Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Curr Issues Mol Biol ; 46(7): 7702-7718, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39057097

ABSTRACT

The IgLON family of cell adhesion molecules consists of five members (LSAMP, OPCML, neurotrimin, NEGR1, and IgLON5) discovered as supporters of neuronal development, axon growth and guidance, and synapse formation and maintenance. Tumour suppression properties have recently been emerging based on antiproliferative effects through the modulation of oncogenic pathways. Available evidence endorses a role for non-coding RNAs or microRNAs as relevant controllers of IgLON molecule expression that can impact their critical physiological and pathological roles. Current findings support a function for long non-coding RNAs and microRNAs in the modulation of LSAMP expression in cell senescence, cancer biogenesis, addiction, and pulmonary hypertension. For OPCML, data point to a role for several microRNAs in the control of tumorigenesis. MicroRNAs were detected in neurotrimin-mediated functions in cancer biogenesis and in Schwann cell responses to peripheral nerve injury. For NEGR1, studies have mainly investigated microRNA involvement in neuronal responses to ischaemic injury, although data also exist about tumorigenesis and endothelial cell dysfunction. For IgLON5, information is only available about microRNA involved in myocardial infarction. In conclusion, despite much information being still missing and further research needed, the emerging picture favours a model in which non-coding RNAs exert a crucial role in modulating IgLON expression, ultimately affecting their important physiological functions.

2.
Genes (Basel) ; 14(10)2023 09 28.
Article in English | MEDLINE | ID: mdl-37895235

ABSTRACT

In the brain, cell adhesion molecules (CAMs) are critical for neurite outgrowth, axonal fasciculation, neuronal survival and migration, and synapse formation and maintenance. Among CAMs, the IgLON family comprises five members: Opioid Binding Protein/Cell Adhesion Molecule Like (OPCML or OBCAM), Limbic System Associated Membrane Protein (LSAMP), neurotrimin (NTM), Neuronal Growth Regulator 1 (NEGR1), and IgLON5. IgLONs exhibit three N-terminal C2 immunoglobulin domains; several glycosylation sites; and a glycosylphosphatidylinositol anchoring to the membrane. Interactions as homo- or heterodimers in cis and in trans, as well as binding to other molecules, appear critical for their functions. Shedding by metalloproteases generates soluble factors interacting with cellular receptors and activating signal transduction. The aim of this review was to analyse the available data implicating a role for IgLONs in neuropsychiatric disorders. Starting from the identification of a pathological role for antibodies against IgLON5 in an autoimmune neurodegenerative disease with a poorly understood mechanism of action, accumulating evidence links IgLONs to neuropsychiatric disorders, albeit with still undefined mechanisms which will require future thorough investigations.


Subject(s)
Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Cell Adhesion Molecules/metabolism , Immunoglobulins/genetics , Brain/metabolism , GPI-Linked Proteins/metabolism , Cell Adhesion Molecules, Neuronal/genetics
3.
Am J Cancer Res ; 13(9): 3898-3920, 2023.
Article in English | MEDLINE | ID: mdl-37818072

ABSTRACT

Colorectal cancer (CRC) is one of the most common malignant cancers. The tumor microenvironment (TME) plays an important role in tumor progression and affects the prognosis of CRC patients. However, the TME has been poorly characterized and studies aiming to identify the biomarkers or combined risk scores of CRC patients are limited. Here, we overlapped differentially expressed genes and stromal/immune-score-related modules to identify immune- and stromal-related genes in CRC patients. These genes were fed into the LASSO-Cox regression analysis for dimensionality reduction to establish a TME-associated risk model. A high TME-associated risk score was identified as an unfavorable prognostic factor in The Cancer Genome Atlas and Gene Expression Omnibus datasets, as well as in a subgroup analysis, stratified by gender, age, microsatellite instability, and tumor lymph node metastasis stage. Ten genes were mutated more frequently in the high TME-associated risk score group; these mutations may be related to changes in the TME and the response to immunotherapy. Thus, a lower TME-associated risk score may indicate a better response to immunotherapy and longer overall survival. Experimental validation demonstrated that LSAMP, a novel TME-associated-risk-score-related gene, increased sensitivity of CRC to CD8+-T-cell-mediated cytotoxicity. A mechanistic investigation showed that the HMGA2/microRNA-200c-3p/LSAMP/Wnt axis was an immunological factor in CRC patients. To conclusion, we demonstrated that the TME-associated risk score model could be a reliable prognostic biomarker for CRC patients and highlighted the significance of the HMGA2/microRNA-200c-3p/LSAMP/Wnt axis in the oncoimmunology of CRC.

