Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Avian Pathol ; : 1-13, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38845537

ABSTRACT

RESEARCH HIGHLIGHTS: Galleria mellonella larvae are a viable model for determining APEC pathogenicity.Larval disease score is the main variable for determining APEC pathogenicity.Response variables should be evaluated up to 24 h post-inoculation.

2.
Comput Struct Biotechnol J ; 23: 483-490, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38261941

ABSTRACT

INTRODUCTION: The intergovernmental organizations Organisation for Economic Co-operation and Development (OECD) and Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) have developed guidelines for the use of in vitro models for toxicological evaluation of chemicals. However, the presence of manual steps and the requirement of multiple tools for data analysis, apart from being costly and time-consuming, can inadvertently introduce errors by researchers. OBJECTIVES: We have developed the SAEDC platform (Technological Solution for Exploratory Data Analysis and Statistics for Cytotoxicity, in Portuguese), which enables analysis of cytotoxicity data from assays following OECD Guideline No. 129. METHODOLOGY: In vitro experimental data were used to compare with the analysis methodology suggested in the Guideline. We analyzed 117 data sets covering chemicals from Category I to Unclassified according to GHS classification. RESULTS: The four-parameters of non-linear regression (4PL) calculated by the SAEDC platform showed no significant differences compared to standard methodology in any of the data sets (p > 0.05). The coefficient of determination (R-squared) also demonstrated not only a good fit of the 4PL model to the data but also significant similarity to values obtained by the conventional methodology. Finally, the SAEDC platform predicted LD50 values for the chemicals from IC50, using the Registry of Cytotoxicity (RC) regression models. CONCLUSION: The comparison with the standard data analysis methodology revealed that SAEDC platform fulfills the requirements for cytotoxicity data analysis, generating reliable and accurate results with fewer steps performed by researchers. The use of SAEDC platform for obtaining toxicity values can reduce analysis time compared to the standard methodology proposed by regulatory agencies. Thus, automation of the analysis using the SAEDC platform has the potential to save time and resources for cytotoxicity researchers and laboratories while generating reliable results.

3.
Environ Toxicol Chem ; 42(12): 2758-2767, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37638658

ABSTRACT

Currently, only Apis mellifera is used in environmental regulation to evaluate the hazard of pesticides to pollinators. The low representativeness of pollinators and bee diversity in this approach may result in insufficient protection for the wild species. This scenario is intensified in tropical environments, where little is known about the effects of pesticides on solitary bees. We aimed to calculate the medium lethal dose (LD50) and medium lethal concentration (LC50) of the insecticide dimethoate in the Neotropical solitary bee Centris analis, a cavity-nesting, oil-collecting bee distributed from Brazil to Mexico. Males and females of C. analis were exposed orally to dimethoate for 48 h under laboratory conditions. Lethality was assessed every 24 h until 144 h after the beginning of the test. After the LD50 calculation, we compared the value with available LD50 values in the literature of other bee species using the species sensitivity distribution curve. In 48 h of exposure, males showed an LD50 value 1.33 times lower than females (32.78 and 43.84 ng active ingredient/bee, respectively). Centris analis was more sensitive to dimethoate than the model species A. mellifera and the solitary bee from temperate zones, Osmia lignaria. However, on a body weight basis, C. analis and A. mellifera had similar LD50 values. Ours is the first study that calculated an LD50 for a Neotropical solitary bee. Besides, the results are of crucial importance for a better understanding of the effects of pesticides on the tropical bee fauna and will help to improve the risk assessment of pesticides to bees under tropical conditions, giving attention to wild species, which are commonly neglected. Environ Toxicol Chem 2023;42:2758-2767. © 2023 SETAC.


Subject(s)
Hymenoptera , Insecticides , Pesticides , Female , Bees , Animals , Insecticides/toxicity , Pesticides/toxicity , Dimethoate/toxicity , Risk Assessment
4.
Neotrop Entomol ; 52(3): 422-430, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36729292

