Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Fish Shellfish Immunol ; 134: 108553, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36693487

ABSTRACT

l-rhamnose-binding lectin (RBL), which is a class of animal lectins independent of Ca2+, can specifically bind l-rhamnose or d-galactose. Although several lectins in zebrafish have been reported, their functional mechanisms have not been fully uncovered. In this study, we discovered a novel l-rhamnose binding lectin (DrRBL) and studied its innate immune function. The DrRBL protein contains only one carbohydrate-recognition domain (CRD), which includes two strictly conserved motifs, "YGR" and "DPC". DrRBL was detected in all tested tissues and was present at high levels in the spleen, hepatopancreas and skin. After Aeromonas hydrophila challenge, the DrRBL mRNA level was significantly upregulated. Additionally, DrRBL was secreted into the extracellular matrix. Recombinant DrRBL (rDrRBL) could significantly inhibit the growth of gram-positive/negative bacteria, bind to several bacteria and cause obvious agglutination. The rDrRBL protein could combine with polysaccharides, such as PGN and LPS, rather than LTA. A more detailed study showed that rDrRBL could combine with monosaccharides, such as mannose, rhamnose and glucose, which are important components of PGN and LPS. However, rDrRBL could not bind to ribitol, which is an important component of LTA. The DrRBL deletion mutants, DrRBLΔ144-150 and DrRBLΔ198-200, were also constructed. DrRBLΔ144-150 ("ANYGRTD" deficient) showed weak bacterial inhibiting ability. However, DrRBLΔ198-200 ("DPC" deficient) showed weak agglutination ability. These results suggest that the "DPC" domain is important for agglutination. The conserved domain "ANYGRTD" is essential for inhibiting bacterial growth.


Subject(s)
Bacterial Infections , Lectins , Animals , Lectins/genetics , Zebrafish , Rhamnose , Lipopolysaccharides , Amino Acid Sequence , Sequence Alignment , Gram-Negative Bacteria , Bacteria/genetics , Immunity, Innate/genetics , Lectins, C-Type/genetics , Phylogeny
2.
Mar Drugs ; 22(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38248652

ABSTRACT

In this study, a new l-rhamnose-binding lectin (GYL-R) from the hemolymph of bivalve Glycymeris yessoensis was purified using affinity and ion-exchange chromatography and functionally characterized. Lectin antimicrobial activity was examined in different ways. The lectin was inhibited by saccharides possessing the same configuration of hydroxyl groups at C-2 and C-4, such as l-rhamnose, d-galactose, lactose, l-arabinose and raffinose. Using the glycan microarray approach, natural carbohydrate ligands were established for GYL-R as l-Rha and glycans containing the α-Gal residue in the terminal position. The GYL-R molecular mass determined by MALDI-TOF mass spectrometry was 30,415 Da. The hemagglutination activity of the lectin was not affected by metal ions. The lectin was stable up to 75 °C and between pH 4.0 and 12.0. The amino acid sequence of the five GYL-R segments was obtained with nano-ESI MS/MS and contained both YGR and DPC-peptide motifs which are conserved in most of the l-rhamnose-binding lectin carbohydrate recognition domains. Circular dichroism confirmed that GYL is a α/ß-protein with a predominance of the random coil. Furthermore, GYL-R was able to bind and suppress the growth of the Gram-negative bacteria E. coli by recognizing lipopolysaccharides. Together, these results suggest that GYL-R is a new member of the RBL family which participates in the self-defense mechanism against bacteria and pathogens with a distinct carbohydrate-binding specificity.


Subject(s)
Bivalvia , Lectins , Animals , Lectins/pharmacology , Rhamnose , Escherichia coli , Tandem Mass Spectrometry , Anti-Bacterial Agents/pharmacology
3.
Dev Comp Immunol ; 126: 104256, 2022 01.
Article in English | MEDLINE | ID: mdl-34517013

ABSTRACT

Rhamnose-binding lectins (RBLs), a Ca2+-independent lectin family, are widely present in vertebrates and invertebrates, which involve in the innate immune response. However, the functional characterization and related regulation mechanisms of RBLs remain unclear in teleost fish. In this study, an l-rhamnose-binding lectin-like (OnRBL-L) was identified and functionally characterized from Nile tilapia (Oreochromis niloticus). The open reading frame of OnRBL-L is 678 bp encoding 225 aa. The sequence of OnRBL-L has relatively conservative characteristic peptide motifs, including YGR, DPC, and KYL-motif. Expression analysis showed that OnRBL-L was abundantly distributed in intestine tissue, and widely existed in all detected tissues. Meanwhile, the expression of OnRBL-L increased significantly in vivo (liver, spleen, head kidney, intestine, gills and peripheral blood) and in vitro (monocytes/macrophages) following challenges with two important tilapia pathogenic bacteria Streptococcus agalactiae and Aeromonas hydrophila. In addition, the recombinant OnRBL-L was found to bind and agglutinate S. agalactiae and A. hydrophila. Furthermore, OnRBL-L could participate in non-specific cellular immune defense, including reducing the expression of pro-inflammatory factors (IL-6、IL-8 and TNF-α), and enhancement of the phagocytosis and respiratory burst of MO/MФ. Overall, our results provide new insights into the understanding of RBL as an important pattern recognition molecule and regulator in non-specific cell immunity in an early vertebrate.


Subject(s)
Cichlids , Fish Diseases , Agglutination , Animals , Fish Proteins/metabolism , Immunity, Innate , Inflammation , Lectins/genetics , Lectins/metabolism , Macrophages , Monocytes , Phagocytosis , Respiratory Burst , Rhamnose , Streptococcus agalactiae
SELECTION OF CITATIONS
SEARCH DETAIL