Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.025
Filter
1.
Clin Chim Acta ; 564: 119939, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39197698

ABSTRACT

BACKGROUND AND AIMS: Current laboratory methods for opioid detection involve an initial screening with immunoassays which offers efficient but non-specific results and a subsequent liquid chromatography-tandem mass spectrometry (LC-MS/MS) confirmation which offers accurate results but requires extensive sample preparation and turnaround time. Direct Analysis in Real Time (DART) tandem mass spectrometry is evaluated as an alternative approach for accurate opioid detection with efficient sample preparation and turnaround time. MATERIALS AND METHODS: DART-MS/MS was optimized by testing the method with varying temperatures, operation modes, extraction methods, hydrolysis times, and vortex times. The method was evaluated for 12 opioids by testing the analytical measurement range, percent carryover, precision studies, stability, and method-to-method comparison with LC-MS/MS. RESULTS: DART-MS/MS shows high sensitivity and specificity for the detection of 6-acetylmorphine, codeine, hydromorphone, oxymorphone, hydrocodone, naloxone, buprenorphine, norfentanyl, and fentanyl in urine samples. However, its performance was suboptimal for norbuprenorphine, morphine and oxycodone. CONCLUSION: In this proof-of-concept study, DART-MS/MS is evaluated for its rapid quantitative definitive testing of opioids drugs in urine. Further research is needed to expand its application to other areas of drug testing.


Subject(s)
Analgesics, Opioid , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Analgesics, Opioid/urine , Chromatography, Liquid/methods , Time Factors
2.
Methods Mol Biol ; 2855: 133-145, 2025.
Article in English | MEDLINE | ID: mdl-39354305

ABSTRACT

Endocannabinoids (ECBs) are lipid-derived endogenous molecules with important physiological roles such as regulation of energy balance, immunity, or neural development. Quantitation of ECBs helps better understand their physiological role and modulation of biological processes. This chapter presents the simultaneous quantification of 14 ECBs and related molecules in the brain, liver, and muscle, as well as white and brown adipose tissue using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The dynamic range of the method has been tuned to cover the endogenous concentrations of these analytes given the fact that they are endogenously present at different orders of magnitude. Specifically, three groups are established: 0.5-5000 ng/mL for 2-oleoyl- and 2-linoleoylglycerol and arachidonic acid, 0.05-500 ng/mL for 2-arachidonoylglycerol, and 0.0005-0.5 ng/mL for anandamide, palmitoyl-, palmitoleoyl-, stearoyl-, oleoyl-, linoleoyl-, alpha-linolenoyl-, dihomo-gamma-linolenoyl-, docosahexaenoyl-, and pentadecanoylethanolamide.


Subject(s)
Endocannabinoids , Tandem Mass Spectrometry , Endocannabinoids/analysis , Endocannabinoids/metabolism , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Animals , Brain/metabolism , Liver/metabolism , Liver/chemistry , Mice , Liquid Chromatography-Mass Spectrometry
3.
Methods Mol Biol ; 2854: 29-34, 2025.
Article in English | MEDLINE | ID: mdl-39192115

ABSTRACT

Mass spectrometers are widely used to identify protein phosphorylation sites. The process usually involves selective isolation of phosphoproteins and subsequent fragmentation to identify both the peptide sequence and phosphorylation site. Immunoprecipitation could capture and purify the protein of interest, greatly reducing sample complexity before submitting it for mass spectrometry analysis. This chapter describes a method to identify an abnormal phosphorylated site of the adaptor protein by a viral kinase through immunoprecipitation followed by LC-MS/MS.


