Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Glycobiology ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39173029

ABSTRACT

Human sialic acid-binding immunoglobulin-like lectins (Siglecs) are expressed on subsets of immune cells. Siglec-8 is an immune inhibitory Siglec on eosinophils and mast cells, which are effectors in allergic disorders including eosinophilic esophagitis. Inhibition occurs when Siglec-8 is crosslinked by multivalent Siglec ligands in target tissues. Previously we discovered a high-affinity Siglec-8 sialoglycan ligand on human airways composed of terminally sialylated keratan sulfate chains carried on a single protein, DMBT1. Here we extend that approach to another allergic inflammatory target tissue, human esophagus. Lectin overlay histochemistry revealed that Siglec-8 ligands are expressed predominantly by esophageal submucosal glands, and are densely packed in submucosal ducts leading to the lumen. Expression is tissue-specific; esophageal glands express Siglec-8 ligand whereas nearby gastric glands do not. Extraction and resolution by gel electrophoresis revealed a single predominant human esophageal Siglec-8 ligand migrating at >2 MDa. Purification by size exclusion and affinity chromatography, followed by proteomic mass spectrometry, revealed the protein carrier to be MUC5B. Whereas all human esophageal submucosal cells express MUC5B, only a portion convert it to Siglec-8 ligand by adding terminally sialylated keratan sulfate chains. We refer to this as MUC5BS8L. Material from the esophageal lumen of live subjects revealed MUC5BS8L species ranging from ~1-4 MDa. We conclude that MUC5B in the human esophagus is a protein canvas on which Siglec-8 binding sialylated keratan sulfate chains are post-translationally added. These data expand understanding of Siglec-8 ligands and may help us understand their roles in allergic immune regulation.

2.
Article in English | MEDLINE | ID: mdl-38950418

ABSTRACT

Keratan sulfate (KS) is a proteoglycan secreted in the fetal brain astrocytes and radial glia into extracellular parenchyma as granulofilamentous deposits. KS surrounds neurons except dendritic spines, repelling glutamatergic and facilitating GABAergic axons. The same genes are expressed in both neuroblast migration and axonal growth. This study examines timing of KS during morphogenesis of some normally developing human fetal forebrain structures. Twenty normal human fetal brains from 9-41 weeks gestational age were studied at autopsy. KS was examined by immunoreactivity in formalin-fixed paraffin sections, plus other markers including synaptophysin, S-100ß protein, vimentin and nestin. Radial and tangential neuroblast migratory pathways from subventricular zone to cortical plate were marked by KS deposits as early as 9wk GA, shortly after neuroblast migration initiated. During later gestation this reactivity gradually diminished and disappeared by term. Long axonal fascicles of the internal capsule and short fascicles of intrinsic bundles of globus pallidus and corpus striatum also appeared as early as 9-12wk, as fascicular sleeves before axons even entered. Intense KS occurs in astrocytic cytoplasm and extracellular parenchyma at 9wk in globus pallidus, 15wk thalamus, 18wk corpus striatum, 22wk cortical plate, and hippocampus postnatally. Corpus callosum and anterior commissure do not exhibit KS at any age. Optic chiasm shows reactivity at the periphery but not around intrinsic subfasciculi. We postulate that KS forms a chemical template for many long and short axonal fascicles before axons enter and neuroblast migratory pathways at initiation of migration. Cross-immunoreactivity with aggrecan may render difficult molecular distinction.

