Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Clin Auton Res ; 34(4): 427-436, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39090323

ABSTRACT

PURPOSE: Hypertension is one of the major causes of cardiovascular morbidity and mortality in the USA and disproportionately affects Black women. Endothelial-derived nitric oxide (eNO) substantially regulates blood pressure in humans, and impaired NO-mediated vasodilation has been reported in the Black population. Previous studies using an NO synthase inhibitor, NG-monomethyl-L-arginine (L-NMMA) did not fully determine the NO contribution to blood pressure because of baroreflex buffering. Therefore, in the present study we used trimethaphan, a ganglionic blocker, to inhibit baroreflex buffering and study NO modulation of blood pressure in Black women during L-NMMA infusion. METHODS: L-NMMA at doses of 250 µg/kg per minute was infused in combination with trimethaphan at doses of 4 mg/min to eliminate baroreflex mechanisms. Heart rate (HR) was obtained with continuous electrocardiogram monitoring, and continuous blood pressure was measured with the volume clamp method. The increase in systolic blood pressure (SBP) during both infusions was used to estimate the contribution of NO to blood pressure. RESULTS: Ten Black (age range 30-50 years, body mass index [BMI] 30-45 kg/m2), and nine White women (age range 30-50 years, body mass index 30-45 kg/m2) were enrolled in this study. During autonomic blockade, there was no difference in the decrease in SBP between Black and White women (- 20 ± 16.45 vs. - 24 ± 15.49 mm Hg, respectively; P = 0.659). When autonomic blockade was combined with L-NMMA, Black women had a significant increase in SBP compared to White women (54 ± 13.62 vs. 39 ± 09.64 mm Hg, respectively; P = 0.022, respectively). CONCLUSION: Autonomic blood pressure regulation was similar between Black and White women. However, NO contribution to blood pressure was significantly greater in Black women compared to White women. REGISTRATION: ClinicalTrials.gov: NCT01122407.


Subject(s)
Baroreflex , Blood Pressure , Nitric Oxide , Obesity , omega-N-Methylarginine , Humans , Female , Blood Pressure/drug effects , Blood Pressure/physiology , Adult , Obesity/physiopathology , Baroreflex/drug effects , Baroreflex/physiology , omega-N-Methylarginine/pharmacology , Black or African American , Trimethaphan/pharmacology , Middle Aged , Heart Rate/drug effects , Heart Rate/physiology , Ganglionic Blockers/pharmacology , Autonomic Nervous System/drug effects , Autonomic Nervous System/physiology
2.
Tumour Virus Res ; 15: 200259, 2023 06.
Article in English | MEDLINE | ID: mdl-36863485

ABSTRACT

Kaposi's Sarcoma (KS) is a heterogenous, multifocal vascular malignancy caused by the human herpesvirus 8 (HHV8), also known as Kaposi's Sarcoma-Associated Herpesvirus (KSHV). Here, we show that KS lesions express iNOS/NOS2 broadly throughout KS lesions, with enrichment in LANA positive spindle cells. The iNOS byproduct 3-nitrotyrosine is also enriched in LANA positive tumor cells and colocalizes with a fraction of LANA-nuclear bodies. We show that iNOS is highly expressed in the L1T3/mSLK tumor model of KS. iNOS expression correlated with KSHV lytic cycle gene expression, which was elevated in late-stage tumors (>4 weeks) but to a lesser degree in early stage (1 week) xenografts. Further, we show that L1T3/mSLK tumor growth is sensitive to an inhibitor of nitric oxide, L-NMMA. L-NMMA treatment reduced KSHV gene expression and perturbed cellular gene pathways relating to oxidative phosphorylation and mitochondrial dysfunction. These finding suggest that iNOS is expressed in KSHV infected endothelial-transformed tumor cells in KS, that iNOS expression depends on tumor microenvironment stress conditions, and that iNOS enzymatic activity contributes to KS tumor growth.


Subject(s)
Herpesvirus 8, Human , Sarcoma, Kaposi , Animals , Humans , Mice , Antigens, Viral/genetics , Herpesvirus 8, Human/genetics , omega-N-Methylarginine , Sarcoma, Kaposi/genetics , Tumor Microenvironment
3.
Biochem Med (Zagreb) ; 33(1): 010701, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36627978

ABSTRACT

Introduction: This study determines and compares the concentrations of arginine and methylated arginine products ((asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), n-monomethyl-1-arginine (L-NMMA) and homoarginine (HA)) for assessment of their association with disease severity in serum samples of COVID-19 patients. Materials and methods: Serum arginine and methylated arginine products of 57 mild-moderate and 29 severe (N = 86) COVID-19 patients and 21 controls were determined by tandem mass spectrometry. Moreover, the concentrations of some of the routine clinical laboratory parameters -neutrophil lymphocyte ratio (NLR), C-reactive protein, ferritin, D-dimer, and fibrinogen measured during COVID-19 follow-up were also taken into consideration and compared with the concentrations of arginine and methylated arginine products. Results: Serum ADMA, SDMA and L-NMMA were found to be significantly higher in severe COVID-19 patients, than in both mild-moderate patients and the control group (P < 0.001 for each). In addition, multiple logistic regression analysis indicated L-NMMA (cut-off =120 nmol/L OR = 34, 95% confidence interval (CI) = 3.5-302.0, P= 0.002), CRP (cut-off = 32 mg/L, OR = 37, 95% CI = 4.8-287.0, P < 0.001), and NLR (cut-off = 7, OR = 22, 95% CI = 1.4-335.0, P = 0.020) as independent risk factors for identification of severe patients. Conclusions: The concentration of methylated arginine metabolites are significantly altered in COVID-19 disease. The results of this study indicate a significant correlation between the severity of COVID-19 disease and concentrations of CRP, NLR and L-NMMA.