Subject(s)
Immunoprecipitation , Phosphoproteins , Tandem Mass Spectrometry , Phosphorylation , Tandem Mass Spectrometry/methods , Immunoprecipitation/methods , Chromatography, Liquid/methods , Humans , Phosphoproteins/metabolism , Phosphoproteins/analysis , Mass Spectrometry/methods
4.
Food Chem ; 462: 140971, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39208734

ABSTRACT

This study presents the contents of α-methylenecyclopropylglycine, a potentially toxic amino acid, in the peel, pulp and seed fractions of two well-known litchi varieties, namely Shahi and China, over a span of three harvest-seasons. For analysing α-methylenecyclopropylglycine, an LC-MS/MS-based method was validated. The method-accuracies fell within 75-110 % (RSD, <15 %) at 0.1 mg/kg (LOQ) and higher levels. A comparative evaluation of the results in peel, pulp and seed at 30 days before harvest (DBH), 15-DBH, and edible-ripe stage revealed that α-methylenecyclopropylglycine content increased as the litchi seeds grew towards maturity, regardless of the cultivar. In arils, at maturity, the concentration of α-methylenecyclopropylglycine ranged from not-detected to 11.7 µg/g dry weight. The Shahi cultivar showed slightly higher α-methylenecyclopropylglycine content in comparison to China litchi. This paper presents the first known analysis of combined seasonal data on different fruit components at various growth stages for the two chosen litchi cultivars grown in India.


Subject(s)
Fruit , Litchi , Seeds , Tandem Mass Spectrometry , Litchi/chemistry , Litchi/growth & development , Litchi/metabolism , Fruit/chemistry , Fruit/growth & development , China , Seeds/chemistry , Seeds/growth & development , Glycine/analogs & derivatives , Glycine/analysis , Chromatography, High Pressure Liquid , Cyclopropanes/analysis
5.
Article in English | MEDLINE | ID: mdl-39378524

ABSTRACT

A novel liquid chromatography-tandem mass spectrometry method is described for the quantitative determination of the kidney function markers iothalamate and hippuran in human serum and urine. It is based on protein precipitation with methanol followed by dilution of the supernatant for serum and simple dilution for urine. The polar analytes are chromatographically separated by a 6.5-min gradient on a low-ligand density reversed-phase column; detection is performed by electrospray ionization tandem mass spectrometry in the positive ion mode against stable-isotope labeled internal standards. The results of a thorough method validation show that iothalamate and hippuran can be simultaneously quantified in the concentration ranges 0.500-30.0 ng/mL and 10.0-5000 ng/mL for serum and urine, respectively, with values for CV and absolute bias not exceeding 10 %, and with sufficient stability in all relevant matrices and solvents. The method was successfully applied for the analysis of serum and urine samples of multiple individuals who received both iothalamate and hippuran.

6.
J Chromatogr A ; 1736: 465420, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39378625

ABSTRACT

This study delineates the development of a novel automated pipette-tip solid-phase extraction (SPE) methodology, employing kapok fiber as a naturally efficient and cost-effective adsorbent for the selective extraction of eleven tyrosine kinase inhibitors (TKIs) from plasma. The uniqueness of this method lies in its assembly, where kapok fibers are ingeniously wrapped around a stainless-steel spring within the pipette tip, ensuring an obstruction-free central space for effortless solution aspiration and dispensation. This design significantly minimizes backpressure, enhancing operational efficiency and ensuring compatibility with pipettors, including the implementation of an electric pipettor to streamline the sample preparation process and facilitate automation. The method's analytical performance, rigorously validated through liquid chromatography-tandem mass spectrometry, exhibits outstanding linearity in ranges of 0.1/0.5-200 ng mL-1 (R² > 0.993), commendable accuracy (86.3%-114.8%), and consistent precision (3.4-11.3%), alongside remarkably low detection limits that span from 0.024 to 0.130 ng mL-1. The assembly of kapok fiber within the pipette tip, in this unique configuration, results in a practical, cost-effective, eco-friendly, and automated pipette-tip SPE method. This innovation signifies a significant advancement in bioanalytical methodologies, offering an efficient and sustainable approach for extracting analytes from complex biological samples. This process notably enhances both the sensitivity and selectivity of subsequent instrumental analyses.

7.
Clin Chim Acta ; : 119995, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39389216

ABSTRACT

BACKGROUND: The opioid epidemic has underscored the importance of urine drug testing in the management of chronic pain. However, interpreting test results can be challenging, especially in scenarios where medications may have been directly added to urine samples to simulate compliance. METHODS: We conducted a retrospective analysis of 9,690 opioid testing results using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The study aimed to define the expected ratios between parent drugs and metabolites for eight commonly prescribed opioids. Cases with a parent-metabolite ratio above the 95th percentile were subjected to chart review. RESULTS: A total of 13 cases appeared likely consistent with simulated compliance with buprenorphine, 2 with methadone, 14 with oxycodone, and one with hydrocodone. The unusual patterns of parent-metabolite ratio can also be associated with hyperacute drug exposures/use, pharmaceutical impurity, or underlying liver enzyme deficiency. Furthermore, patients who failed the decision limits could exhibit other illicit use or aberrant behaviors. CONCLUSION: Laboratories conducting LC-MS/MS-based opioid testing can more objectively identify anomalies by analyzing parent-metabolite ratios. When in consultation with providers, laboratories can point to these data when suggesting the possibility of simulated compliance and help identify cases warranting further investigation.

8.
Heliyon ; 10(19): e38369, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39391480

ABSTRACT

Following ICH guidelines, the stability of Belumosudil, a novel protein kinase inhibitor, was tested under different stress conditions (hydrolytic, oxidative, photolytic, and thermal). A selective and efficient separation of Belumosudil and its degradation products was achieved using a Quality by Design approach. In-silico predictions using Zeneth Nexus® software were employed to assess the compound's degradation under various stress scenarios. The methodology developed through experimental design analyzed crucial process parameters connected with chromatographic systems. Reversed-phase high-performance liquid chromatography with a C18 column and a gradient mobile phase of acetonitrile and 25 mM ammonium hydrogen carbonate buffer (pH 5.6) were utilized. For structural characterization and identification of degradation products, UPLC-quadrupole tandem mass spectrometry was employed. Four distinct degradation products were identified under different stress settings. The method was thoroughly validated, assessing accuracy, selectivity, repeatability, system suitability, and linearity range (5.0-120.0 µg/mL). To predict mutagenicity and toxicity, DEREK Nexus® software was used. Two degradation products were predicted to induce skin sensitization, irritation, and hepatotoxicity in humans.

9.
Front Chem ; 12: 1323738, 2024.
Article in English | MEDLINE | ID: mdl-39391832

ABSTRACT

Introduction: CEP-37440 was synthesized and supplied by the research and development division of Teva Branded Pharmaceutical Products (West Chester, PA, United States). CEP-37440 represents a newly developed compound that exhibits selectivity inhibition of Focal Adhesion Kinase and Anaplastic Lymphoma Kinase FAK/ALK receptors, demonstrating novel characteristics as an orally active inhibitor. The simultaneous inhibition of ALK and FAK can effectively address resistance and enhance the therapeutic efficacy against tumors through a synergistic mechanism. Methods: The objective of this research was to create an LC-MS/MS method that is precise, efficient, environmentally friendly, and possesses a high level of sensitivity for the quantification of CEP-37440 in human liver microsomes (HLMs). The aforementioned approach was subsequently employed to evaluate the metabolic stability of CEP-37440 in HLMs in an in vitro setting. The validation procedures for the LC-MS/MS analytical method in the HLMs were performed following the bio-analytical method validation guidelines set out by the US-FDA. The AGREE program was utilized to assess the ecological impacts of the current LC-MS/MS methodology. Results and Discussion: The calibration curve linearity was seen in the range of 1-3000 ng/mL. The inter-day accuracy (% RE) exhibited a range of -2.33% to 3.22%, whilst the intra-day accuracy demonstrated a range of -4.33% to 1.39%. The inter-day precision (% RSD) exhibited a range of 0.38% to 3.60%, whilst the intra-day precision demonstrated a range of 0.16% to 6.28%. The determination of the in vitro half-life (t1/2) and moderate intrinsic clearance (Clint) of CEP-37440 yielded values of 23.24 min and 34.74 mL/min/kg, respectively. The current manuscript is considered the first analytical study for CEP-37440 quantification with the application to metabolic stability assessment. These results suggest that CEP-37440 can be categorized as a pharmaceutical agent with a moderate extraction ratio. Consequently, it is postulated that the administration of CEP-37440 to patients may not lead to the accrual of dosages within the human organs. According to in silico P450 metabolic and DEREK software, minor structural alterations to the ethanolamine moiety or substitution of the group in drug design have the potential to enhance the metabolic stability and safety profile of novel derivatives in comparison to CEP-37440.

10.
Pharmacol Rep ; 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39388082

ABSTRACT

BACKGROUND: The benefits of pharmacotherapy with sirolimus (SIR) in pediatric transplant recipients are well established. Traditionally, whole blood samples have been used to measure SIR concentrations. Volumetric Absorptive Microsampling (VAMS) is an alternative sampling strategy suitable for Therapeutic Drug Monitoring (TDM). In this study, we developed and validated two liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods for determining SIR concentrations in whole blood (WB) and capillary whole blood samples collected using a VAMS-Mitra™ device. METHODS: We used protein precipitation during WB sample preparation and dispersive liquid-liquid microextraction (DLLME) with methyl tert-butyl ether for VAMS sample preparation to optimise the analyte extraction process. The described validation protocols were cross-validated, confirming the equivalence of the whole-blood and VAMS-based methods. Furthermore, the developed methods were evaluated in two three-level rounds of an external proficiency-testing scheme. RESULTS: The analytical methods were successfully validated within the calibration range of SIR (0.5-60 ng/ml). The validation parameters met the European Medicines Agency (EMA) and the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDM&CT) acceptance criteria. No hematocrit (tested in the range of 24.3-64.1%), matrix, or carry-over effects were observed. Cross-validation confirmed the interchangeability between VAMS-LC-MS/MS and WB-LC-MS/MS methods. The developed methods were successfully implemented for SIR determination in 140 clinical samples (70 each of WB and VAMS) from pediatric renal transplant recipients, demonstrating their practicality and reliability. CONCLUSION: The VAMS-based method has been rigorously tested and is clinically equivalent to the reference WB-LC-MS/MS method. Additionally, clinical validation confirmed the utility of the presented methods for TDM of the SIR in the pediatric population after renal transplantation.

11.
J Pharmacol Toxicol Methods ; : 107568, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39383999

ABSTRACT

BACKGROUND: Therapeutic drug monitoring for antidepressants (ADs) is vital due to the potentially serious consequences and disputes related to medical events. Therefore, we created a quick and convenient analysis way for separation and quantification of ADs. METHODS: To ensure quantitative stability, we divided the 16 ADs or their metabolites into 4 pools (AD1-AD4), considering the hospital frequency that the clinician prescribed, the physicochemical properties of medicines, and the calibration range of selected ADs. After precipitation with methanol, the analytes were eluted for at least 3.5 min on a BEH C18 analytical column by different gradient elution methods. RESULTS: The LLOQ and LOD were 1.25-10 ng/mL and 0.42-5 ng/mL, respectively. High precision (<12 %) and accuracy (87.07-111.47 %) were demonstrated by quality control samples both within and between days. All the compounds were stable at room temperature and within -80 °C. CONCLUSION: The method is of wide clinical and laboratory interest due to simpler sample cleanup, shorter chromatographic run times, and wider calibration range compared to other methods.

12.
Biomed Chromatogr ; : e6010, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39385620

ABSTRACT

This work aimed to establish an HILIC-MS/MS method to simultaneously determine the levels of 13 endogenous amino acids and trimethylamine oxide in the biological samples from the mice. Electrospray ion source was used for the analysis of mass spectrometry. The 20 min separation was applied in a Dikma Inspire Hilic column (2.1 × 100.0 mm, 3 µM). Positive ion mode under an MRM model gave a satisfying response value. The limits of quantitation were evaluated by accuracy from -12.59% to 7.89% and precision from 1.77% to 14.00% as well as acceptable interday and intraday precision, matrix effect, recovery, and stability. Later, the assay was successfully used to measure the concentrations of the determinands in the biological samples. Individual and tissue distribution differences for these metabolites were observable. The amino acids had a consistent highest content in the spleens, while the lowest levels were found in the livers. Alanine was the most abundant amino acid in the serum, and taurine kept the highest content in all of the tissues. Trimethylamine oxide remained low level, especially in the liver samples.

13.
Chem Biodivers ; : e202401537, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39385708

ABSTRACT

The composition and concentration of compounds in medicinal plants vary based on several factors, including the specific part of the plant being used. These variations in composition and concentration lead to differences in biological activity levels. In this study, we aimed to assess the phytochemical profile of Sonchus arvensis and to investigate the biological activity of different plant parts (roots, stems, and leaves) using a metabolomics approach. We analyzed the plant extracts for total phenolic and flavonoid levels, antioxidant activity, and xanthine oxidase inhibition. We also conducted metabolite profiling using Fourier-transform infrared spectroscopy and liquid chromatography-high resolution mass spectrometry. A total of 17 metabolites were identified (13 in leaves, 10 in stems, and 9 in roots). Principal component analysis effectively differentiated S. arvensis extracts based on differences in plant parts. These findings indicate that the quantity and diversity of metabolites present in the roots, stems, and leaves influence the biological activity of S. arvensis.

14.
Compr Rev Food Sci Food Saf ; 23(6): e70029, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39379311

ABSTRACT

Accurate quantification of allergens in food is crucial for ensuring consumer safety. Pretreatment steps directly affect accuracy and efficiency of allergen quantification. We systematically reviewed the latest advances in pretreatment steps for antibody-based methods and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) protein quantification methods in food. For antibody-based methods, the effects induced by food matrix like decreased allergen solubility, epitope masking, and nonspecific binding are of the upmost importance. To mitigate interference from the matrix, effective and proper extraction can be used to obtain the target allergens with a high protein concentration and necessary epitope exposure. Removal of interfering substances, extraction systems (buffers and additives), assistive technologies, and commercial kits were discussed. About LC-MS/MS quantification, the preparation of the target peptides is the crucial step that significantly affects the efficiency and results obtained from the MS detector. The advantages and limitations of each method for pre-purification, enzymatic digestion, and peptide desalting were compared. Additionally, the application characteristics of microfluidic-based pretreatment devices were illustrated to improve the convenience and efficiency of quantification. A promising research direction is the targeted development of pretreatment methods for complex food matrices, such as lipid-based and carbohydrate-based matrices.


Subject(s)
Allergens , Food Analysis , Tandem Mass Spectrometry , Allergens/analysis , Allergens/chemistry , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Food Analysis/methods , Antibodies/chemistry , Liquid Chromatography-Mass Spectrometry
15.
Chirality ; 36(10): e23721, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39380333

ABSTRACT

The aim of this study was to establish a simple, fast, and sensitive method with liquid chromatography-tandem mass spectrometry (LC-MS/MS) for simultaneously determining ibuprofen enantiomers using mouse blood in very small volumes. LC-MS/MS equipped with an electrospray ionization (ESI) source was used in negative ion mode and multiple-reaction monitoring mode. Enantiomer chromatographic separation was carried out on a Lux® 5 µm Cellulose-3 (250 × 4.6 mm, 5 µm) column at a flow rate of 0.6 mL/min. Samples were pretreated by extracting only 5 µL of blood with 40 µL of acetonitrile (containing 1.3% formic acid) so that a concentration-time profile could be completed using a single mouse. 2-(4-Propylphenyl) propanoic acid was used as an internal standard. Standard curves for each enantiomer were linear from 0.04 to 80.00 µg/mL, demonstrating a lower limit of quantitation (LLOQ) than all previously reported methods. This method was completely validated and successfully executed to investigate the pharmacokinetics of ibuprofen enantiomers after intravenous administration of racemic ibuprofen, (S)-(+)-ibuprofen, and (R)-(-)-ibuprofen in Kunming mice, respectively. The results showed that the pharmacokinetic profiles of the (R)-(-)-ibuprofen and (S)-(+)-ibuprofen were significantly different, indicating the unidirectional inversion of R-(-)-ibuprofen to (S)-(+)-ibuprofen.


Subject(s)
Ibuprofen , Tandem Mass Spectrometry , Animals , Ibuprofen/pharmacokinetics , Ibuprofen/blood , Ibuprofen/chemistry , Tandem Mass Spectrometry/methods , Stereoisomerism , Mice , Chromatography, Liquid/methods , Male , Reproducibility of Results , Limit of Detection
16.
J Anal Toxicol ; 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39366924

ABSTRACT

AIM: This study focused on the simultaneous detection of amphetamine, 3,4-methyl enedioxy methamphetamine, morphine, benzoylecgonine, and 11-nor-9-carboxy- tetrahydrocannabinol (Δ9-THC-COOH) in whole blood and DBS. It is aimed to select a solvent mixture for liquid-liquid extraction (LLE) technique employing LC-MS/MS. The obtained DBS results were compared with the whole blood samples results. METHODS: A simple, rapid, and reliable LC-MS/MS method was developed and validated for all analytes in whole blood and DBS. LC was performed on a Hypersil Gold C18 column an initial step with a gradient of 0.01 % formic acid, 5 mM ammonium format buffer in water, and acetonitrile at 0.3 ml/min with 7.5-min runtime. RESULTS: A methanol:acetonitrile (40:60 v/v) mixture was selected for both matrices. LOQ values were 10-25 ng/mL; linear ranges were LOQ-500 ng/ml for all analytes; correlation coefficients were greater than 0.99, and all calibrator concentrations were within 20%. Analytical recovery in blood and DBS ranged from 84.9-113.2% of the expected concentration for both intra and-inter day. Analytes were stable for 1, 10, and 30 days after three freeze/thaw cycles. It was determined that the variances of the results obtained with the two matrices in the comparison study were equal for each analyte, and the results were highly correlated (r=0.9625). CONCLUSION: A sensitive, accurate, and reliable chromatographic method was developed to determine amphetamine, MDMA, morphine, benzoylecgonine, and cannabis, by performing the same preliminary steps with whole blood and dried blood spots. It was observed that the results obtained in these two matrices were compatible and interchangeable when statistically compared.

17.
Anal Bioanal Chem ; 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39382675

ABSTRACT

Digoxin, a cardiac glycoside, is widely used in the treatment of cardiovascular diseases. Due to its narrow therapeutic range, precise monitoring of its blood concentration is essential. A reference measurement procedure (RMP) is pivotal for ensuring result accuracy and comparability. The RMP for serum digoxin by ID-LC-MS/MS was optimized with sample pre-treatment and detection processes, and the bracketing calibration method was used, which facilitates more accurate measurement, especially for extreme concentrations. The performance of this optimized RMP was thoroughly evaluated. The limit of detection (LoD) was 0.05 ng/mL (0.06 nmol/L) and the lowest limit of quantification (LLoQ) was 0.10 ng/mL (0.13 nmol/L). The intra- and inter-assay imprecisions were 2.24%, 2.51%, 1.40% and 1.72%, 1.65%, 0.97% at 0.5, 2.0, 5.0 ng/mL, respectively. Recoveries were 99.63 to 101.42% and the linear response ranged from 0.1 to 10.0 ng/mL. The relative bias was 0.41% and 2.00% of our results compared with the median of all participating reference laboratories for IFCC-RELA (External Quality Assessment Scheme for Reference Laboratories in Laboratory Medicine) 2023A and 2023B. The uncertainty, calibration and measurement capability (CMC) of this method were also evaluated. The optimized RMP was applied in the Trueness Verification Plan of Southern China, which indicates significant differences among clinical systems, highlighting the need for standardization efforts. In addition, two commonly used clinical systems which employed immunoassay methods were compared with this optimized RMP, and 26 individual serum samples were analyzed. The good correlations indicate the feasibility of standardization for serum digoxin. The optimized RMP serves as an accurate reference baseline for routine methods, aiming to enhance the accuracy and precision of measurements in clinical laboratories.

18.
J Basic Microbiol ; : e2400475, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375950

ABSTRACT

Aspergillus cristatus is a dominant fungus formed during the "flowering" process of Fuzhuan brick tea. Previous research has established that the sporulation of Aspergillus nidulans, a model organism of filamentous fungi, is regulated by light. However, the sporulation of A. cristatus is dependent on osmotic stress. In a previous study, we used pull-down and mass spectrometry to identify proteins that interacted with AcHog1 in A. cristatus when cultured under different conditions of osmotic stress. In the present study, we analyzed the proteins we identified previously to investigate their functional role. The AA1E3BER4 protein was located downstream of Hog1 in the HOG branch pathway and was identified that was regulated by AcHog1. Furthermore, yeast two-hybrid analysis showed that AA1E3BER4 interacted with AcHog1. In addition, we knocked out and complemented the Acsko1 gene encoding the AA1E3BER4 protein. We found that the number of sexual and asexual spores were downregulated by 3.81- and 4.57-fold, respectively, in the ΔAcsko1 strain. The sensitivity of the ΔAcsko1 strain to sorbitol and sucrose, as regulators of osmotic stress, increased, and the sensitivity to high sucrose was higher than that of sorbitol. Acsko1 also regulated the response of A. cristatus to oxidative stress, Congo red, and SDS (sodium dodecyl sulfate). In addition, the deletion of Acsko1 significantly increased the pigment of the ΔAcsko1 strain. This is the first study to report the role of the sko1 gene in oxidative stress, stress-induced damage to the cell wall, and pigment in Aspergillus cristatus.

19.
Anal Bioanal Chem ; 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39354156

ABSTRACT

The effects of the simultaneous consumption of amphetamine or amphetamine derivatives and alcohol have not yet been adequately clarified, particularly concerning potential condensation products resulting from the endogenous reaction between these substances and their metabolites (e.g., acetaldehyde, a metabolite of ethanol). In this study, we developed an LC-MS/MS method employing liquid-liquid extraction for the qualitative detection of some relevant condensation products belonging to the class of tetrahydroisoquinolines and their derivatives in human blood, brain, and liver samples. This includes the analysis of the substrates amphetamine, methamphetamine, methylenedioxymethamphetamine, methylenedioxyamphetamine, as well as the condensation products 1,3-dimethyl-1,2,3,4-tetrahydroisoquinoline, N-methyl-1,3-dimethyl-1,2,3,4-tetrahydroisoquinoline, 1,3-dimethyl-7,8-methylenedioxy-1,2,3,4-tetrahydroisoquinoline, and N-methyl-1,3-dimethyl-7,8-methylenedioxy-1,2,3,4-tetrahydroisoquinoline. Therefore, the reference standards of the mentioned tetrahydroisoquinolines were synthesized in advance and the method was validated with regard to the question of the qualitative detection of these compounds. The validation parameters included selectivity, specificity, limit of detection, lower limit of quantification, recovery, matrix effects, and stability for blood, brain, and liver samples. Following the analysis of human blood and post-mortem tissue samples, evidence of the condensation product 1,3-dimethyl-1,2,3,4-tetrahydroisoquinoline originating from the interaction between amphetamine and acetaldehyde was identified in two liver samples. On the contrary, no evidence of this or other tetrahydroisoquinolines was found in the remaining tissue and serum samples.

20.
J Agric Food Chem ; 72(39): 21946-21956, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39354852

ABSTRACT

To explore the changes in meat quality and molecular mechanisms during the growth and development of Taihe black-bone silky fowl, this study employed liquid chromatography-mass spectrometry (LC-MS/MS) metabolomics to elucidate the dynamic changes of key differential metabolites (DMs) affecting meat quality, indicating that chicken at D120 had higher levels of ω-3 polyunsaturated fatty acids (PUFAs), creatine, anserine, and homocarnosine, while D150 had the most stachydrine and D210 had the most acylcarnitines. Additionally, D120 and D180 had more umami and sweet compounds. Furthermore, key metabolic pathways influenced by age included purine metabolism, the pentose phosphate pathway, nicotinate and nicotinamide metabolism, and taurine and hypotaurine metabolism. Transcriptomic identified differential expression genes (DEGs) are predominantly enriched in focal adhesion, the TGF-ß signaling pathway, and the MAPK signaling pathway. Integrated metabolomics and transcriptomics revealed complex regulatory networks of DEGs and DMs in key metabolic pathways. This research enhanced our understanding of the biology of Taihe black-bone silky fowl meat quality, revealing possible biomarkers.


Subject(s)
Chickens , Gene Expression Profiling , Meat , Metabolome , Animals , Chickens/genetics , Chickens/metabolism , Meat/analysis , Tandem Mass Spectrometry , Transcriptome , Metabolomics , Age Factors
SELECTION OF CITATIONS
SEARCH DETAIL