3.
JIMD Rep ; 65(2): 116-123, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38444580

ABSTRACT

Mucopolysaccharidoses (MPS) screening is tedious and still performed by analysis of total glycosaminoglycans (GAG) using 1,9-dimethylmethylene blue (DMB) photometric assay, although false positive and negative tests have been reported. Analysis of differentiated GAGs have been pursued classically by gel electrophoresis or more recently by quantitative LC-MS assays. Secondary elevations of GAGs have been reported in urinary tract infections (UTI). In this manuscript, we describe the diagnostic accuracy of urinary GAG measurements by LC-MS for MPS typing in 68 untreated MPS and mucolipidosis (ML) patients, 183 controls and 153 UTI samples. We report age-dependent reference values and cut-offs for chondroitin sulfate (CS), dermatan sulfate (DS), heparan sulfate (HS) and keratan sulfate (KS) and specific GAG ratios. The use of HS/DS ratio in combination to GAG concentrations normalized to creatinine improves the diagnostic accuracy in MPS type I, II, VI and VII. In total 15 samples classified to the wrong MPS type could be correctly assigned using HS/DS ratio. Increased KS/HS ratio in addition to increased KS improves discrimination of MPS type IV by excluding false positives. Some samples of UTI patients showed elevation of specific GAGs, mainly CS, KS and KS/HS ratio and could be misclassified as MPS type IV. Finally, DMB photometric assay performed in MPS and ML samples reveal four false negative tests (sensitivity of 94%). In conclusion, specific GAG ratios in complement to quantitative GAG values obtained by LC-MS enhance discrimination of MPS types. Exclusion of patients with UTI improve diagnostic accuracy in MPS IV but not in other types.

4.
Glycobiology ; 34(3)2024 04 01.
Article in English | MEDLINE | ID: mdl-38376199

ABSTRACT

The roles of keratan sulfate (KS) as a proton detection glycosaminoglycan in neurosensory processes in the central and peripheral nervous systems is reviewed. The functional properties of the KS-proteoglycans aggrecan, phosphacan, podocalyxcin as components of perineuronal nets in neurosensory processes in neuronal plasticity, cognitive learning and memory are also discussed. KS-glycoconjugate neurosensory gels used in electrolocation in elasmobranch fish species and KS substituted mucin like conjugates in some tissue contexts in mammals need to be considered in sensory signalling. Parallels are drawn between KS's roles in elasmobranch fish neurosensory processes and its roles in mammalian electro mechanical transduction of acoustic liquid displacement signals in the cochlea by the tectorial membrane and stereocilia of sensory inner and outer hair cells into neural signals for sound interpretation. The sophisticated structural and functional proteins which maintain the unique high precision physical properties of stereocilia in the detection, transmittance and interpretation of acoustic signals in the hearing process are important. The maintenance of the material properties of stereocilia are essential in sound transmission processes. Specific, emerging roles for low sulfation KS in sensory bioregulation are contrasted with the properties of high charge density KS isoforms. Some speculations are made on how the molecular and electrical properties of KS may be of potential application in futuristic nanoelectronic, memristor technology in advanced ultrafast computing devices with low energy requirements in nanomachines, nanobots or molecular switches which could be potentially useful in artificial synapse development. Application of KS in such innovative areas in bioregulation are eagerly awaited.


Subject(s)
Glycosaminoglycans , Keratan Sulfate , Animals , Keratan Sulfate/chemistry , Proteoglycans/metabolism , Mammals/metabolism
5.
Molecules ; 29(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38398516

ABSTRACT

We recently showed that 6-sulfo sialyl N-acetyllactosamine (LacNAc) in O-linked glycans recognized by the CL40 antibody is abundant in the pleural mesothelium under physiological conditions and that these glycans undergo complementary synthesis by GlcNAc6ST2 (encoded by Chst4) and GlcNAc6ST3 (encoded by Chst5) in mice. GlcNAc6ST3 is essential for the synthesis of R-10G-positive keratan sulfate (KS) in the brain. The predicted minimum epitope of the R-10G antibody is a dimeric asialo 6-sulfo LacNAc. Whether R-10G-reactive KS/sulfated LacNAc oligosaccharides are also present in the pleural mesothelium was unknown. The question of which GlcNAc6STs are responsible for R-10G-reactive glycans was an additional issue to be clarified. Here, we show that R-10G-reactive glycans are as abundant in the pulmonary pleura as CL40-reactive glycans and that GlcNAc6ST3 is only partially involved in the synthesis of these pleural R-10G glycans, unlike in the adult brain. Unexpectedly, GlcNAc6ST2 is essential for the synthesis of R-10G-positive KS/sulfated LacNAc oligosaccharides in the lung pleura. The type of GlcNAc6ST and the magnitude of its contribution to KS glycan synthesis varied among tissues in vivo. We show that GlcNAc6ST2 is required and sufficient for R-10G-reactive KS synthesis in the lung pleura. Interestingly, R-10G immunoreactivity in KSGal6ST (encoded by Chst1) and C6ST1 (encoded by Chst3) double-deficient mouse lungs was markedly increased. MUC16, a mucin molecule, was shown to be a candidate carrier protein for pleural R-10G-reactive glycans. These results suggest that R-10G-reactive KS/sulfated LacNAc oligosaccharides may play a role in mesothelial cell proliferation and differentiation. Further elucidation of the functions of sulfated glycans synthesized by GlcNAc6ST2 and GlcNAc6ST3, such as R-10G and CL40 glycans, in pathological conditions may lead to a better understanding of the underlying mechanisms of the physiopathology of the lung mesothelium.