4.
Int J Mol Sci ; 23(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36498834

ABSTRACT

The primary cilium is an organelle with a central role in cellular signal perception. Mutations in genes that encode cilia-associated proteins result in a collection of human syndromes collectively termed ciliopathies. Of these, the Bardet-Biedl syndrome (BBS) is considered one of the archetypical ciliopathies, as patients exhibit virtually all respective clinical phenotypes, such as pathological changes of the retina or the kidney. However, the behavioral phenotype associated with ciliary dysfunction has received little attention thus far. Here, we extensively characterized the behavior of two rodent models of BBS, Bbs6/Mkks, and Bbs8/Ttc8 knockout mice concerning social behavior, anxiety, and cognitive abilities. While learning tasks remained unaffected due to the genotype, we observed diminished social behavior and altered communication. Additionally, Bbs knockout mice displayed reduced anxiety. This was not due to altered adrenal gland function or corticosterone serum levels. However, hypothalamic expression of Lsamp, the limbic system associated protein, and Adam10, a protease acting on Lsamp, were reduced. This was accompanied by changes in characteristics of adult hypothalamic neurosphere cultures. In conclusion, we provide evidence that behavioral changes in Bbs knockout mice are mainly found in social and anxiety traits and might be based on an altered architecture of the hypothalamus.


Subject(s)
Bardet-Biedl Syndrome , Mice , Adult , Animals , Female , Humans , Bardet-Biedl Syndrome/metabolism , Mice, Knockout , Proteins/metabolism , Cilia/metabolism , Communication , Cytoskeletal Proteins/metabolism
5.
Cancer Cell Int ; 22(1): 181, 2022 May 06.
Article in English | MEDLINE | ID: mdl-35524253

ABSTRACT

BACKGROUND: Long noncoding RNAs (lncRNAs) are emerging as master regulators for gene expression and thus play a vital role in human tumorigenesis and progression. But the involvement of novel lncRNAs in non-small cell lung cancer (NSCLC) remains largely unelucidated. METHODS: A total of 170 NSCLC and their adjacent non-tumor tissues were enrolled to detect the expression of Lnc-LSAMP-1 by RT-qPCR. The effects of Lnc-LSAMP-1 on cell proliferation, migration, invasion and drug-sensitivity were determined by in vitro and in vivo experiments. The proteins that interact with Lnc-LSAMP-1were confirmed by RNA pull-down assay. RNA-sequencing were used to identify the potential targets of Lnc-LSAMP-1 in NSCLC. RESULTS: We found that Lnc-LSAMP-1 was significantly down-regulated in 170 cases of NSCLC tissues when compared to their adjacent non-cancerous tissues. Loss expression of Lnc-LSAMP-1 was notably correlated with unfavorable prognosis of NSCLC patients. The ectopic expression of Lnc-LSAMP-1 drastically inhibited lung cancer cell proliferation, viability, invasion and migration ability, arrested cell cycle and facilitated apoptosis. Chemotherapy sensitization experiments showed that over-expressed Lnc-LSAMP-1 enhanced the inhibition of cell proliferation induced by TKI. Mechanistically, Lnc-LSAMP-1-LSAMP formed a complex which could protect the degradation of LSAMP gene, and thus exerted crucial roles in NSCLC progression and TKI targeted treatment. CONCLUSIONS: Consequently, our findings highlight the function and prognostic value of Lnc-LSAMP-1 in NSCLC and provide potential novel therapeutic targets and prognostic biomarkers for patients with NSCLC.

6.
J Pers Med ; 11(6)2021 Jun 20.
Article in English | MEDLINE | ID: mdl-34202934

ABSTRACT

Lung cancer has been a leading cause of cancer-related death for decades and therapeutic strategies for non-driver mutation lung cancer are still lacking. A novel approach for this type of lung cancer is an emergent requirement. Here we find that loss of LSAMP (Limbic System Associated Membrane Protein), compared to other IgLON family of proteins NTM (Neurotrimin) and OPCML (OPioid-binding Cell adhesion MoLecule), exhibits the strongest prognostic and therapeutic significance in predicting lung adenocarcinoma (LUAD) progression. Lower expression of LSAMP and NTM, but not OPCML, were found in tumor parts compared with normal parts in six LUAD patients, and this was validated by public datasets, Oncomine® and TCGA. The lower expression of LSAMP, but not NTM, was correlated to shorter overall survival. Two epigenetic regulations, including hypermethylation and miR-143-3p upregulation but not copy number variation, were associated with downregulation of LSAMP in LUAD patients. Pathway network analysis showed that NEGR1 (Neuronal Growth Regulator 1) was involved in the regulatory loop of LSAMP. The biologic functions by LSMAP knockdown in lung cancer cells revealed LSMAP was linked to cancer cell migration via epithelial-mesenchymal transition (EMT) but not proliferation nor stemness of LUAD. Our result showed for the first time that LSAMP acts as a potential tumor suppressor in regulating lung cancer. A further deep investigation into the role of LSAMP in lung cancer tumorigenesis would provide therapeutic hope for such affected patients.

7.
Int J Mol Sci ; 22(13)2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34203377

ABSTRACT

The members of the IgLON superfamily of cell adhesion molecules facilitate fundamental cellular communication during brain development, maintain functional brain circuitry, and are associated with several neuropsychiatric disorders such as depression, autism, schizophrenia, and intellectual disabilities. Usage of alternative promoter-specific 1a and 1b mRNA isoforms in Lsamp, Opcml, Ntm, and the single promoter of Negr1 in the mouse and human brain has been previously described. To determine the precise spatiotemporal expression dynamics of Lsamp, Opcml, Ntm isoforms, and Negr1, in the developing brain, we generated isoform-specific RNA probes and carried out in situ hybridization in the developing (embryonic, E10.5, E11.5, 13.5, 17; postnatal, P0) and adult mouse brains. We show that promoter-specific expression of IgLONs is established early during pallial development (at E10.5), where it remains throughout its differentiation through adulthood. In the diencephalon, midbrain, and hindbrain, strong expression patterns are initiated a few days later and begin fading after birth, being only faintly expressed during adulthood. Thus, the expression of specific IgLONs in the developing brain may provide the means for regionally specific functionality as well as for specific regional vulnerabilities. The current study will therefore improve the understanding of how IgLON genes are implicated in the development of neuropsychiatric disorders.


Subject(s)
Brain/embryology , Cell Adhesion Molecules/metabolism , Promoter Regions, Genetic/genetics , Animals , Brain/metabolism , Cerebral Cortex/embryology , Cerebral Cortex/metabolism , Hippocampus/embryology , Hippocampus/metabolism , Immunohistochemistry , In Situ Hybridization , Male , Mesencephalon/embryology , Mesencephalon/metabolism , Mice , Mice, Inbred C57BL , Prosencephalon/embryology , Prosencephalon/metabolism , Spinal Cord/embryology , Spinal Cord/metabolism
8.
J Cell Sci ; 133(19)2020 10 01.
Article in English | MEDLINE | ID: mdl-32878945

ABSTRACT

The receptor tyrosine kinase (RTK) pathway plays an essential role in development and disease by controlling cell proliferation and differentiation. Here, we profile the Drosophila larval brain by single-cell RNA-sequencing and identify Amalgam (Ama), which encodes a cell adhesion protein of the immunoglobulin IgLON family, as regulating the RTK pathway activity during glial cell development. Depletion of Ama reduces cell proliferation, affects glial cell type composition and disrupts the blood-brain barrier (BBB), which leads to hemocyte infiltration and neuronal death. We show that Ama depletion lowers RTK activity by upregulating Sprouty (Sty), a negative regulator of the RTK pathway. Knockdown of Ama blocks oncogenic RTK signaling activation in the Drosophila glioma model and halts malignant transformation. Finally, knockdown of a human ortholog of Ama, LSAMP, results in upregulation of SPROUTY2 in glioblastoma cell lines, suggesting that the relationship between Ama and Sty is conserved.


Subject(s)
Drosophila Proteins/genetics , Drosophila , Immunoglobulins/genetics , Membrane Proteins/genetics , Animals , Brain/metabolism , Drosophila/metabolism , Gene Expression Regulation, Developmental , Larva/metabolism , Membrane Proteins/metabolism , Neuroglia/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism
9.
EBioMedicine ; 50: 178-190, 2019 12.
Article in English | MEDLINE | ID: mdl-31727599

ABSTRACT

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the editor after publication concerns were raised with respect to data presented in Figure 2. The journal contacted Southern Medical University, Guangzhou, Guangdong Province, China, who formed an Academic Committee to investigate. According to the "Academic Ethics and Implementation Rules" of Southern Medical University, the Committee reported evidence of improper preservation of original data and incorrect use of pictures, and recommended immediate withdrawal of the paper. Specifically, in the PC-3 group of Fig. 2H, the 'Control' cell migration image had been partially duplicated in the 'Empty vector' image. As per journal policy, original files used to create the entire figure were requested. Raw western blot images were not available for Figure 2 C+F, and experimental repeats yielded protein level discrepancies with the original published data. The editors therefore no longer have confidence in the integrity of these data.


Subject(s)
Cell Adhesion Molecules, Neuronal/genetics , Decorin/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA Interference , RNA, Antisense/genetics , Aged , Aged, 80 and over , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Disease Progression , Epithelial-Mesenchymal Transition/genetics , GPI-Linked Proteins/genetics , Genes, Reporter , Humans , Male , Middle Aged , Models, Biological , Neoplasm Grading , Neoplasm Staging , Prostatic Neoplasms/mortality
10.
Brain Res Bull ; 140: 5-18, 2018 06.
Article in English | MEDLINE | ID: mdl-29605488

ABSTRACT

Cell surface neural adhesion proteins are critical components in the complex orchestration of cell proliferation, apoptosis, and neuritogenesis essential for proper brain construction and behavior. We focused on the impact of two plasticity-associated IgLON family neural adhesion molecules, Neurotrimin (Ntm) and Limbic system associated membrane protein (Lsamp), on mouse behavior and its underlying neural development. Phenotyping neurons derived from the hippocampi of Lsamp-/-, Ntm-/- and Lsamp-/-Ntm-/- mice was performed in parallel with behavioral testing. While the anatomy of mutant brains revealed no gross changes, the Ntm-/- hippocampal neurons exhibited premature sprouting of neurites and manifested accelerated neurite elongation and branching. We propose that Ntm exerts an inhibitory impact on neurite outgrowth, whereas Lsamp appears to be an enhancer of the said process as premature neuritogenesis in Ntm-/- neurons is apparent only in the presence of Lsamp. We also show interplay between Lsamp and Ntm in regulating tissue homeostasis: the impact of Ntm on cellular proliferation was dependent on Lsamp, and Lsamp appeared to be a positive regulator of apoptosis in the presence of Ntm. Behavioral phenotyping indicated test-specific interactions between Lsamp and Ntm. The phenotypes of single mutant lines, such as reduced swimming speed in Morris water maze and increased activity in the elevated plus maze, were magnified in Lsamp-/-Ntm-/- mice. Altogether, evidence both from behavioral experiments and cultured hippocampal cells show combined and differential interactions between Ntm and Lsamp in the formation of hippocampal circuits and behavioral profiles. We demonstrate that mutual interactions between IgLON molecules regulate the initiation of neurite sprouting at very early ages, and even cell-autonomously, independent of their regulation of cell-cell adhesion.


Subject(s)
Behavior, Animal/physiology , Cell Adhesion Molecules, Neuronal/metabolism , Hippocampus/growth & development , Hippocampus/metabolism , Neural Cell Adhesion Molecules/metabolism , Animals , Apoptosis/physiology , Cell Adhesion Molecules, Neuronal/genetics , Cell Proliferation/physiology , Cells, Cultured , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Hippocampus/pathology , Male , Maze Learning/physiology , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Neural Cell Adhesion Molecules/genetics , Neuronal Outgrowth/physiology , Neurons/metabolism , Neurons/pathology , Primary Cell Culture
11.
Front Neurosci ; 11: 38, 2017.
Article in English | MEDLINE | ID: mdl-28210208

ABSTRACT

IgLON family is composed of five genes: Lsamp, Ntm, Opcml, Negr1, and Iglon5; encoding for five highly homologous neural adhesion proteins that regulate neurite outgrowth and synapse formation. In the current study we performed in silico analysis revealing that Ntm and Opcml display similar genomic structure as previously reported for Lsamp, characterized by two alternative promotors 1a and 1b. Negr1 and Iglon5 transcripts have uniform 5' region, suggesting single promoter. Iglon5, the recently characterized family member, shares high level of conservation and structural qualities characteristic to IgLON family such as N-terminal signal peptide, three Ig domains, and GPI anchor binding site. By using custom 5'-isoform-specific TaqMan gene-expression assay, we demonstrated heterogeneous expression of IgLON transcripts in different areas of mouse brain and several-fold lower expression in selected tissues outside central nervous system. As an example, the expression of IgLON transcripts in urogenital and reproductive system is in line with repeated reports of urogenital tumors accompanied by mutations in IgLON genes. Considering the high levels of intra-family homology shared by IgLONs, we investigated potential compensatory effects at the level of IgLON isoforms in the brains of mice deficient of one or two family members. We found that the lack of IgLONs is not compensated by a systematic quantitative increase of the other family members. On the contrary, the expression of Ntm 1a transcript and NEGR1 protein was significantly reduced in the frontal cortex of Lsamp-deficient mice suggesting that the expression patterns within IgLON family are balanced coherently. The actions of individual IgLONs, however, can be antagonistic as demonstrated by differential expression of Syp in deletion mutants of IgLONs. In conclusion, we show that the genomic twin-promoter structure has impact on both anatomical distribution and intra-family interactions of IgLON family members. Remarkable variety in the activity levels of 1a and 1b promoters both in the brain and in other tissues, suggests complex functional regulation of IgLONs by alternative signal peptides driven by 1a and 1b promoters.

12.
Cancer Genet ; 208(10): 517-22, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26345353

ABSTRACT

The 3q13.31 microdeletion syndrome is characterized by developmental delay, postnatal growth above the mean, characteristic facial features, and abnormal male genitalia. Moreover, a frequent deletion in the 3q13.31 chromosome region has been identified in patients who are affected by osteosarcomas. Among the genes located within the deleted region, the involvement of the limbic system-associated membrane protein gene (LSAMP), together with a non-coding RNA tumor suppressor candidate 7 gene (TUSC7), has been suggested. We describe the case of an adult acute myeloid leukemia (AML) patient with a novel chromosomal rearrangement characterized by a 3q13.31 microdeletion and an extra copy of the 3q13.31-q29 chromosomal region translocated to the long arm of the Y chromosome. This karyotypic aberration seems to cause LSAMP and TUSC7 gene expression dysregulation. In conclusion, we report the first case of LSAMP and TUSC7 gene overexpression, possibly due to a position effect in an AML patient bearing a 3q13.31 cryptic deletion.


Subject(s)
Cell Adhesion Molecules, Neuronal/genetics , Chromosomes, Human, Pair 3/genetics , Leukemia, Myeloid, Acute/genetics , RNA, Long Noncoding/genetics , Aged , Chromosomes, Human, Y/genetics , GPI-Linked Proteins/genetics , Humans , Leukemia, Myeloid, Acute/pathology , Male , Sequence Deletion , Translocation, Genetic
13.
Front Neurosci ; 9: 205, 2015.
Article in English | MEDLINE | ID: mdl-26136648

ABSTRACT

Limbic system associated membrane protein (Lsamp) gene is involved in behavioral adaptation in social and anxiogenic environments and has been associated with a broad spectrum of psychiatric diseases. Here we studied the activity of alternative promoters of Lsamp gene in mice in three rearing conditions (standard housing, environmental enrichment and social isolation) and in two different genetic backgrounds (129S6/SvEv and C57BL/6). Isolation had no effect on the expression levels of Lsamp. Environmental enrichment elevated the expression levels of Lsamp 1b transcript specifically in the hippocampus in B6 mice, and the same tendency existed across both mouse lines and both transcripts. Furthermore, we showed that the density of cells exhibiting 1b promoter activity is remarkably higher in the subgranular zone of the dentate gyrus in the hippocampal formation which is a specific area of enrichment-induced neurogenesis in adult rodents. On the contrary to 1b, 1a promoter is selectively active in the pyramidal and granule cell layers. We provide evidence that Lsamp modulates enrichment-induced activation of Bdnf as the enrichment-induced elevation of Bdnf in the hippocampus is significantly diminished in Lsamp-deficient mice; furthermore, a significant correlation was found between the expression levels of Lsamp and Bdnf transcripts in the hippocampus and frontal cortex. Significant strain differences in Lsamp expression were detected in the hippocampus, frontal cortex and thalamus that could be related to the different behavioral phenotype of B6 and 129Sv mice. Our data provides further evidence that LSAMP is implicated in the hippocampal connectivity and plasticity thereby modulating adaptability in changing environments.

14.
EBioMedicine ; 2(12): 1957-64, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26844274

ABSTRACT

Evaluation of cancer genomes in global context is of great interest in light of changing ethnic distribution of the world population. We focused our study on men of African ancestry because of their disproportionately higher rate of prostate cancer (CaP) incidence and mortality. We present a systematic whole genome analyses, revealing alterations that differentiate African American (AA) and Caucasian American (CA) CaP genomes. We discovered a recurrent deletion on chromosome 3q13.31 centering on the LSAMP locus that was prevalent in tumors from AA men (cumulative analyses of 435 patients: whole genome sequence, 14; FISH evaluations, 101; and SNP array, 320 patients). Notably, carriers of this deletion experienced more rapid disease progression. In contrast, PTEN and ERG common driver alterations in CaP were significantly lower in AA prostate tumors compared to prostate tumors from CA. Moreover, the frequency of inter-chromosomal rearrangements was significantly higher in AA than CA tumors. These findings reveal differentially distributed somatic mutations in CaP across ancestral groups, which have implications for precision medicine strategies.


Subject(s)
Black or African American/genetics , Cell Adhesion Molecules, Neuronal/genetics , Genetic Association Studies , Genetic Variation , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Aged , Biomarkers, Tumor , Cluster Analysis , Disease Progression , GPI-Linked Proteins/genetics , Gene Deletion , Gene Rearrangement , Genetic Loci , Genomics , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Mutation , Neoplasm Grading , Neoplasm Staging , Oncogene Proteins, Fusion/genetics , PTEN Phosphohydrolase , Polymorphism, Single Nucleotide , Prostatic Neoplasms/metabolism , Reproducibility of Results
15.
Gene ; 537(1): 29-40, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24389500

ABSTRACT

Change in transcription start site (TSS) usage is an important mechanism for the control of transcription process, and has a significant effect on the isoforms being transcribed. One of the goals in the study of TSS is the understanding of how and why their usage differs in different tissues or under different conditions. In light of recent efforts in the mapping of transcription start site landscape using high-throughput sequencing approaches, a quantitative and automated method is needed to process all the data that are being produced. In this work we propose a statistical approach that will classify changes in TSS distribution between different samples into several categories of changes that may have biological significance. Genes selected by the classifiers can then be analyzed together with additional supporting data to determine their biological significance. We use a set of time-course TSS data from mouse dendritic cells stimulated with lipopolysaccharide (LPS) to demonstrate the usefulness of our method.


Subject(s)
Gene Expression Regulation , Immunity, Innate/genetics , Toll-Like Receptors/metabolism , Transcription Initiation Site , Animals , Data Interpretation, Statistical , Databases, Genetic , Dendritic Cells/drug effects , Dendritic Cells/physiology , Gene Ontology , Humans , Lipopolysaccharides/pharmacology , Mice , Promoter Regions, Genetic , Proto-Oncogene Mas , Signal Transduction/genetics , Toll-Like Receptors/genetics
16.
Brain Pathol ; 24(3): 239-46, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24354918

ABSTRACT

Epithelioid glioblastoma is among the rarest variants of glioblastoma and is not formally recognized in the World Health Organization classification; it is composed of monotonous, discohesive sheets of small, round cells with eccentric nuclei and eosinophilic cytoplasm devoid of cytoplasmic stellate processes, showing the retention of nuclear staining of INI-1 protein. Here, we report a case involving a 22-year-old man with a right occipital lobe tumor, which comprised mainly epithelioid tumor cells with a small area of diffusely infiltrating less atypical astrocytoma cells showing a lower cell density. Array comparative genomic hybridization separately performed for each histologically distinct component demonstrated eight shared copy number alterations (CNAs) and three CNAs observed only in epithelioid cells; one of the latter was a homozygous deletion of a tumor suppressor gene, LSAMP, at 3q13.31. BRAF V600E mutation was observed both in epithelioid tumor cells and in diffusely infiltrating less atypical astrocytoma cells. Our findings suggest that the regional loss of LSAMP led to the aggressive nature of epithelioid cells in the present case of epithelioid glioblastoma.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioblastoma/genetics , Glioblastoma/pathology , Proto-Oncogene Proteins B-raf/genetics , Valine/genetics , DNA Mutational Analysis , Glutamic Acid/genetics , Humans , Isocitrate Dehydrogenase/genetics , Male , Polymorphism, Single Nucleotide/genetics , Young Adult
17.
Front Genet ; 4: 191, 2013.
Article in English | MEDLINE | ID: mdl-24143143

ABSTRACT

Survivorship is a trait characterized by endurance and virility in the face of hardship. It is largely considered a psychosocial attribute developed during fatal conditions, rather than a biological trait for robustness in the context of complex, age-dependent diseases like coronary artery disease (CAD). The purpose of this paper is to present the novel phenotype, survivorship in CAD as an observed survival advantage concurrent with clinically significant CAD. We present a model for characterizing survivorship in CAD and its relationships with overlapping time- and clinically-related phenotypes. We offer an optimal measurement interval for investigating survivorship in CAD. We hypothesize genetic contributions to this construct and review the literature for evidence of genetic contribution to overlapping phenotypes in support of our hypothesis. We also present preliminary evidence of genetic effects on survival in people with clinically significant CAD from a primary case-control study of symptomatic coronary disease. Identifying gene variants that confer improved survival in the context of clinically appreciable CAD may improve our understanding of cardioprotective mechanisms acting at the gene level and potentially impact patients clinically in the future. Further, characterizing other survival-variant genetic effects may improve signal-to-noise ratio in detecting gene associations for CAD.

SELECTION OF CITATIONS
SEARCH DETAIL