ABSTRACT

In the last few years, with the increase in agricultural productivity, there has also been an increase in the use of insecticides to combat insects considered pests. However, these chemical compounds end up affecting nontarget insects that also interact with the crops. Studies have shown that social bees are among the insects that are suffering most from the effects of these compounds, resulting in negative ecological and economic impacts, considering that these insects provide pollination services in ecosystems. At the same time, social wasps also interact with plants, including cultivated ones, and perform ecological services similar to those of social bees, so it can be hypothesized that insecticides are also affecting social wasp colonies. Therefore, the purpose of this study was to evaluate contamination and sublethal effects of neonicotinoids on the mobility of the social wasp Protopolybia exigua (Saussure). In the first step, oral exposure experiments were performed to determine lethal and sublethal concentrations. In a second step, the wasps were exposed to sublethal concentrations, in order to evaluate the effects on their mobility. The results demonstrated that this species is more susceptible to exposure to neonicotinoids, compared to several bee species that have so far been studied, but lower than others. Exposure to sublethal concentrations can significantly reduce wasp mobility, which can have short-term consequences both for worker wasps and for the maintenance of their colonies.


Subject(s)
Insecticides , Wasps , Bees , Animals , Thiamethoxam , Ecosystem , Nitro Compounds/toxicity , Neonicotinoids
5.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36145268

ABSTRACT

Scorpion stings are a public health event in Colombia lacking official epidemiological data, and are considered a medical emergency. Despite the two local producers of antivenoms, neither of them is currently manufacturing scorpion antivenoms. We present the characterization of a lab-scale process to produce the first specific scorpion antivenom for Colombia, formulated to cover scorpion stings produced by Tityus pachyurus, Tityus asthenes, Tityus fuhrmanii, Centruroides spp. To do so, rabbits were immunized by subcutaneous injection with each venom using an immunization program of 3 months. After each rabbit reached the required IgG concentration, rabbits were bled, and plasma was separated by decantation under refrigeration. Immunoglobulins were purified from each hyperimmune plasma using a methodology including precipitation with ammonium sulfate, thermocoagulation, and purification through an ultrafiltration process using a ready-to-use and reusable laboratory crossflow tangential cassette with a polyethersulfone membrane. Each hyperimmune plasma was processed by being separated and freeze-dried at the end of the process. Rabbits were able to produce specific IgG antibodies recognizing the respective immunization venom; even an in vitro interspecies cross-recognition was detected. The separation and purification processes allowed us to obtain IgG products without considerable contaminants (except for albumin). The process was characterized, and critical stages were identified.

6.
Environ Sci Pollut Res Int ; 29(42): 62711-62732, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35793026

ABSTRACT

Brazil presents the most threatened endemic or rare species among neotropical regions, with the Hymenoptera order, to which bees belong, classified as a high-risk category. In Brazil, the main cause of bee death is the indiscriminate use of pesticides. In this context, groups such as Bee Ecotoxicology and Conservation Laboratory (LECA in Portuguese) and Bees and Environmental Services (ASAs in Portuguese) have become a reference in studies evaluating the impacts of pesticides on bees since 1976. Thus, the objective of this review was to conduct a quantitative and qualitative review of the studies conducted by these groups to evaluate and compile the advances made over the years, identify potential knowledge gaps for future studies, and support the sensitivities of stingless bees when compared to the species Apis mellifera. The quantitative analyses showed that most studies were carried out in the genus Apis, under laboratory conditions. However, more recently (since 2003), studies have also focused on stingless bees and the neonicotinoid class of insecticides. The most relevant gaps identified were the lack of studies under field conditions and on bee biology. The qualitative analyses indicated that Brazilian stingless bees are more susceptible to pesticides than A. mellifera and require a much lower average dose, concentration, or lethal time to display morphological and behavioral damage or decreased lifespan. Thus, future studies should work towards establishing more representative protocols for stingless bees. Furthermore, public policies must be created for the protection and conservation of bees native to Brazil.


Subject(s)
Insecticides , Pesticides , Animals , Bees , Brazil , Ecotoxicology , Neonicotinoids
7.
Drug Chem Toxicol ; 45(4): 1754-1760, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33441004

ABSTRACT

Oils extracted from almonds are often used with particular interest due to their prospective health effects and benefits. Tucum is a Pantanal fruit widely consumed by local population and no in vivo toxicity studies regarding its safety are available in the literature to date. This study investigated the acute and subacute toxicity of tucum almond oil (TAO) in mice by evaluating its safety profile. For the acute (2000 mg/kg) and subacute (250, 500 and 1000 mg/kg) toxicity studies, TAO was administered orally to mice according to 425 and 407 Organization for Economic Cooperation and Development Guidelines, respectively. Food intake, body, and organ weight of animals were recorded. Signs of toxicity were assessed, and hematological, biochemical and histopathological analyses were performed. In the acute toxicity study, no mortality or behavioral changes were observed in mice treated with 2000 mg/kg, indicating that LD50 is higher than this dose. In the subacute toxicity test, the doses evaluated did not produce relevant changes in hematological, biochemical or histopathological parameters in the exposed animals. The data obtained suggest that TAO did not induce toxicity after exposure to a single or repeated doses and LD50 value may be considered to be more than 2000 mg/kg body weight.


Subject(s)
Arecaceae , Animals , Mice , Plant Extracts/pharmacology , Plant Oils/toxicity , Prospective Studies , Rats , Rats, Wistar , Toxicity Tests, Acute
8.
J Therm Biol ; 100: 103072, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34503809

ABSTRACT

The eastern oyster, Crassostrea virginica, provides critical ecosystem services and supports valuable fishery and aquaculture industries in northern Gulf of Mexico (nGoM) subtropical estuaries where it is grown subtidally. Its upper critical thermal limit is not well defined, especially when combined with extreme salinities. The cumulative mortalities of the progenies of wild C. virginica from four nGoM estuaries differing in mean annual salinity, acclimated to low (4.0), moderate (20.0), and high (36.0) salinities at 28.9 °C (84 °F) and exposed to increasing target temperatures of 33.3 °C (92 °F), 35.6 °C (96 °F) or 37.8 °C (100 °F), were measured over a three-week period. Oysters of all stocks were the most sensitive to increasing temperatures at low salinity, dying quicker (i.e., lower median lethal time, LT50) than at the moderate and high salinities and resulting in high cumulative mortalities at all target temperatures. Oysters of all stocks at moderate salinity died the slowest with high cumulative mortalities only at the two highest temperatures. The F1 oysters from the more southern and hypersaline Upper Laguna Madre estuary were generally more tolerant to prolonged higher temperatures (higher LT50) than stocks originating from lower salinity estuaries, most notably at the highest salinity. Using the measured temperatures oysters were exposed to, 3-day median lethal Celsius degrees (LD50) were estimated for each stock at each salinity. The lowest 3-day LD50 (35.1-36.0 °C) for all stocks was calculated at a salinity of 4.0, while the highest 3-day LD50 (40.1-44.0 °C) was calculated at a salinity of 20.0.


Subject(s)
Crassostrea/physiology , Global Warming , Salt Tolerance , Animals , Biomass , Crassostrea/growth & development , Gulf of Mexico , Thermotolerance
9.
Toxicol Rep ; 8: 747-752, 2021.
Article in English | MEDLINE | ID: mdl-33854951

ABSTRACT

A novel functional drink with nutraceutical properties was formulated from the aqueous extracts of Ilex guayusa, and Vernonanthura patens leaves, and cocoa husks. This juice contains various bioactive compounds, such as phenolic compounds and methylxanthines, with antioxidant and stimulant properties of pharmacological interest. However, it is known whether herbal extracts' interaction may have adverse toxic effects on human health. To evaluate this functional drink's innocuity, we estimated the acute oral toxicity (AOT) in experimental mice. This paper presents the AOT evaluation of two formulations of a functional drink (pre-formulation and microencapsulation) at a single dose of 2000 mg/kg of body weight (b.w.). No signs of adverse toxicity and mortality were observed after a single oral dose of 2000 mg/kg b.w. Likewise, no significant body and organ weight changes, food and water consumption behavior, and no histopathological changes were observed in the main organs evaluated. In conclusion, this functional drink can be categorized as low toxicity " according to the Globally Harmonized Classification System (GHS), making it a potential beverage with high nutritional and pharmacological value.

10.
Pharmaceutics ; 13(1)2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33430184

ABSTRACT

Nanomaterials quickly evolve to produce safe and effective biomedical alternatives, mainly silver nanoparticles (AgNPs). The AgNPs' antibacterial, antiviral, and antitumor properties convert them into a recurrent scaffold to produce new treatment options. This work reported the full characterization of a highly biocompatible protein-coated AgNPs formulation and their selective antitumor and amoebicidal activity. The protein-coated AgNPs formulation exhibits a half-inhibitory concentration (IC50) = 19.7 µM (2.3 µg/mL) that is almost 10 times more potent than carboplatin (first-line chemotherapeutic agent) to inhibit the proliferation of the highly aggressive human adenocarcinoma HCT-15. The main death pathway elicited by AgNPs on HCT-15 is apoptosis, which is probably stimulated by reactive oxygen species (ROS) overproduction on mitochondria. A concentration of 111 µM (600 µg/mL) of metallic silver contained in AgNPs produces neither cytotoxic nor genotoxic damage on human peripheral blood lymphocytes. Thus, the AgNPs formulation evaluated in this work improves both the antiproliferative potency on HCT-15 cultures and cytotoxic selectivity ten times more than carboplatin. A similar mechanism is suggested for the antiproliferative activity observed on HM1-IMSS trophozoites (IC50 = 69.2 µM; 7.4 µg/mL). There is no change in cell viability on mice primary cultures of brain, liver, spleen, and kidney exposed to an AgNPs concentration range from 5.5 µM to 5.5 mM (0.6 to 600 µg/mL). The lethal dose was determined following the OECD guideline 420 for Acute Oral Toxicity Assay, obtaining an LD50 = 2618 mg of Ag/Kg body weight. All mice survived the observational period; the histopathology and biochemical analysis show no differences compared with the negative control group. In summary, all results from toxicological evaluation suggest a Category 5 (practically nontoxic) of the Globally Harmonized System of Classification and Labelling of Chemicals for that protein-coated AgNPs after oral administration for a short period and urge the completion of its preclinical toxicological profile. These findings open new opportunities in the development of selective, safe, and effective AgNPs formulations for the treatment of cancer and parasitic diseases with a significant reduction of side effects.

11.
Appl Radiat Isot ; 167: 109490, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33121892

ABSTRACT

WHEAT VAR: CIRNO C2008 was irradiated with gamma rays at 100, 200, and 300 Gy. The irradiated plants obtained at 300 Gy (M1) showed a significant reduction (compared to M0 plants) in germination (i.e. 3.8% at day 5), survival percentage (48%), and plant height (63.3%). Thus, the Probit analysis showed an LD50 of 287.80 Gy. Besides, these irradiated plants, in the field, showed a significant increase (compared to M0 plants) in days to spike initiation (16 days), and maturation (14 days). On the other hand, in the field, fourteen chlorophyll mutants were found (at a different frequency) in the M2 generation, such as Albina, Anthocyanin, Chlorina, Maculata, Tigrina, Striata, Viridis, Viridoalbina, Alboviridis, Xantha, Xanthviridis, Xanthalba, Viridoxantha, and Orange stem. In addition, mutants with changes in agronomic and morphological traits were observed. This nuclear technique is an alternative to obtain promising mutant lines that can be used directly as a variety and/or as parental to transfer these traits to other varieties.


Subject(s)
Gamma Rays , Soil , Triticum/radiation effects , Germination , Triticum/physiology
12.
J Proteomics ; 225: 103865, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32525083

ABSTRACT

We report a structural and functional venomics characterization of the black-tailed horned pitviper, Mixcoatlus melanurus. The venom phenotype of this small and elusive pitviper endemic to México comprise peptides and proteins of 16 toxin families whose relative abundance mirror those of neurotoxic (type II) venoms described for some species within genera distributed in Central Asia (Gloydius) and the Americas (Sistrurus, Crotalus, Ophryacus, and Bothriechis). A novel ß-neurotoxic heterodimeric PLA2, termed Melanurutoxin was characterized. With a relative abundance of 14.8% of the total M. melanurus venom proteome and a median lethal dose of 0.31 µg/g mouse body weight, Melanurutoxin accounted for 37.8% of the lethality of the whole venom (0.82 µg/g). The low percentage (1.1%) of snake venom metalloproteinases (PIII-SVMPs) and the high content of Melanurutoxin and bradykinin-potentiating peptides (BPP, 16%) found in the type-II venom proteome of M. melanurus correlate with the severe hypotension and neurotoxicity leading to neuromuscular blockade, flaccid paralysis and respiratory arrest observed in ex vivo neuromuscular junction experiments and in vivo experimental murine envenoming. Mexican antivenoms manufactured by Birmex and Bioclon showed low neutralization potency per vial (95 LD50s, Birmex; 114 LD50s, Antivipmyn®), and failed to reverse completely the paralysis and the hypotensive effect induced by the black-tailed horned pitviper, Mixcoatlus melanurus. We suggest that the impaired ability of these antivenoms to neutralize the neurotoxicity of M. melanurus venom may be attributed to the use of immunization mixtures that include venom of taxa, C. basiliscus (Birmex) and C. simus (Antivipmyn®), that contain only small amounts of Melanurutoxin-like ß-neurotoxic heterodimeric PLA2s. BIOLOGICAL SIGNIFICANCE: This study represents the first proteomics and funcional investigations conducted on the venom of the black-tailed horned, Mixcoatlus melanurus, a pitviper species endemic to México. The venom's features unveiled through combination of bottom-up venomics and ex vivo and in vivo functional assays provided complementary evidence pointing to severe hypotension and neurotoxicity leading to neuromuscular blockade, flaccid paralysis and respiratory arrest as the predominant mechanism of murine prey immobilization and death caused by M. melanurus. A novel ß-neurotoxic heterodimeric PLA2, coined Melanurutoxin, was identified as a major contributor to the lethality of the whole venom. Our study also showed the inefficacy of two commercial Mexican antivenoms to reverse competely the paralytic and hypotensive effects induced by M. melanurus venom in the murine model. We hypothesize that the impaired ability of these antivenoms to neutralize the neurotoxicity of M. melanurus venom should be ascribed to the use as immunogens of venoms that contain only small amounts of Melanurutoxin-like ß-neurotoxic heterodimeric PLA2s.


Subject(s)
Crotalinae , Crotoxin , Animals , Antivenins , Crotalus , Mexico , Mice
13.
C R Biol ; 342(9-10): 331-344, 2019.
Article in English | MEDLINE | ID: mdl-31680022

ABSTRACT

As part of an ongoing survey of scorpion diversity in Colima, Mexico, the isolated mountain Cerro Grande, part of the Biosphere Reserve Sierra de Manantlán, was investigated. Centruroides possanii sp. nov., the fifth species of the genus from the state, was discovered during fieldwork in the massif and is described in the present paper. Physiographical and climatic features of Cerro Grande may restrict the range of this new species; thus, we hypothesized that it may be a microendemic species that requires priority conservation. The new species is not assigned to any Centruroides species group recognized because some of its morphological features do not fit the current diagnosis of any of these groups, and these different groups are non-monophyletic and consequently ill-diagnosed. The new species is profusely illustrated, particularly the hemispermatophore. A distribution map is presented along with the other two more common species distributed in Colima. Because only indirect data on the potency of its venom is available, the medical importance of this new species described here is yet to be known.


Subject(s)
Scorpions/classification , Animals , Mexico , Scorpions/anatomy & histology
14.
Toxins (Basel) ; 11(11)2019 10 27.
Article in English | MEDLINE | ID: mdl-31717836

ABSTRACT

Spiders rely on venom to catch prey and few species are even capable of capturing vertebrates. The majority of spiders are generalist predators, possessing complex venom, in which different toxins seem to target different types of prey. In this study, we focused on the trophic ecology and venom toxicity of Phoneutria boliviensis F. O. Pickard-Cambridge, 1897, a Central American spider of medical importance. We tested the hypothesis that its venom is adapted to catch vertebrate prey by studying its trophic ecology and venom toxicity against selected vertebrate and invertebrate prey. We compared both trophic ecology (based on acceptance experiments) and toxicity (based on bioassays) among sexes of this species. We found that P. boliviensis accepted geckos, spiders, and cockroaches as prey, but rejected frogs. There was no difference in acceptance between males and females. The venom of P. boliviensis was far more efficient against vertebrate (geckos) than invertebrate (spiders) prey in both immobilization time and LD50. Surprisingly, venom of males was more efficient than that of females. Our results suggest that P. boliviensis has adapted its venom to catch vertebrates, which may explain its toxicity to humans.


Subject(s)
Host-Parasite Interactions , Predatory Behavior , Spider Venoms/toxicity , Spiders/parasitology , Vertebrates/parasitology , Animals , Central America , Female , Male
15.
Regul Toxicol Pharmacol ; 106: 105-110, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31028798

ABSTRACT

Compared to oral toxicity tests, dermal toxicity tests offer little or no additional scientific information or public health protection for agrochemical-formulated products (US EPA, 2016). Based on that, a retrospective analysis of the results of acute oral and dermal LD50 studies of agrochemical products registered in Brazil was carried out by the Technical Group on Toxicological Risk Assessment (GT-ART) of the Brazilian Crop Protection Association (ANDEF). The data were obtained from 6 agrochemical industries that are associated to ANDEF, following these considerations: only rat studies were selected; only paired studies were chosen; only studies performed with top doses ≥2,000 mg/kg were selected; biological products were excluded. The dataset includes 342 formulated products in 21 formulation types. Among these 342 formulated products, 228 have a single active ingredient, 107 have 2 and 7 have 3 or more. The comparison of acute oral to dermal toxicity studies of agrochemical-formulated products registered in Brazil corroborates the United States Environmental Protection Agency (US EPA) conclusion on waiving acute dermal toxicity tests, which will result in avoiding unnecessary use of time and resources, data generation costs and animal testing.


Subject(s)
Agrochemicals/toxicity , Decision Making , Skin/drug effects , Toxicity Tests, Acute , Administration, Cutaneous , Administration, Oral , Agrochemicals/administration & dosage , Animals , Brazil , Dose-Response Relationship, Drug , Humans , Rats , Risk Assessment , United States , United States Environmental Protection Agency
16.
Article in English | MEDLINE | ID: mdl-30710688

ABSTRACT

INTRODUCTION: Assaying venom toxicity in a suitable model system is often tricky, since normally the amount of venom is in short supply, and the assay subjects, i.e., typically mice, require large amounts. There is also no guarantee that the effects observed in the bioassay reflect the true nature of the venom's intended effects, as the animals used for assessment might not be the prey items to which the venom has evolved. METHODS: We harvested tarantula venoms from the Indian Poecilotheria regalis and the Mexican Bonnetina papalutlensis using light anesthesia and electrical stimulation. We follow the definition of venom as stated in (Nelsen et al., 2014). The recovered venom was lyophilized and reconstituted in sterile saline solution for injections. Drosophila melanogaster third instar larvae and adult flies were injected with 4.6 nanoliters of different concentrations of the venoms into the sixth abdominal segment, and scored for survival and development to adulthood. RESULTS: The injected venoms were very effective in provoking lethality of injected larvae and adults, with an LD50 of 1-5 nanomoles protein /gram wet weight. Comparison with other toxicity bioassays, i.e., mice and crickets -using the same P. regalis venom- renders the Drosophila bioassays three orders of magnitude more sensitive. The P. regalis and B. papalutlensis venoms have similar LD50. DISCUSSION: These bioassays use a small amount of venom compared to other bioassays, allowing characterization with far fewer starting material. As it uses insects, phylogenetically close to the intended prey victims, it also points to the efficiency of the tarantula venom for its preferred prey items, and thus, links as well to the tarantulas' ecology.


Subject(s)
Drosophila melanogaster/drug effects , Spider Venoms/toxicity , Animals , Biological Assay/methods , Larva/drug effects , Lethal Dose 50 , Spider Venoms/isolation & purification
17.
Toxins (Basel) ; 11(1)2019 01 12.
Article in English | MEDLINE | ID: mdl-30642048

ABSTRACT

Botulinum neurotoxin type-A (BoNTA) is one of the seven different serotypes (A to G) produced by Clostridium botulinum. A stability-indicating size-exclusion chromatography (SEC) method was developed and validated, and the specificity was confirmed by forced degradation study, interference of the excipients, and peaks purity. The method was applied to assess the content and high-molecular-weight (HMW) forms of BoNTA in biopharmaceutical products, and the results were compared with those of the LD50 mouse bioassay, the T-47D cell culture assay, and the reversed-phase chromatography (RPC) method, giving mean values of 0.71% higher, 0.36% lower, and 0.87% higher, respectively. Aggregated forms showed significant effects on cytotoxicity, as well as a decrease in the bioactivity (p < 0.05). The employment of the proposed method in conjunction with the optimized analytical technologies for the analysis of the intact and altered forms of the biotechnology-derived medicines, in the correlation studies, enabled the demonstration of the capability of each one of the methods and allowed for great improvements, thereby assuring their safe and effective use.