Subject(s)
Amino Sugars , Keratan Sulfate , Pleura , Animals , Mice , Keratan Sulfate/metabolism , Pleura/metabolism , Oligosaccharides , Polysaccharides/metabolism , Epithelium/metabolism
6.
Sci China Life Sci ; 67(2): 332-344, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37480470

ABSTRACT

Macular corneal dystrophy (MCD) is a progressive, bilateral stromal dystrophic disease that arises from mutations in carbohydrate sulfotransferase 6 (CHST6). Corneal transplantation is the ultimate therapeutic solution for MCD patients. Unfortunately, postoperative recurrence remains a significant challenge. We conducted a retrospective review of a clinical cohort comprising 102 MCD patients with 124 eyes that underwent either penetrating keratoplasty (PKP) or deep anterior lamellar keratoplasty (DALK). Our results revealed that the recurrence rate was nearly three times higher in the DALK group (39.13%, 9/23 eyes) compared with the PKP group (10.89%, 11/101 eyes), suggesting that surgical replacement of the corneal endothelium for treating MCD is advisable to prevent postoperative recurrence. Our experimental data confirmed the robust mRNA and protein expression of CHST6 in human corneal endothelium and the rodent homolog CHST5 in mouse endothelium. Selective knockdown of wild-type Chst5 in mouse corneal endothelium (ACsiChst5), but not in the corneal stroma, induced experimental MCD with similar extracellular matrix synthesis impairments and corneal thinning as observed in MCD patients. Mice carrying Chst5 point mutation also recapitulated clinical phenotypes of MCD, along with corneal endothelial abnormalities. Intracameral injection of wild-type Chst5 rescued the corneal impairments in ACsiChst5 mice and retarded the disease progression in Chst5 mutant mice. Overall, our study provides new mechanistic insights and therapeutic approaches for MCD treatment by high-lighting the role of corneal endothelium in MCD development.


Subject(s)
Corneal Dystrophies, Hereditary , Endothelium, Corneal , Humans , Animals , Mice , Corneal Dystrophies, Hereditary/genetics , Carbohydrate Sulfotransferases , Disease Progression
7.
Glycobiology ; 34(1)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-37440446

ABSTRACT

Keratan sulfate glycosaminoglycan is composed of repeating N-acetyllactosamine (LacNAc) disaccharide units consisting of galactose (Gal) and N-acetylglucosamine (GlcNAc), both often 6-O-sulfated. Sulfate contents of keratan sulfate are heterogeneous depending upon the origins. In this study, keratan sulfate is classified as either highly sulfated (in which both GlcNAc and Gal residues are 6-O-sulfated) or low-sulfated (in which only GlcNAc residues are 6-O-sulfated). It is reported that highly sulfated keratan sulfate detected by the 5D4 monoclonal antibody is preferentially expressed in normal epithelial cells lining the female genital tract and in their neoplastic counterparts; however, expression of low-sulfated keratan sulfate in either has not been characterized. In the present study, we generated the 294-1B1 monoclonal antibody, which selectively recognizes low-sulfated keratan sulfate, and performed precise glycan analysis of sulfated glycans expressed on human serous ovarian carcinoma OVCAR-3 cells. We found that OVCAR-3 cells do not express highly sulfated keratan sulfate but rather express low-sulfated form, which was heterogeneous in 294-1B1 reactivity. Comparison of mass spectrometry spectra of sulfated glycans in 294-1B1-positive versus -negative OVCAR-3 cells indicated that the 294-1B1 epitope is likely at least 2, and possibly 3 or more, tandem GlcNAc-6-O-sulfated LacNAc units. Then, using the 294-1B1 antibody, we performed quantitative immunohistochemical analysis of 40 specimens from patients with ovarian cancer, consisting of 10 each of serous, endometrioid, clear cell, and mucinous carcinomas, and found that among them low-sulfated keratan sulfate was widely expressed in all but mucinous ovarian carcinoma.


