA and protein level were measured in clinical samples and cell lines by quantitative real-time PCR, Western blot and immunofluorescence staining. Evaluate the clinical correlation between SF3A3 expression and clinicopathological characteristics through statistical analysis in BC patients. The function of SF3A3 in BC cells was determined in vitro using MTT and colony analysis. Co-immunoprecipitation (CoIP) assay was used to detected E2F6 and KDM5C interaction. Luciferase reporter and chromatin immunoprecipitation (ChIP) were used to examine the relationship between E2F6/KDM5C and SF3A3 expression. RESULTS: In the present study, we demonstrated that expression of SF3A3 was elevated in BC tissue compared to the normal bladder tissue. Importantly, the upregulation of SF3A3 in patients was correlated with poor prognosis. Additionally, overexpression of SF3A3 promoted while depletion of SF3A3 reduced the growth of BC cells in vivo and in vitro. Data from the TCGA database and clinical samples revealed that hypomethylation of the DNA promoter leads to high expression of SF3A3 in BC tissue. We found that upregulation of lysine-specific demethylase 5C (KDM5C) promotes SF3A3 expression via hypomethylation of the DNA promoter. The transcription factor E2F6 interacts with KDM5C, recruits KDM5C to the SF3A3 promoter, and demethylates the GpC island of H3K4me2, leading to high SF3A3 expression and BC progression. CONCLUSIONS: The results demonstrated that depletion of the KDM5C/SF3A3 prevents the growth of BC in vivo and in vitro. The E2F6/KDM5C/SF3A3 pathway may be a potential therapeutic target for BC treatment.

18.
Int J Mol Sci ; 23(6)2022 Mar 13.
Article in English | MEDLINE | ID: mdl-35328505

ABSTRACT

The X-linked gene encoding aristaless-related homeobox (ARX) is a bi-functional transcription factor capable of activating or repressing gene transcription, whose mutations have been found in a wide spectrum of neurodevelopmental disorders (NDDs); these include cortical malformations, paediatric epilepsy, intellectual disability (ID) and autism. In addition to point mutations, duplications of the ARX locus have been detected in male patients with ID. These rearrangements include telencephalon ultraconserved enhancers, whose structural alterations can interfere with the control of ARX expression in the developing brain. Here, we review the structural features of 15 gain copy-number variants (CNVs) of the ARX locus found in patients presenting wide-ranging phenotypic variations including ID, speech delay, hypotonia and psychiatric abnormalities. We also report on a further novel Xp21.3 duplication detected in a male patient with moderate ID and carrying a fully duplicated copy of the ARX locus and the ultraconserved enhancers. As consequences of this rearrangement, the patient-derived lymphoblastoid cell line shows abnormal activity of the ARX-KDM5C-SYN1 regulatory axis. Moreover, the three-dimensional (3D) structure of the Arx locus, both in mouse embryonic stem cells and cortical neurons, provides new insight for the functional consequences of ARX duplications. Finally, by comparing the clinical features of the 16 CNVs affecting the ARX locus, we conclude that-depending on the involvement of tissue-specific enhancers-the ARX duplications are ID-associated risk CNVs with variable expressivity and penetrance.


Subject(s)
Genes, Homeobox , Intellectual Disability , Animals , Child , Homeodomain Proteins/genetics , Humans , Intellectual Disability/genetics , Male , Mice , Mutation , Transcription Factors/genetics , Transcription Factors/metabolism
19.
Bioengineered ; 13(4): 8538-8547, 2022 04.
Article in English | MEDLINE | ID: mdl-35331081

ABSTRACT

This study aimed to investigate the roles of the lysine (K)-specific demethylase 5C (KDM5C)-bone morphogenetic protein-7 (BMP-7) signaling pathway in the pathogenesis of severe preeclampsia (sPE). A total of 180 pregnant patients were enrolled in the study and classified into three groups: an early-onset sPE group (EOsPE) (n = 60), a late-onset sPE group (LOsPE) (n = 60), and a control group (normal pregnancy; n = 60). The messenger RNA (mRNA) and protein expression levels of bone morphogenetic protein receptor II (BMPRII), BMP-7, and KDM5C were detected in placenta samples from the two sPE groups, and their sites were evaluated using immunohistochemistry (IHC). The sPE groups showed an increased KDM5C mRNA expression, and the EOsPE group showed a decreased BMP-7 and BMPRII mRNA expression compared with the LOsPE group. However, contradictory results were discovered in terms of protein expression. Immunostaining of KDM5C, BMP-7, and BMPRII was observed in villous trophoblast and extravillous trophoblast cells. Compared with the control group, the staining intensity of KDM5C in the placental tissue trophoblast cell nucleus and vascular endothelial cells of the sPE groups was weaker, while that of BMP-7 and BMPRII was stronger, and the staining intensity was more subjective in the LOsPE group. Consistent findings were obtained by IHC and Western blot analysis. KDM5C nuclear-cytoplasmic translocation may regulate sPE through BMP-7 and its receptors. The KDM5C-BMP-7 signaling pathway may also lead to less invasion and increased apoptosis of the trophoblast cells, which is involved in the pathogenesis of sPE.


Subject(s)
Bone Morphogenetic Protein 7 , Bone Morphogenetic Protein Receptors, Type II , Histone Demethylases , Pre-Eclampsia , Bone Morphogenetic Protein 7/genetics , Bone Morphogenetic Protein Receptors, Type II/genetics , Endothelial Cells/metabolism , Female , Histone Demethylases/genetics , Humans , Incidence , Lysine , Placenta/metabolism , Pre-Eclampsia/genetics , Pregnancy , RNA, Messenger/genetics
20.
FEBS J ; 289(24): 7776-7787, 2022 12.
Article in English | MEDLINE | ID: mdl-34536985

ABSTRACT

The widespread availability of genetic testing for those with neurodevelopmental disorders has highlighted the importance of many genes necessary for the proper development and function of the nervous system. One gene found to be genetically altered in the X-linked intellectual disability disorder Claes-Jensen syndrome is KDM5C, which encodes a histone demethylase that regulates transcription by altering chromatin. While the genetic link between KDM5C and cognitive (dys)function is clear, how KDM5C functions to control transcriptional programs within neurons to impact their growth and activity remains the subject of ongoing research. Here, we review our current knowledge of Claes-Jensen syndrome and discuss important new data using model organisms that have revealed the importance of KDM5C in regulating aspects of neuronal development and function. Continued research into the molecular and cellular activities regulated by KDM5C is expected to provide critical etiological insights into Claes-Jensen syndrome and highlight potential targets for developing therapies to improve the quality of life of those affected.


Subject(s)
Dementia , Intellectual Disability , Humans , Intellectual Disability/genetics , Quality of Life , Histone Demethylases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL