Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
PeerJ ; 12: e17277, 2024.
Article in English | MEDLINE | ID: mdl-38708352

ABSTRACT

Background: Squamata (lizards, snakes, and amphisbaenians) is a Triassic lineage with an extensive and complex biogeographic history, yet no large-scale study has reconstructed the ancestral range of early squamate lineages. The fossil record indicates a broadly Pangaean distribution by the end- Cretaceous, though many lineages (e.g., Paramacellodidae, Mosasauria, Polyglyphanodontia) subsequently went extinct. Thus, the origin and occupancy of extant radiations is unclear and may have been localized within Pangaea to specific plates, with potential regionalization to distinct Laurasian and Gondwanan landmasses during the Mesozoic in some groups. Methods: We used recent tectonic models to code extant and fossil squamate distributions occurring on nine discrete plates for 9,755 species, with Jurassic and Cretaceous fossil constraints from three extinct lineages. We modeled ancestral ranges for crown Squamata from an extant-only molecular phylogeny using a suite of biogeographic models accommodating different evolutionary processes and fossil-based node constraints from known Jurassic and Cretaceous localities. We hypothesized that the best-fit models would not support a full Pangaean distribution (i.e., including all areas) for the origin of crown Squamata, but would instead show regionalization to specific areas within the fragmenting supercontinent, likely in the Northern Hemisphere where most early squamate fossils have been found. Results: Incorporating fossil data reconstructs a localized origin within Pangaea, with early regionalization of extant lineages to Eurasia and Laurasia, while Gondwanan regionalization did not occur until the middle Cretaceous for Alethinophidia, Scolecophidia, and some crown Gekkotan lineages. While the Mesozoic history of extant squamate biogeography can be summarized as a Eurasian origin with dispersal out of Laurasia into Gondwana, their Cenozoic history is complex with multiple events (including secondary and tertiary recolonizations) in several directions. As noted by previous authors, squamates have likely utilized over-land range expansion, land-bridge colonization, and trans-oceanic dispersal. Tropical Gondwana and Eurasia hold more ancient lineages than the Holarctic (Rhineuridae being a major exception), and some asymmetries in colonization (e.g., to North America from Eurasia during the Cenozoic through Beringia) deserve additional study. Future studies that incorporate fossil branches, rather than as node constraints, into the reconstruction can be used to explore this history further.


Subject(s)
Fossils , Animals , Phylogeny , Biological Evolution , Snakes/anatomy & histology , Snakes/classification , Snakes/genetics , Lizards/anatomy & histology , Lizards/genetics , Lizards/classification , Phylogeography , Europe , Asia
2.
Stud Mycol ; 107: 251-388, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38600961