Subject(s)
Adenocarcinoma, Mucinous , Ovarian Neoplasms , Humans , Female , Keratan Sulfate/chemistry , Sulfates , Apoptosis , Cell Line, Tumor , Polysaccharides , Antibodies, Monoclonal
8.
Mar Drugs ; 21(12)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38132953

ABSTRACT

A sulfated polysaccharide (AG) was extracted and isolated from the sea cucumber H. fuscopunctata, consisting of GlcNAc, GalNAc, Gal, Fuc and lacking any uronic acid residues. Importantly, several chemical depolymerization methods were used to elucidate the structure of the AG through a bottom-up strategy. A highly sulfated galactose (oAG-1) and two disaccharides labeled with 2,5-anhydro-D-mannose (oAG-2, oAG-3) were obtained from the deaminative depolymerized product along with the structures of the disaccharide derivatives (oAG-4~oAG-6) identified from the free radical depolymerized product, suggesting that the repeating building blocks in a natural AG should comprise the disaccharide ß-D-GalS-1,4-D-GlcNAc6S. The possible disaccharide side chains (bAG-1) were obtained with mild acid hydrolysis. Thus, a natural AG may consist of a keratan sulfate-like (KS-like) glycosaminoglycan with diverse modifications, including the sulfation types of the Gal residue and the possible disaccharide branches α-D-GalNAc4S6S-1,2-α/ß-L-Fuc3S linked to the KS-like chain. Additionally, the anticoagulant activities of the AG and its depolymerized products (dAG1-9) were evaluated in vitro using normal human plasma. The AG could prolong activated partial thromboplastin time (APTT) in a dose-dependent manner, and the activity potency was positively related to the chain length. The AG and dAG1-dAG3 could prolong thrombin time (TT), while they had little effect on prothrombin time (PT). The results indicate that the AG could inhibit the intrinsic and common coagulation pathways.


Subject(s)
Holothuria , Sea Cucumbers , Animals , Humans , Keratan Sulfate/chemistry , Holothuria/chemistry , Sea Cucumbers/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Disaccharides , Anticoagulants/chemistry
9.
J Histochem Cytochem ; 71(10): 555-563, 2023 10.
Article in English | MEDLINE | ID: mdl-37675782

ABSTRACT

Thus far, several monoclonal antibodies directed against cell-surface carbohydrate antigens have been generated. Among them, R-10G reportedly reacts selectively with human embryonic stem and induced pluripotent stem cells, but not with embryonal carcinoma (EC) cells. However, EC cells derived from patients' EC tumors may exhibit varying levels of R-10G-reactive antigen expression. Thus, we asked whether human EC tissues or germ cell tumor (GCT) tissues other than EC express R-10G-reactive antigen. To do so, we quantitatively analyzed R-10G-reactive antigen expression in 83 testicular GCT surgical specimens containing a total of 125 various GCT components. Accordingly, in all EC components examined, the EC cell plasma membrane was immunolabeled with R-10G, while most seminoma components were R-10G-negative. In non-seminomatous GCT (NSGCT) other than EC (non-EC NSGCT), R-10G-reactive antigen expression was variable, but signal distribution was focal, and the average intensity was weaker than that seen in EC. The percentages of R-10G-positive cells in these three groups varied with high statistical significance (p<0.001 for all combinations). These findings indicate that the R-10G-reactive antigen is preferentially expressed in human testicular EC tissues and, thus, could be used as a diagnostic marker for this malignancy.


Subject(s)
Carcinoma, Embryonal , Neoplasms, Germ Cell and Embryonal , Testicular Neoplasms , Male , Humans , Biomarkers, Tumor , Testicular Neoplasms/diagnosis , Testicular Neoplasms/metabolism , Antibodies, Monoclonal
10.
J Biol Chem ; 299(8): 105052, 2023 08.
Article in English | MEDLINE | ID: mdl-37454739

ABSTRACT

Chronic obstructive pulmonary disease (COPD), which includes emphysema and chronic bronchitis, is now the third cause of death worldwide, and COVID-19 infection has been reported as an exacerbation factor of them. In this study, we report that the intratracheal administration of the keratan sulfate-based disaccharide L4 mitigates the symptoms of elastase-induced emphysema in a mouse model. To know the molecular mechanisms, we performed a functional analysis of a C-type lectin receptor, langerin, a molecule that binds L4. Using mouse BMDCs (bone marrow-derived dendritic cells) as langerin-expressing cells, we observed the downregulation of IL-6 and TNFa and the upregulation of IL-10 after incubation with L4. We also identified CapG (a macrophage-capping protein) as a possible molecule that binds langerin by immunoprecipitation combined with a mass spectrometry analysis. We identified a portion of the CapG that was localized in the nucleus and binds to the promoter region of IL-6 and the TNFa gene in BMDCs, suggesting that CapG suppresses the gene expression of IL-6 and TNFa as an inhibitory transcriptional factor. To examine the effects of L4 in vivo, we also generated langerin-knockout mice by means of genome editing technology. In an emphysema mouse model, the administration of L4 did not mitigate the symptoms of emphysema as well as the inflammatory state of the lung in the langerin-knockout mice. These data suggest that the anti-inflammatory effect of L4 through the langerin-CapG axis represents a potential therapeutic target for the treatment of emphysema and COPD.


Subject(s)
Disaccharides , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Animals , Mice , Disaccharides/pharmacology , Disease Models, Animal , Interleukin-6/genetics , Keratan Sulfate/pharmacology , Mice, Inbred C57BL , Mice, Knockout , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Emphysema/drug therapy , Pulmonary Emphysema/genetics , Pulmonary Emphysema/chemically induced , Lectins, C-Type/metabolism
11.
Adv Neurobiol ; 29: 95-116, 2023.
Article in English | MEDLINE | ID: mdl-36255673

ABSTRACT

Glycoproteins carrying O-linked N-acetylgalactosamine, N-acetylglucosamine, mannose, fucose, glucose, and xylose are found in the nervous system. Lipids are glycosylated by distinct glycosylation enzymes as well. Membrane lipid, ceramide, is modified by the addition of either glucose or galactose to form glycosphingolipid, galactosylceramide, or glucosylceramide. Recent careful analyses by MS have identified glucosylated lipids of cholesterol and phosphatidic acid. These O-linked carbohydrate residues are found primarily on the outer surface of the plasma membrane or in the extracellular space. Their expression is cell or tissue specific and developmentally regulated. Due to their structural diversity, they play important roles in a variety of biological processes such as membrane transport, metabolic stress responses, cell-cell interactions and so on. Discoveries of human diseases associated with glycosylation enzyme deficits have proved modification of lipids and proteins with carbohydrates play critical roles in human health and disease in the nervous systems.


Subject(s)
Acetylgalactosamine , Fucose , Humans , Fucose/metabolism , Acetylgalactosamine/metabolism , Acetylglucosamine/metabolism , Galactose/metabolism , Mannose , Glucosylceramides , Xylose , Galactosylceramides , Glycoconjugates/metabolism , Carbohydrates/analysis , Glycoproteins/metabolism , Nervous System , Glucose , Phosphatidic Acids
12.
Pathol Oncol Res ; 28: 1610537, 2022.
Article in English | MEDLINE | ID: mdl-36277959

ABSTRACT

Objective: To reduce the risk of locoregional recurrence, the addition of neoadjuvant concurrent chemoradiotherapy (CCRT) is recommended before surgical management for rectal cancer patients. However, despite identical tumor histology, individual patient response to neoadjuvant CCRT varies greatly. Accordingly, a comprehensive molecular characterization that is used to predict CCRT efficacy is instantly needed. Methods: Pearson's chi-squared test was utilized to correlate dehydrogenase/reductase 9 (DHRS9) expression with clinicopathological features. Survival curves were created applying the Kaplan-Meier method, and the log-rank test was conducted to compare prognostic utility between high and low DHRS9 expression groups. Multivariate Cox proportional hazards regression analysis was applied to identify independent prognostic biomarkers based on variables with prognostic utility at the univariate level. Results: Utilizing a public transcriptome dataset, we identified that the DHRS9 gene is the most considerably upregulated gene related to epithelial cell differentiation (GO: 0030855) among rectal cancer patients with CCRT resistance. Employing immunohistochemical staining, we also demonstrated that high DHRS9 immunoexpression is considerably associated with an aggressive clinical course and CCRT resistance in our rectal cancer cohort. Among all variables with prognostic utility at the univariate level, only high DHRS9 immunoexpression was independently unfavorably prognostic of all three endpoints (all p ≤ 0.048) in the multivariate analysis. In addition, applying bioinformatic analysis, we also linked DHRS9 with unrevealed functions, such as keratan sulfate and mucin synthesis which may be implicated in CCRT resistance. Conclusion: Altogether, DHRS9 expression may serve as a helpful predictive and prognostic biomarker and assist decision-making for rectal cancer patients who underwent neoadjuvant CCRT.


Subject(s)
Keratan Sulfate , Rectal Neoplasms , Humans , Keratan Sulfate/therapeutic use , Immunohistochemistry , Disease-Free Survival , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Rectal Neoplasms/therapy , Chemoradiotherapy , Neoadjuvant Therapy , Prognosis , Mucins/therapeutic use , Oxidoreductases/therapeutic use , Retrospective Studies
13.
J Dermatol ; 49(10): 1027-1036, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35811379

ABSTRACT

Mammals express a wide variety of glycans that include N-glycans, O-glycans, proteoglycans, glycolipids, etc. Glycan expression can modulate the cellular functions, and hence is strongly involved in the onset and progression of numerous diseases. Here, we report the relevance of the ectopic expression of keratan sulfate (KS) glycan chains in human malignant melanomas. Using a human melanoma cell line, we found that the KS enhanced the invasiveness of the cells but caused no change in the growth rate of the cells. The phosphorylation of paxillin, a focal adhesion-associated adaptor protein, was strong at the region where KS was expressed in the melanoma tissues, indicating that KS stimulated the phosphorylation of paxillin. We also observed that KS enhanced the adhesion of melanoma cells and this was accompanied by a greatly increased level of phosphorylation of paxillin. These data suggest that the expression of KS contributes to the development of malignant phenotypes such as strong cell adhesion and the invasiveness of melanoma cells.


Subject(s)
Keratan Sulfate , Melanoma , Cell Line, Tumor , Glycolipids , Humans , Keratan Sulfate/genetics , Keratan Sulfate/metabolism , Melanoma/pathology , Paxillin/genetics , Paxillin/metabolism , Proteoglycans , Skin Neoplasms , Melanoma, Cutaneous Malignant
14.
Carbohydr Polym ; 292: 119690, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35725214

ABSTRACT

Animal origin chondroitin sulfate is employed as anti-inflammatory drug and food supplement against anti-osteoarthritis, but also as antioxidant, antitumor, anticoagulant, and immune-regulatory agent or as biomaterial in tissue engineering scaffolds and in drug-delivery systems. As its biological properties depend on the structural characteristics, multi-analytical approaches are necessary to correlate specific features of its heterogenic composition to the different bioactivities. This is of paramount importance to assess the efficacy of pharmaceuticals and food supplements, beyond safety quality control. This review would address the issue of chondroitin sulfate characterization according to the Pharmacopeia testing monograph point of view giving an update of the analytical novelties reported in the last ten years that might be employed for the product testing and releasing on the market. Not-instrumental (e.g. colorimetric assays) and instrumental techniques, most of them coupling diverse chromatographic separation methods with spectroscopic and spectrometry detection techniques, mono and bi-dimensional NMR approaches, are compared as tools to evaluate identity, titer, purity grade, monosaccharide and disaccharide composition, averaged molecular weight and viscosity, charge and sulfate content, impurities and related substances including the presence of other glycosaminoglycans.


Subject(s)
Chondroitin Sulfates , Osteoarthritis , Animals , Anticoagulants , Chondroitin Sulfates/chemistry , Dietary Supplements/analysis , Glycosaminoglycans , Keratan Sulfate
15.
J Clin Med ; 11(7)2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35407621

ABSTRACT

We assessed the effect of 24-month anti-tumor necrosis factor alpha (TNF-α) treatment on the remodeling of the cartilage extracellular matrix (ECM) in patients with juvenile idiopathic arthritis (JIA). METHODS: Quantitative evaluation of keratan sulfate (KS), hyaluronic acid (HA), hyaluronan and proteoglycan link protein 1 (HAPLN1), as potential biomarkers of joint dysfunction, and the levels of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) 4 and 5, total oxidative status (TOS) and transforming growth factor (TGF-ß1) was performed (using immunoenzymatic methods) in blood obtained from patients before and after 24 months of etanercept (ETA) treatment. RESULTS: When compared to the controls, KS, HA and HAPLN1 levels were significantly higher in patients with an aggressive course of JIA qualified for ETA treatment. An anti-cytokine therapy leading to clinical improvement promotes the normalization only of the HA level. Proteolytic and pro-oxidative factors, present in high concentrations in patients before the treatment, correlated with HAPLN1, but not with KS and HA levels. In these patients, negative correlations were found between the levels of TGF-ß1 and KS, HA and HAPLN1. CONCLUSION: The anti-TNF-α therapy used in patients with JIA has a beneficial effect on ECM cartilage metabolism, but it does not completely regenerate it. The changes in the plasma HA level during the anti-cytokine therapy suggest its potential diagnostic utility in monitoring of disease activity and may be used to assess the efficacy of ETA treatment.

16.
J Biol Chem ; 298(6): 101960, 2022 06.
Article in English | MEDLINE | ID: mdl-35452678

ABSTRACT

Alzheimer's disease (AD) is characterized by accumulation of misfolded proteins. Genetic studies implicate microglia, brain-resident phagocytic immune cells, in AD pathogenesis. As positive effectors, microglia clear toxic proteins, whereas as negative effectors, they release proinflammatory mediators. An imbalance of these functions contributes to AD progression. Polymorphisms of human CD33, an inhibitory microglial receptor, are linked to AD susceptibility; higher CD33 expression correlates with increased AD risk. CD33, also called Siglec-3, is a member of the sialic acid-binding immunoglobulin-type lectin (Siglec) family of immune regulatory receptors. Siglec-mediated inhibition is initiated by binding to complementary sialoglycan ligands in the tissue environment. Here, we identify a single sialoglycoprotein in human cerebral cortex that binds CD33 as well as Siglec-8, the most abundant Siglec on human microglia. The ligand, which we term receptor protein tyrosine phosphatase zeta (RPTPζ)S3L, is composed of sialylated keratan sulfate chains carried on a minor isoform/glycoform of RPTPζ (phosphacan) and is found in the extracellular milieu of the human brain parenchyma. Brains from human AD donors had twofold higher levels of RPTPζS3L than age-matched control donors, raising the possibility that RPTPζS3L overexpression limits misfolded protein clearance contributing to AD pathology. Mice express the same structure, a sialylated keratan sulfate RPTPζ isoform, that binds mouse Siglec-F and crossreacts with human CD33 and Siglec-8. Brains from mice engineered to lack RPTPζ, the sialyltransferase St3gal4, or the keratan sulfate sulfotransferase Chst1 lacked Siglec binding, establishing the ligand structure. The unique CD33 and Siglec-8 ligand, RPTPζS3L, may contribute to AD progression.


Subject(s)
Alzheimer Disease , Sialic Acid Binding Immunoglobulin-like Lectins , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Humans , Keratan Sulfate/metabolism , Ligands , Mice , Microglia/metabolism , Protein Isoforms/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism , Sialic Acid Binding Ig-like Lectin 3/genetics , Sialic Acid Binding Ig-like Lectin 3/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/genetics , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism
17.
Front Neuroanat ; 16: 813841, 2022.
Article in English | MEDLINE | ID: mdl-35221933

ABSTRACT

Keratan sulfate (KS) glycan is covalently attached to a core protein of proteoglycans. KS is abundant in neuropils and presents densely in close proximity to the perineuronal region of the perineuronal net-positive neurons in the adult brain under physiological conditions. We previously showed that the synthesis of KS positive for the R-10G antibody in the adult brain is mediated by GlcNAc-6-sulfotransferase 3 (GlcNAc6ST3; encoded by Chst5). Deficiency in both GlcNAc6ST3 and GlcNAc6ST1, encoded by Chst2, completely abolished KS. Protein-tyrosine phosphatase receptor type z1 (Ptprz1)/phosphacan was identified as a KS scaffold. KS requires the extension of GlcNAc by ß1,3 N-acetylglucosaminyltransferase (Beta3Gn-T). Members of the Beta3Gn-T family involved in the synthesis of adult brain KS have not been identified. In this study, we show by a method of gene targeting that Beta3Gn-T7, encoded by B3gnt7, is a major Beta3Gn-T for the synthesis of KS in neuropils and the perineuronal region in the adult brain. Intriguingly, the B3gnt7 gene is selectively expressed in oligodendrocyte precursor cells (OPCs) and oligodendrocytes similar to that of GlcNAc6ST3. These results indicate that Beta3Gn-T7 in oligodendrocyte lineage cells may play a role in the formation of neuropils and perineuronal nets in the adult brain through the synthesis of R-10G-positive KS-modified proteoglycan.

18.
ACS Appl Bio Mater ; 5(2): 853-861, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35076201

ABSTRACT

Carbohydrate-specific antibodies can serve as valuable tools to monitor alterations in the extracellular matrix resulting from pathologies. Here, the keratan sulfate-specific monoclonal antibody MZ15 was characterized in more detail by immunofluorescence microscopy as well as laser ablation ICP-MS using tissue cryosections and paraffin-embedded samples. Pretreatment with keratanase II prevented staining of samples and therefore demonstrated efficient enzymatic keratan sulfate degradation. Random fluorescent labeling and site-directed introduction of a metal cage into MZ15 were successful and allowed for a highly sensitive detection of the keratan sulfate landscape in the corneal stroma from rats and human tissue.


Subject(s)
Glycosaminoglycans , Keratan Sulfate , Animals , Antibodies, Monoclonal , Cornea/diagnostic imaging , Microscopy, Fluorescence , Rats
19.
Carbohydr Res ; 512: 108502, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35092907

ABSTRACT

In this paper, the chemical synthesis of polylactosamine fragments up to docosasaccharide (22-mer) via the blockwise synthetic approach is reported. We used suitably protected tetrasaccharide and octasaccharide sequences as key building blocks. The use of such large building blocks as glycosyl donors and acceptors enabled the rapid construction of polysaccharide frameworks. Furthermore, the coupling reaction between these large building blocks facilitated the purification of glycosylated products, for which size exclusion column chromatography is highly effective. Then, we applied the building blocks to the synthesis of keratan sulfate glycan, which is partially sulfated poly-N-acetyllactosamine. Consequently, we achieved the synthesis of the octasaccharide of a keratan sulfate glycan comprised of a repeating Galß(1 â†’ 4)GlcNAc6Sß disaccharide unit.


Subject(s)
Amino Sugars , Keratan Sulfate , Keratan Sulfate/chemistry , Oligosaccharides/chemistry , Polysaccharides
20.
Carbohydr Res ; 511: 108480, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34837849

ABSTRACT

A wide variety of diseases throughout the mammalian organism is characterized by abnormal deposition of various components of the extracellular matrix (ECM), including the heterogeneous family of glycosaminoglycans (GAGs), which contribute considerably to the ECM architecture as part of the so-called proteoglycans. The GAG's unique sulfation pattern, derived from highly dynamic and specific modification processes, has a massive impact on critical mediators such as cytokines and growth factors. Due to the strong connection between the specific sulfation pattern and GAG function, slight alterations of this pattern are often associated with enormous changes at the cell as well as at the organ level. This review aims to investigate the connection between modifications of GAG sulfation patterns and the wide range of pathological conditions, mainly focusing on a range of chronic diseases of the central nervous system (CNS) as well as the respiratory tract.


Subject(s)
Extracellular Matrix , Glycosaminoglycans , Animals , Brain/metabolism , Chondroitin Sulfates/metabolism , Extracellular Matrix/metabolism , Glycosaminoglycans/metabolism , Humans , Lung , Mammals/metabolism , Proteoglycans
SELECTION OF CITATIONS
SEARCH DETAIL