Subject(s)
Arginine , COVID-19 , Humans , Arginine/blood , COVID-19/blood , COVID-19/diagnosis , Disease Progression , omega-N-Methylarginine
4.
J Physiol ; 600(6): 1385-1403, 2022 03.
Article in English | MEDLINE | ID: mdl-34904229

ABSTRACT

Cerebrovascular CO2 reactivity (CVR) is often considered a bioassay of cerebrovascular endothelial function. We recently introduced a test of cerebral shear-mediated dilatation (cSMD) that may better reflect endothelial function. We aimed to determine the nitric oxide (NO)-dependency of CVR and cSMD. Eleven volunteers underwent a steady-state CVR test and transient CO2 test of cSMD during intravenous infusion of the NO synthase inhibitor NG -monomethyl-l-arginine (l-NMMA) or volume-matched saline (placebo; single-blinded and counter-balanced). We measured cerebral blood flow (CBF; duplex ultrasound), intra-arterial blood pressure and PaCO2${P_{{\rm{aC}}{{\rm{O}}_{\rm{2}}}}}$ . Paired arterial and jugular venous blood sampling allowed for the determination of trans-cerebral NO2- exchange (ozone-based chemiluminescence). l-NMMA reduced arterial NO2- by ∼25% versus saline (74.3 ± 39.9 vs. 98.1 ± 34.2 nM; P = 0.03). The steady-state CVR (20.1 ± 11.6 nM/min at baseline vs. 3.2 ± 16.7 nM/min at +9 mmHg PaCO2${P_{{\rm{aC}}{{\rm{O}}_{\rm{2}}}}}$ ; P = 0.017) and transient cSMD tests (3.4 ± 5.9 nM/min at baseline vs. -1.8 ± 8.2 nM/min at 120 s post-CO2 ; P = 0.044) shifted trans-cerebral NO2- exchange towards a greater net release (a negative value indicates release). Although this trans-cerebral NO2- release was abolished by l-NMMA, CVR did not differ between the saline and l-NMMA trials (57.2 ± 14.6 vs. 54.1 ± 12.1 ml/min/mmHg; P = 0.49), nor did l-NMMA impact peak internal carotid artery dilatation during the steady-state CVR test (6.2 ± 4.5 vs. 6.2 ± 5.0% dilatation; P = 0.960). However, l-NMMA reduced cSMD by ∼37% compared to saline (2.91 ± 1.38 vs. 4.65 ± 2.50%; P = 0.009). Our findings indicate that NO is not an obligatory regulator of steady-state CVR. Further, our novel transient CO2 test of cSMD is largely NO-dependent and provides an in vivo bioassay of NO-mediated cerebrovascular function in humans. KEY POINTS: Emerging evidence indicates that a transient CO2 stimulus elicits shear-mediated dilatation of the internal carotid artery, termed cerebral shear-mediated dilatation. Whether or not cerebrovascular reactivity to a steady-state CO2 stimulus is NO-dependent remains unclear in humans. During both a steady-state cerebrovascular reactivity test and a transient CO2 test of cerebral shear-mediated dilatation, trans-cerebral nitrite exchange shifted towards a net release indicating cerebrovascular NO production; this response was not evident following intravenous infusion of the non-selective NO synthase inhibitor NG -monomethyl-l-arginine. NO synthase blockade did not alter cerebrovascular reactivity in the steady-state CO2 test; however, cerebral shear-mediated dilatation following a transient CO2 stimulus was reduced by ∼37% following intravenous infusion of NG -monomethyl-l-arginine. NO is not obligatory for cerebrovascular reactivity to CO2 , but is a key contributor to cerebral shear-mediated dilatation.


Subject(s)
Carbon Dioxide , Nitric Oxide , Cerebrovascular Circulation/physiology , Dilatation , Enzyme Inhibitors/pharmacology , Humans , Nitric Oxide Synthase , Nitrogen Dioxide , omega-N-Methylarginine/pharmacology
5.
J Mass Spectrom Adv Clin Lab ; 19: 34-45, 2021 Jan.
Article in English | MEDLINE | ID: mdl-34820664

ABSTRACT

BACKGROUND: Nitric oxide (NO) plays an important role in endothelial homeostasis. Asymmetric dimethyl arginine (ADMA), L-N monomethyl arginine (L-NMMA) and symmetric dimethyl arginine (SDMA), which are derivatives of methylarginine, directly or indirectly reduce NO production. Therefore, these metabolites are an important risk factor for various diseases, including cardiovascular diseases. Numerous methods have been developed for the measurement of methylarginine derivatives, but various difficulties have been encountered. This study aimed to develop a reliable, fast and cost-effective method for the analysis and measurement of methylarginine derivatives (ADMA, SDMA, L-NMMA) and related metabolites (arginine, citrulline, homoarginine, ornithine), and to validate this method according to Clinical and Laboratory Standards Institute (CLSI) protocols. METHODS: For the analysis of ADMA, SDMA, L-NMMA, arginine, homoarginine, citrulline, ornithine, 200 Âµl of serum were precipitated with methanol, and subsequently derivatized with a butanol solution containing 5% acetyl chloride. Butyl derivatives were separated using a C18 reverse phase column with a 5 min run time. Detection of analytes was achieved by utilising the specific fragmentation patterns identified through tandem mass spectrometry. RESULTS: The method was linear for ADMA, SDMA, L-NMMA, ornithine, arginine, homoarginine and citrulline in the ranges of 0.023-6.0, 0.021-5.5, 0.019-5.0, 0.015-250, 0.015-250, 0.019-5 and 0.015-250 µM, respectively. The inter-assay CV% values for all analytes was less than 9.8%. CONCLUSIONS: Data obtained from method validation studies shows that the developed method is highly sensitive, precise and accurate. Short analysis time, cost-effectiveness, and multiplexed analysis of these metabolites, with the same pretreatment steps, are the main advantages of the method.

6.
Nitric Oxide ; 104-105: 51-60, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32979497

ABSTRACT

Nitric oxide synthase (NOS) inhibition with N(G)-monomethyl-l-arginine (L-NMMA) is often used to assess the role of NO in human cardiovascular function. However, the window of effect for L-NMMA on human vascular function is unknown, which is critical for designing and interpreting human-based studies. This study utilized the passive leg movement (PLM) assessment of vascular function, which is predominantly NO-mediated, in 7 young male subjects under control conditions, immediately following intra-arterial L-NMMA infusion (0.24 mg⋅dl-1⋅min-1), and at 45-60 and 90-105 min post L-NMMA infusion. The leg blood flow (LBF) and leg vascular conductance (LVC) responses to PLM, measured with Doppler ultrasound and expressed as the change from baseline to peak (ΔLBFpeak and ΔLVCpeak) and area under the curve (LBFAUC and LVCACU), were assessed. PLM-induced robust control ΔLBFpeak (1135 ± 324 ml⋅min-1) and ΔLVCpeak (10.7 ± 3.6 ml⋅min-1⋅mmHg-1) responses that were significantly attenuated (704 ± 196 ml⋅min-1 and 6.7 ± 2 ml⋅min-1⋅mmHg-1) immediately following L-NMMA infusion. Likewise, control condition PLM ΔLBFAUC (455 ± 202 ml) and ΔLVCAUC (4.0 ± 1.4 ml⋅mmHg-1) were significantly attenuated (141 ± 130 ml and 1.3 ± 1.2 ml⋅mmHg-1) immediately following L-NMMA infusion. However, by 45-60 min post L-NMMA infusion all PLM variables were not significantly different from control, and this was still the case at 90-105 min post L-NMMA infusion. These findings reveal that the potent reduction in NO bioavailability afforded by NOS inhibition with L-NMMA has a window of effect of less than 45-60 min in the human vasculature. These data are particularly important for the commonly employed approach of pharmacologically inhibiting NOS with L-NMMA in the human vasculature.


Subject(s)
Enzyme Inhibitors/pharmacokinetics , Nitric Oxide Synthase/antagonists & inhibitors , omega-N-Methylarginine/pharmacokinetics , Adult , Femoral Artery/physiology , Hemodynamics/drug effects , Humans , Leg/blood supply , Male , Nitric Oxide/metabolism , Regional Blood Flow/drug effects , Time Factors , Young Adult
7.
Ann Biomed Eng ; 48(4): 1256-1270, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31916126

ABSTRACT

tDCS has been used to treat various brain disorders and its mechanism of action (MoA) was found to be neuronal polarization. Since the blood-brain barrier (BBB) tightly regulates the neuronal microenvironment, we hypothesized that another MoA of tDCS is direct vascular activation by modulating the BBB structures to increase its permeability (P). To test this hypothesis, we used high resolution multiphoton microscopy to determine P of the cerebral microvessels in rat brain. We found that 20 min 0.1-1 mA tDCS transiently increases P to a small solute, sodium fluorescein (MW 376) and to a large solute, Dextran-70k, with a much higher increase in P to the large solute. By pretreating the vessel with a nitric oxide synthase inhibitor, we revealed that the tDCS-induced increase in P is NO dependent. A transport model for the BBB was further employed to predict the structural changes by the tDCS. Comparing model predictions with the measured data suggests that tDCS increases P by temporarily disrupting the structural components forming the paracellular pathway of the BBB. That the transient and reversible increase in the BBB permeability also suggests new applications of tDCS such as a non-invasive approach for brain drug delivery through the BBB.


Subject(s)
Blood-Brain Barrier/metabolism , Transcranial Direct Current Stimulation , Animals , Blood-Brain Barrier/drug effects , Dextrans/pharmacology , Drug Delivery Systems , Female , Fluorescein/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , Permeability , Rats, Sprague-Dawley , omega-N-Methylarginine/pharmacology
8.
J Biol Chem ; 295(51): 17441-17459, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33453990

ABSTRACT

Cancer cachexia is characterized by reductions in peripheral lean muscle mass. Prior studies have primarily focused on increased protein breakdown as the driver of cancer-associated muscle wasting. Therapeutic interventions targeting catabolic pathways have, however, largely failed to preserve muscle mass in cachexia, suggesting that other mechanisms might be involved. In pursuit of novel pathways, we used untargeted metabolomics to search for metabolite signatures that may be linked with muscle atrophy. We injected 7-week-old C57/BL6 mice with LLC1 tumor cells or vehicle. After 21 days, tumor-bearing mice exhibited reduced body and muscle mass and impaired grip strength compared with controls, which was accompanied by lower synthesis rates of mixed muscle protein and the myofibrillar and sarcoplasmic muscle fractions. Reductions in protein synthesis were accompanied by mitochondrial enlargement and reduced coupling efficiency in tumor-bearing mice. To generate mechanistic insights into impaired protein synthesis, we performed untargeted metabolomic analyses of plasma and muscle and found increased concentrations of two methylarginines, asymmetric dimethylarginine (ADMA) and NG-monomethyl-l-arginine, in tumor-bearing mice compared with control mice. Compared with healthy controls, human cancer patients were also found to have higher levels of ADMA in the skeletal muscle. Treatment of C2C12 myotubes with ADMA impaired protein synthesis and reduced mitochondrial protein quality. These results suggest that increased levels of ADMA and mitochondrial changes may contribute to impaired muscle protein synthesis in cancer cachexia and could point to novel therapeutic targets by which to mitigate cancer cachexia.


Subject(s)
Cachexia/metabolism , Muscle Proteins/biosynthesis , Neoplasms/complications , omega-N-Methylarginine/metabolism , Animals , Arginine/analogs & derivatives , Cachexia/etiology , Female , Heterografts , Humans , Male , Mice , Mice, Inbred C57BL , Mitochondria, Muscle/metabolism
9.
Microcirculation ; 27(3): e12597, 2020 04.
Article in English | MEDLINE | ID: mdl-31628700

ABSTRACT

OBJECTIVE: The aim of this study was to investigate whether the effects on local blood flow and metabolic changes observed in the skin after an endogenous systemic increase in insulin are mediated by the endothelial nitric oxide pathway, by administering the nitric oxide synthase inhibitor NG -monomethyl l-arginine using microdialysis. METHODS: Microdialysis catheters, perfused with NG -monomethyl l-arginine and with a control solution, were inserted intracutaneously in 12 human subjects, who received an oral glucose load to induce a systemic hyperinsulinemia. During microdialysis, the local blood flow was measured by urea clearance and by laser speckle contrast imaging, and glucose metabolites were measured. RESULTS: After oral glucose intake, microvascular blood flow and glucose metabolism were both significantly suppressed in the NG -monomethyl l-arginine catheter compared to the control catheter (urea clearance: P < .006, glucose dialysate concentration: P < .035). No significant effect of NG -monomethyl l-arginine on microvascular blood flow was observed with laser speckle contrast imaging (P = .81). CONCLUSION: Local delivery of NG -monomethyl l-arginine to the skin by microdialysis reduces microvascular blood flow and glucose delivery in the skin after oral glucose intake, presumably by decreasing local insulin-mediated vasodilation.


Subject(s)
Blood Glucose/metabolism , Microcirculation/drug effects , Regional Blood Flow/drug effects , omega-N-Methylarginine/administration & dosage , Adult , Blood Flow Velocity/drug effects , Female , Glucose Tolerance Test , Humans , Male , Microdialysis
10.
Microcirculation ; 26(7): e12580, 2019 10.
Article in English | MEDLINE | ID: mdl-31313410

ABSTRACT

OBJECTIVE: To determine the ability of renal contrast-enhanced ultrasonography (CEUS) to detect acute drug-induced changes in renal perfusion (using the glucagon-like peptide (GLP)-1 receptor agonist exenatide and nitric oxide [NO]-synthase inhibitor L-NG -monomethyl arginine [l-NMMA]), and assess its correlation with gold standard-measured effective renal plasma flow in humans. METHODS: In this prespecified exploratory analysis of a placebo-controlled cross-over study, renal hemodynamics was assessed in 10 healthy overweight males (aged 20-27 years; BMI 26-31 kg/m2 ) over two separate testing days; during placebo (isotonic saline) and subsequent exenatide infusion (Day-A), and during l-NMMA, and subsequent exenatide plus l-NMMA infusion (Day-B). Renal cortical microvascular blood flow was estimated following microbubble infusion and CEUS destruction-refilling-sequences. Renal cortical microvascular blood flow was compared with simultaneously measured effective renal plasma flow in humans, derived from para-aminohippuric acid-clearance methodology. RESULTS: On Day-A, effective renal plasma flow increased by 68 [26-197] mL/min/1.73 m2 during exenatide vs placebo infusion (+17%; P = .015). In parallel, exenatide increased renal cortical microvascular blood flow, from 2.42 × 10-4 [6.54 × 10-5 -4.66 × 10-4 ] AU to 4.65 × 10-4 [2.96 × 10-4 -7.74 × 10-4 ] AU (+92%; P = .027). On Day-B, effective renal plasma flow and renal cortical microvascular blood flow were reduced by l-NMMA, with no significant effect of concomitant exenatide on renal hemodynamic-indices assessed by either technique. Effective renal plasma flow correlated with renal cortical microvascular blood flow on Day-A (r = .533; P = .027); no correlation was found on Day-B. CONCLUSIONS: Contrast-enhanced ultrasonography can detect acute drug-induced changes human renal hemodynamics. CEUS-assessed renal cortical microvascular blood flow moderately associates with effective renal plasma flow, particularly when perfusion is in normal-to-high range. Renal CEUS cannot replace effective renal plasma flow measurements, but may be a complementary tool to characterize regional kidney perfusion.


Subject(s)
Contrast Media/administration & dosage , Microcirculation/drug effects , Overweight , omega-N-Methylarginine/administration & dosage , Adult , Blood Flow Velocity/drug effects , Humans , Kidney , Male , Overweight/diagnostic imaging , Overweight/physiopathology , Pilot Projects , Ultrasonography
11.
Atherosclerosis ; 287: 70-80, 2019 08.
Article in English | MEDLINE | ID: mdl-31229835

ABSTRACT

BACKGROUND AND AIMS: Atherosclerosis is an inflammatory cardiovascular disorder characterized by accumulation of lipid-loaded macrophages in the intima. Prolonged accumulation leads to apoptosis of macrophages and eventually to progression of lesion development. Prevention of macrophage accumulation within the intima has been shown to reduce lesion formation. Since CD13 mediates trafficking of macrophages to sites of injury and repair, we tested the role of CD13 in atherosclerosis. METHODS: CD13+/+Ldlr-/- and CD13-/-Ldlr-/- (low density lipoprotein receptor) mice were fed basal or high fat diet (HFD) for 9, 12 and 15 weeks. Mice were euthanized and aortic roots along with innominate arteries were analyzed for atherosclerotic lesions. Cellular mechanisms were determined in vitro using CD13+/+ and CD13-/- bone marrow derived macrophages (BMDMs) incubated with highly oxidized low-density lipoprotein (oxLDL). RESULTS: At the 9 and 12 week time points, no differences were observed in the average lesion size, but at the 15 week time point, CD13-/-Ldlr-/- mice had larger lesions with exaggerated necrotic areas. CD13+/+ and CD13-/- macrophages endocytosed similar amounts of oxLDL, but CD13-/- macrophages generated higher amounts of oxidative stressors in comparison to CD13+/+ macrophages. This increased oxidative stress was due to increased nitric oxide production in oxLDL treated CD13-/- macrophages. Accumulated oxidative stress subsequently led to accelerated apoptosis and enhanced necrosis of oxLDL treated CD13-/- macrophages. CONCLUSIONS: Contrary to our prediction, CD13 deficiency led to larger atherosclerotic lesions with increased areas of necrosis. Mechanistically, CD13 deficiency led to increased nitric oxide production and consequently, greater oxidative stress.


Subject(s)
Atherosclerosis/metabolism , CD13 Antigens/deficiency , Macrophages/metabolism , Oxidative Stress , Animals , Apoptosis , Atherosclerosis/pathology , CD13 Antigens/metabolism , Cells, Cultured , Disease Models, Animal , Immunoblotting , In Situ Nick-End Labeling , Macrophages/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism
12.
Pflugers Arch ; 471(7): 961-969, 2019 07.
Article in English | MEDLINE | ID: mdl-30900045

ABSTRACT

Nitric oxide (NO) is involved in skeletal muscle glucose uptake during exercise and also in the increase in insulin sensitivity after exercise. Given that neuronal nitric oxide synthase (NOS) isoform mu (nNOSµ) is a major isoform of NOS in skeletal muscle, we examined if the increase in skeletal muscle insulin-stimulated glucose uptake 3.5 h following ex vivo contraction of extensor digitorum longus (EDL) is reduced in muscles from nNOSµ+/- and nNOSµ-/- mice compared with nNOSµ+/+ mice. 3.5 h post-contraction/basal, muscles were exposed to saline or insulin (120µU/ml) with or without the presence of the NOS inhibitor NG-monomethyl-L-arginine (L-NMMA) during the last 30 min and glucose uptake was determined by radioactive tracers. Skeletal muscle insulin-stimulated glucose uptake from nNOSµ+/+, nNOSµ+/-, and nNOSµ-/- mice increased approximately twofold 3.5 h following ex vivo contraction when compared to rest. L-NMMA significantly attenuated this increase in muscle insulin-stimulated glucose uptake by around 50%, irrespective of genotype. Low levels of NOS activity were detected in muscles from nNOSµ-/- mice. In conclusion, NO mediates increases in mouse skeletal muscle insulin response following ex vivo contraction independently of nNOSµ.


Subject(s)
Glucose/metabolism , Muscle Contraction/physiology , Neurons/metabolism , Nitric Oxide Synthase Type I/metabolism , Animals , Biological Transport/drug effects , Biological Transport/physiology , Enzyme Inhibitors/pharmacology , Insulin/metabolism , Insulin Resistance/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Contraction/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Neurons/drug effects , Nitric Oxide/metabolism , Physical Conditioning, Animal/methods , omega-N-Methylarginine/metabolism
13.
J Physiol ; 595(24): 7427-7439, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29071734

ABSTRACT

KEY POINTS: People with insulin resistance or type 2 diabetes can substantially increase their skeletal muscle glucose uptake during exercise and insulin sensitivity after exercise. Skeletal muscle nitric oxide (NO) is important for glucose uptake during exercise, although how prior exercise increases insulin sensitivity is unclear. In the present study, we examined whether NO is necessary for normal increases in skeletal muscle insulin sensitivity after contraction ex vivo in mouse muscle. The present study uncovers, for the first time, a novel role for NO in the insulin sensitizing effects of ex vivo contraction, which is independent of blood flow. ABSTRACT: The factors regulating the increase in skeletal muscle insulin sensitivity after exercise are unclear. We examined whether nitric oxide (NO) is required for the increase in insulin sensitivity after ex vivo contractions. Isolated C57BL/6J mouse EDL muscles were contracted for 10 min or remained at rest (basal) with or without the NO synthase (NOS) inhibition (NG -monomethyl-l-arginine; l-NMMA; 100 µm). Then, 3.5 h post contraction/basal, muscles were exposed to saline or insulin (120 µU ml-1 ) with or without l-NMMA during the last 30 min. l-NMMA had no effect on basal skeletal muscle glucose uptake. The increase in muscle glucose uptake with insulin (57%) was significantly (P < 0.05) greater after prior contraction (140% increase). NOS inhibition during the contractions had no effect on this insulin-sensitizing effect of contraction, whereas NOS inhibition during insulin prevented the increase in skeletal muscle insulin sensitivity post-contraction. Soluble guanylate cyclase inhibition, protein kinase G (PKG) inhibition or cyclic nucleotide phosphodiesterase inhibition each had no effect on the insulin-sensitizing effect of prior contraction. In conclusion, NO is required for increases in insulin sensitivity several hours after contraction of mouse skeletal muscle via a cGMP/PKG independent pathway.


Subject(s)
Insulin/metabolism , Muscle Contraction , Muscle Fibers, Skeletal/metabolism , Nitric Oxide/metabolism , 2',3'-Cyclic-Nucleotide Phosphodiesterases/antagonists & inhibitors , Animals , Cells, Cultured , Cyclic GMP-Dependent Protein Kinases/antagonists & inhibitors , Glucose/metabolism , Guanylate Cyclase/antagonists & inhibitors , Male , Mice , Mice, Inbred C57BL , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/physiology , Nitric Oxide Synthase/antagonists & inhibitors , Signal Transduction , omega-N-Methylarginine/pharmacology
14.
Tumour Biol ; 39(10): 1010428317715039, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29065794

ABSTRACT

Nitric oxide, a signaling molecule, inhibits mitochondrial respiration by binding with cytochrome c oxidase, resulting in elevated production of reactive superoxide species (reactive oxygen and nitrogen) in the mitochondria and increased susceptibility to cell death. Generation of mitochondrial superoxide species can be suppressed by natural compounds such as resveratrol, a dietary polyphenol found in the skin of red fruits. In various cancer cells, resveratrol shows anti-oxidant and cancer preventive properties. Since, the effect of resveratrol on reactive superoxide species-independent apoptosis in prostate cancer cells is not well illustrated; therefore, we investigated this phenomenon in TRAMP murine prostate cancer cells. To accomplish this, TRAMP cells were incubated with resveratrol, resveratrol + DETA-NONOate, DETA-NONOate (nitric oxide donor), resveratrol + L-NMMA, or L-NMMA (nitric oxide inhibitor) for 48 h, and reactive superoxide species in the mitochondria and culture supernatant were measured. In addition, the mitochondrial membrane potential, cell viability, expression of apoptotic markers (Bax and Bcl2), γ-H2A.x, p53, and caspase-3 was determined. We found that resveratrol suppressed reactive superoxide species such as reactive oxygen species in the mitochondria and nitric oxide in culture supernatant when compared to the DETA-NONOate treatment and disrupted the mitochondrial membrane potential. Resveratrol also reduced cell viability, altered the expression of apoptotic markers (Bax and Bcl2), and increased expression of γ-H2A.x (indicative marker of DNA fragmentation) and p53 (a critical DNA damage response protein). However, there was no appreciable modulation of the caspase-3. Therefore, our data suggest that resveratrol induces superoxide species-independent apoptosis and may act as a therapeutic agent against prostate cancer.


Subject(s)
Antioxidants/pharmacology , Apoptosis/drug effects , Prostatic Neoplasms/pathology , Stilbenes/pharmacology , Animals , Cell Line, Tumor , Disease Models, Animal , Male , Membrane Potential, Mitochondrial/drug effects , Mice , Reactive Oxygen Species/metabolism , Resveratrol
15.
Antivir Chem Chemother ; 25(1): 11-17, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28417640

ABSTRACT

L-NG-monomethyl-arginine (L-NMMA) is an experimental compound that suppresses nitric oxide production in animals. The compound was combined with oseltamivir to treat lethal influenza A/California/04/2009 (H1N1) pandemic virus infections in mice. Treatments were given twice a day for five days starting 4 h (oseltamivir, by oral gavage) or three days (L-NMMA, by intraperitoneal route; corresponding to the time previously reported for nitric oxide induction in the animals) after infection. Low doses of oseltamivir were used in order to demonstrate synergy or antagonism. Oseltamivir monotherapy protected 70% of mice from death at 1 mg/kg/day. L-NMMA (40 and 80 mg/kg/day) was ineffective alone in preventing mortality. Compared to oseltamivir treatment alone, L-NMMA combined with oseltamivir was synergistically effective (as evaluated by three-dimensional MacSynergy analysis), resulting in survival increases from 20 to 70% when 40 or 80 mg/kg/day of L-NMMA was combined with 0.3 mg/kg/day of oseltamivir, and from 70 to 100% survival increases when these doses were combined with 1 mg/kg/day of oseltamivir. These data demonstrate that a nitric oxide inhibitor such as L-NMMA has the potential to be beneficial when combined with oseltamivir in treating influenza virus infections.


Subject(s)
Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Orthomyxoviridae Infections/drug therapy , Oseltamivir/pharmacology , omega-N-Methylarginine/pharmacology , Animals , Disease Models, Animal , Drug Synergism , Female , Influenza A Virus, H1N1 Subtype/isolation & purification , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/virology
16.
Clin Exp Pharmacol Physiol ; 44(1): 13-20, 2017 01.
Article in English | MEDLINE | ID: mdl-27704594

ABSTRACT

Endothelial dysfunction (ED), in particular cerebral ED, may be an essential biomarker for ischaemic cerebrovascular disease. However, there is no consensus on methods to best estimate cerebral ED. In this systematic review, we evaluate the use of l-arginine and NG -monomethyl-l-arginine (l-NMMA) for assessment of cerebral ED. A systematic search of PubMed, EMBASE and the Cochrane Library was done. We included studies investigating cerebrovascular response to l-arginine or l-NMMA in human subjects with vascular risk factors or ischaemic cerebrovascular disease. Seven studies (315 subjects) were eligible according to inclusion and exclusion criteria. Studies investigated the effect of age (n=2), type 2 diabetes mellitus (DM) (n=1), cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) (n=1), leukoaraiosis (n=1), and prior ischaemic stroke or transient ischaemic attack (TIA) (n=2) on cerebral ED. Most studies applied transcranial Doppler to quantify cerebral ED. Endothelium-dependent vasodilatation (EDV) induced by l-arginine was impaired in elderly and subjects with leukoaraiosis, but enhanced in CADASIL patients. Studies including subjects with prior ischaemic stroke or TIA reported both enhanced and impaired EDV to l-arginine. Responses to l-NMMA deviated between subjects with type 2 DM and the elderly. We found only few studies investigating cerebral endothelial responses to l-arginine and l-NMMA in subjects with vascular risk factors or ischaemic cerebrovascular disease. Inconsistencies in results were most likely due to variations in methods and included subject populations. In order to use cerebral ED as a prognostic marker, further studies are required to evaluate the association to cerebrovascular disease.


Subject(s)
Arginine/pharmacology , Cerebrovascular Disorders/diagnostic imaging , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiology , omega-N-Methylarginine/pharmacology , CADASIL/diagnostic imaging , CADASIL/physiopathology , Cerebrovascular Disorders/physiopathology , Clinical Trials as Topic/methods , Humans , Vasodilation/drug effects , Vasodilation/physiology
17.
Microcirculation ; 23(7): 549-557, 2016 10.
Article in English | MEDLINE | ID: mdl-27562066

ABSTRACT

OBJECTIVE: Our goals were to determine the influence of sex on reactivity of cerebral arterioles and whether MExT could influence sex-related differences in reactivity of cerebral arterioles. MATERIALS AND METHODS: Responses of cerebral arterioles were measured in Sed and MExT adult male and female Sprague-Dawley rats to eNOS-dependent (ADP), nNOS-dependent (NMDA), and NOS-independent (nitroglycerin) agonists before and following L-NMMA. In addition, protein expression for eNOS and nNOS was determined. RESULTS: NOS-dependent vasodilation was enhanced in Sed and MExT female rats compared to their male counterparts. L-NMMA produced a greater decrease in baseline diameter of arterioles in females compared to males, and produced less inhibition of NOS-dependent vasodilation in females. Expression of eNOS protein was significantly increased in Sed female when compared to Sed male rats; nNOS protein was similar in Sed males and females, but increased in MExT females. CONCLUSIONS: The findings from this study indicate that while NOS-dependent vascular reactivity is increased in females, MExT does not alter vasodilation in males or females. These studies provide insights into the influence of sex and MExT on the cerebral microcirculation and may have implications regarding mechanisms that protect the brain in females compared to males.


Subject(s)
Arterioles/physiology , Cerebrovascular Circulation/physiology , Nitric Oxide Synthase Type III/physiology , Nitric Oxide Synthase Type I/physiology , Physical Conditioning, Animal/physiology , Animals , Arterioles/enzymology , Female , Male , Microcirculation , Nitric Oxide Synthase Type I/analysis , Nitric Oxide Synthase Type III/analysis , Rats , Rats, Sprague-Dawley , Sex Factors , Vasodilation/drug effects , Vasodilation/physiology , omega-N-Methylarginine/pharmacology
18.
Article in English | MEDLINE | ID: mdl-27444639

ABSTRACT

BACKGROUND: Syncope is a sudden transient loss of consciousness and postural tone with spontaneous recovery; the most common form is vasovagal syncope (VVS). During VVS, gravitational pooling excessively reduces central blood volume and cardiac output. In VVS, as in hemorrhage, impaired adrenergic vasoconstriction and venoconstriction result in hypotension. We hypothesized that impaired adrenergic responsiveness because of excess nitric oxide can be reversed by reducing nitric oxide. METHODS AND RESULTS: We recorded cardiopulmonary dynamics in supine syncope patients and healthy volunteers (aged 15-27 years) challenged with a dose-response using the α1-agonist phenylephrine (PE), with and without the nitric oxide synthase inhibitor N(G)-monomethyl-L-arginine, monoacetate salt (L-NMMA). Systolic and diastolic pressures among control and VVS were the same, although they increased after L-NMMA and saline+PE (volume and pressor control for L-NMMA). Heart rate was significantly reduced by L-NMMA (P<0.05) for control and VVS compared with baseline, but there was no significant difference in heart rate between L-NMMA and saline+PE. Cardiac output and splanchnic blood flow were reduced by L-NMMA for control and VVS (P<0.05) compared with baseline, while total peripheral resistance increased (P<0.05). PE dose-response for splanchnic flow and resistance were blunted for VVS compared with control after saline+PE, but enhanced after L-NMMA (P<0.001). Postsynaptic α1-adrenergic vasoconstrictive impairment was greatest in the splanchnic vasculature, and splanchnic blood flow was unaffected by PE. Forearm and calf α1-adrenergic vasoconstriction were unimpaired in VVS and unaffected by L-NMMA. CONCLUSIONS: Impaired postsynaptic α1-adrenergic vasoconstriction in young adults with VVS can be corrected by nitric oxide synthase inhibition, demonstrated with our use of L-NMMA.


Subject(s)
Enzyme Inhibitors/therapeutic use , Nitric Oxide Synthase/antagonists & inhibitors , Phenylephrine/therapeutic use , Syncope, Vasovagal/drug therapy , Syncope, Vasovagal/enzymology , Vasoconstriction/drug effects , omega-N-Methylarginine/therapeutic use , Adolescent , Adult , Cardiac Output/drug effects , Enzyme Inhibitors/administration & dosage , Female , Heart Rate/drug effects , Humans , Male , Phenylephrine/administration & dosage , Splanchnic Circulation/drug effects , Treatment Outcome , Vascular Resistance/drug effects , omega-N-Methylarginine/administration & dosage
19.
Graefes Arch Clin Exp Ophthalmol ; 254(12): 2339-2346, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27270566

ABSTRACT

PURPOSE: Diabetic retinopathy is accompanied with changes in the diameter regulation and oxygenation of retinal vessels. Previous studies have shown that in normal persons and in diabetic patients without retinopathy hypoxia-induced vasodilatation is mediated by cyclo-oxygenase (COX) products and nitric oxide (NO). The purpose of the present study was to study whether these effects can be reproduced in patients with diabetic maculopathy. METHODS: Eighteen patients with diabetic maculopathy aged 29-57 years were examined using the Dynamic Vessel Analyzer. The resting diameter and the diameter changes of retinal arterioles during isometric exercise and flicker stimulation were studied before and during breathing a hypoxic gas mixture. The examinations were also performed before and during intravenous infusion of the NOS inhibitor L-NMMA, and were repeated on a second day after topical administration of the COX-inhibitor diclofenac. RESULTS: The diameter of retinal arterioles showed no significant change during hypoxia or L-NMMA infusion, or after topical application of diclofenac (p > 0.25 for all comparisons). The resting diameter of the venules was significantly increased during hypoxia (p = 0.003) and decreased during L-NMMA infusion (p < 0.0001). The diameter of retinal venules during isometric exercise increased significantly during hypoxia (p = 0.01). Flicker stimulation induced significant dilatation of the venules, which was significantly reduced during hypoxia and increased during L-NMMA infusion (p < 0.0001 for all comparisons). CONCLUSION: Hypoxia-induced dilatation of retinal arterioles is severely reduced in patients with diabetic maculopathy. Future intervention studies aimed at normalizing the diameter regulation of retinal arterioles in diabetic patients should preferentially be conducted in the early stages of the disease where the potential for changing the vessel diameter is preserved. ClinicalTrials.gov identifier: NCT01689090.


Subject(s)
Diabetic Retinopathy/physiopathology , Diclofenac/administration & dosage , Hypoxia/physiopathology , Nitric Oxide/antagonists & inhibitors , Retinal Artery/physiopathology , Vasodilation/physiology , omega-N-Methylarginine/administration & dosage , Adult , Aged , Arterioles/diagnostic imaging , Arterioles/physiopathology , Cyclooxygenase Inhibitors/administration & dosage , Diabetic Retinopathy/diagnosis , Diabetic Retinopathy/drug therapy , Female , Follow-Up Studies , Humans , Hypoxia/diagnosis , Infusions, Intravenous , Male , Middle Aged , Nitric Oxide/biosynthesis , Ophthalmic Solutions , Regional Blood Flow/physiology , Retinal Artery/diagnostic imaging , Retrospective Studies , Tomography, Optical Coherence , Vasodilation/drug effects , Young Adult
20.
Psychiatry Res ; 238: 203-210, 2016 Apr 30.
Article in English | MEDLINE | ID: mdl-27086234

ABSTRACT

Plasma concentration of three methylated arginines, endogenous nitric oxide synthase inhibitors, is not studied in schizophrenic patients. The purpose of this study was to determine plasma concentrations of N(G)-monomethyl-L-arginine (l-NMMA), N(G),N(G)-dimethyl-L-arginine (ADMA), N(G),N(G')-dimethyl-L-arginine (SDMA), and l-arginine in 56 male and 45 female schizophrenic patients undergoing antipsychotic drug treatment versus those of 39 male and 24 female healthy controls. Plasma concentrations of methylated arginines and l-arginine were measured using newly developed high performance liquid chromatography with fluorescence detection which we previously reported. Methylated arginine levels were slightly but significantly higher in schizophrenic patients. L-Arginine levels and the l-arginine/(ADMA+l-NMMA) ratio were higher in schizophrenic patients than in healthy controls. It is considered that pharmacological treatment of schizophrenic patients may lower methylated arginine levels that are increased by the disease, and increase L-arginine levels, eliciting an improvement in nitric oxide (NO) bioavailability.


Subject(s)
Antipsychotic Agents/therapeutic use , Arginine/blood , Nitric Oxide Synthase/antagonists & inhibitors , Schizophrenia/blood , Schizophrenia/drug therapy , Adult , Aged , Aged, 80 and over , Arginine/analogs & derivatives , Female , Humans , Male , Middle Aged , Treatment Outcome , Young Adult , omega-N-Methylarginine/blood
SELECTION OF CITATIONS
SEARCH DETAIL