Subject(s)
Botulinum Toxins, Type A/analysis , Botulinum Toxins, Type A/toxicity , Animals , Biological Assay , Cell Line , Cell Survival/drug effects , Chromatography, Gel , Chromatography, Liquid , Chromatography, Reverse-Phase , Female , Humans , Lethal Dose 50 , Mice , Reproducibility of Results
18.
Coord Chem Rev ; 372: 117-140, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-32226092

ABSTRACT

In the last 30 years, since the discovery that vanadium is a cofactor found in certain enzymes of tunicates and possibly in mammals, different vanadium-based drugs have been developed targeting to treat different pathologies. So far, the in vitro studies of the insulin mimetic, antitumor and antiparasitic activity of certain compounds of vanadium have resulted in a great boom of its inorganic and bioinorganic chemistry. Chemical speciation studies of vanadium with amino acids under controlled conditions or, even in blood plasma, are essential for the understanding of the biotransformation of e.g. vanadium antidiabetic complexes at the physiological level, providing clues of their mechanism of action. The present article carries out a bibliographical research emphaticizing the chemical speciation of the vanadium with different amino acids and reviewing also some other important aspects such as its chemistry and therapeutical applications of several vanadium complexes.

19.
Biochem Biophys Rep ; 10: 282-286, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28955756

ABSTRACT

The C. elegans NB327 mutant strain is characterized for the knockdown of the dic-1 gene. The dic-1 gene is homologous to the dice-1 gene in humans, encoding the protein DICE-1 as a tumor suppressor. Absence or under-regulation of the dice-1 gene can be reflected in lung and prostate cancer [17], [18]. This study evaluated the effect of EEAML on the C. elegans NB327 mutant strain. Phenotypic aspects such as morphology, body length, locomotion, and reproductive behaviour were analyzed. It is important to emphasize that the strain presents a phenotype characteristic with respect to egg laying and hatching. Reported studies showed that Annona muricata extract and its active components evidence anti-cancer and anti-tumor effects, through experimentation in vivo and in vitro models. However, neurotoxicity has been reported as a side effect. The results showed that the mutant strain NB327 was exposed to EEAML (5 mg/ml) concentration, it showed a significant decrease in average locomotion, resulting in 13 undulations in 30 s. This contrasts with the control strain's 17.5 undulations in 30 s. Similarly, the number of progenies was reduced from 188 progenies (control strain) to 114 and 92 progenies at the dose of (1 mg/ml and 5 mg/m) EEAML. The results of this study suggest that EEAML has a possible neurotoxic effect in concentrations equal to or greater than 5 mg/ml. Also, it does not have positive effects on the mutant strain of Caenorhabditis elegans NB327 phenotype.

20.
Rev Iberoam Micol ; 34(4): 220-224, 2017.
Article in Spanish | MEDLINE | ID: mdl-28830736

ABSTRACT

BACKGROUND: The consumption of wild mushrooms has increased in recent years. However, not all mushrooms are edible and some of them may cause poisoning. Therefore, their toxicity needs to be studied. Artemia franciscana is a crustacean used in toxicity tests including toxins of fungi. AIMS: To determine the percentage of inhibition and mortality produced by extracts of several basidiomycetes on the hatching of A. franciscana cysts. METHODS: Aqueous extracts were prepared from 15 species of mushrooms collected from Jalisco state, Mexico. Different concentrations of the extracts were assayed in order to test their toxicity. Potassium dichromate and artificial seawater were the positive and negative controls, respectively. The percentages of hatching and mortality of the cysts were evaluated. RESULTS: Inhibition of hatching greater than 80% in all the concentrations tested was found in 13 of the 15 species studied, in contrast to the positive control, which inhibited cyst hatching less than 50% in all cases. The highest percentage of mortality in the cysts was caused by the aqueous extracts of Amanita virosa, Leucopaxillus amarus, and Tylopilus violatinctus, and the lowest by Macrolepiota mastoidea. CONCLUSIONS: The brine shrimp bioassay appeared to be useful in the evaluation of the toxicity of several basidiomycetes, with the exception of Scleroderma texense, a mushroom considered poisonous, which showed no toxicity over A. franciscana.


Subject(s)
Artemia/drug effects , Basidiomycota/chemistry , Animals , Artemia/growth & development , Artemia/microbiology , Biological Assay , Mexico , Mushroom Poisoning , Ovum/drug effects , Species Specificity , Tissue Extracts/toxicity , Water
SELECTION OF CITATIONS
SEARCH DETAIL