ABSTRACT

During 25 surveys of global Phytophthora diversity, conducted between 1998 and 2020, 43 new species were detected in natural ecosystems and, occasionally, in nurseries and outplantings in Europe, Southeast and East Asia and the Americas. Based on a multigene phylogeny of nine nuclear and four mitochondrial gene regions they were assigned to five of the six known subclades, 2a-c, e and f, of Phytophthora major Clade 2 and the new subclade 2g. The evolutionary history of the Clade appears to have involved the pre-Gondwanan divergence of three extant subclades, 2c, 2e and 2f, all having disjunct natural distributions on separate continents and comprising species with a soilborne and aquatic lifestyle and, in addition, a few partially aerial species in Clade 2c; and the post-Gondwanan evolution of subclades 2a and 2g in Southeast/East Asia and 2b in South America, respectively, from their common ancestor. Species in Clade 2g are soilborne whereas Clade 2b comprises both soil-inhabiting and aerial species. Clade 2a has evolved further towards an aerial lifestyle comprising only species which are predominantly or partially airborne. Based on high nuclear heterozygosity levels ca. 38 % of the taxa in Clades 2a and 2b could be some form of hybrid, and the hybridity may be favoured by an A1/A2 breeding system and an aerial life style. Circumstantial evidence suggests the now 93 described species and informally designated taxa in Clade 2 result from both allopatric non-adaptive and sympatric adaptive radiations. They represent most morphological and physiological characters, breeding systems, lifestyles and forms of host specialism found across the Phytophthora clades as a whole, demonstrating the strong biological cohesiveness of the genus. The finding of 43 previously unknown species from a single Phytophthora clade highlight a critical lack of information on the scale of the unknown pathogen threats to forests and natural ecosystems, underlining the risk of basing plant biosecurity protocols mainly on lists of named organisms. More surveys in natural ecosystems of yet unsurveyed regions in Africa, Asia, Central and South America are needed to unveil the full diversity of the clade and the factors driving diversity, speciation and adaptation in Phytophthora. Taxonomic novelties: New species: Phytophthora amamensis T. Jung, K. Kageyama, H. Masuya & S. Uematsu, Phytophthora angustata T. Jung, L. Garcia, B. Mendieta-Araica, & Y. Balci, Phytophthora balkanensis I. Milenkovic, Z. Tomic, T. Jung & M. Horta Jung, Phytophthora borneensis T. Jung, A. Durán, M. Tarigan & M. Horta Jung, Phytophthora calidophila T. Jung, Y. Balci, L. Garcia & B. Mendieta-Araica, Phytophthora catenulata T. Jung, T.-T. Chang, N.M. Chi & M. Horta Jung, Phytophthora celeris T. Jung, L. Oliveira, M. Tarigan & I. Milenkovic, Phytophthora curvata T. Jung, A. Hieno, H. Masuya & M. Horta Jung, Phytophthora distorta T. Jung, A. Durán, E. Sanfuentes von Stowasser & M. Horta Jung, Phytophthora excentrica T. Jung, S. Uematsu, K. Kageyama & C.M. Brasier, Phytophthora falcata T. Jung, K. Kageyama, S. Uematsu & M. Horta Jung, Phytophthora fansipanensis T. Jung, N.M. Chi, T. Corcobado & C.M. Brasier, Phytophthora frigidophila T. Jung, Y. Balci, K. Broders & I. Milenkovic, Phytophthora furcata T. Jung, N.M. Chi, I. Milenkovic & M. Horta Jung, Phytophthora inclinata N.M. Chi, T. Jung, M. Horta Jung & I. Milenkovic, Phytophthora indonesiensis T. Jung, M. Tarigan, L. Oliveira & I. Milenkovic, Phytophthora japonensis T. Jung, A. Hieno, H. Masuya & J.F. Webber, Phytophthora limosa T. Corcobado, T. Majek, M. Ferreira & T. Jung, Phytophthora macroglobulosa H.-C. Zeng, H.-H. Ho, F.-C. Zheng & T. Jung, Phytophthora montana T. Jung, Y. Balci, K. Broders & M. Horta Jung, Phytophthora multipapillata T. Jung, M. Tarigan, I. Milenkovic & M. Horta Jung, Phytophthora multiplex T. Jung, Y. Balci, K. Broders & M. Horta Jung, Phytophthora nimia T. Jung, H. Masuya, A. Hieno & C.M. Brasier, Phytophthora oblonga T. Jung, S. Uematsu, K. Kageyama & C.M. Brasier, Phytophthora obovoidea T. Jung, Y. Balci, L. Garcia & B. Mendieta-Araica, Phytophthora obturata T. Jung, N.M. Chi, I. Milenkovic & M. Horta Jung, Phytophthora penetrans T. Jung, Y. Balci, K. Broders & I. Milenkovic, Phytophthora platani T. Jung, A. Pérez-Sierra, S.O. Cacciola & M. Horta Jung, Phytophthora proliferata T. Jung, N.M. Chi, I. Milenkovic & M. Horta Jung, Phytophthora pseudocapensis T. Jung, T.-T. Chang, I. Milenkovic & M. Horta Jung, Phytophthora pseudocitrophthora T. Jung, S.O. Cacciola, J. Bakonyi & M. Horta Jung, Phytophthora pseudofrigida T. Jung, A. Durán, M. Tarigan & M. Horta Jung, Phytophthora pseudoccultans T. Jung, T.-T. Chang, I. Milenkovic & M. Horta Jung, Phytophthora pyriformis T. Jung, Y. Balci, K.D. Boders & M. Horta Jung, Phytophthora sumatera T. Jung, M. Tarigan, M. Junaid & A. Durán, Phytophthora transposita T. Jung, K. Kageyama, C.M. Brasier & H. Masuya, Phytophthora vacuola T. Jung, H. Masuya, K. Kageyama & J.F. Webber, Phytophthora valdiviana T. Jung, E. Sanfuentes von Stowasser, A. Durán & M. Horta Jung, Phytophthora variepedicellata T. Jung, Y. Balci, K. Broders & I. Milenkovic, Phytophthora vietnamensis T. Jung, N.M. Chi, I. Milenkovic & M. Horta Jung, Phytophthora ×australasiatica T. Jung, N.M. Chi, M. Tarigan & M. Horta Jung, Phytophthora ×lusitanica T. Jung, M. Horta Jung, C. Maia & I. Milenkovic, Phytophthora ×taiwanensis T. Jung, T.-T. Chang, H.-S. Fu & M. Horta Jung. Citation: Jung T, Milenkovic I, Balci Y, Janousek J, Kudlácek T, Nagy ZÁ, Baharuddin B, Bakonyi J, Broders KD, Cacciola SO, Chang T-T, Chi NM, Corcobado T, Cravador A, Dordevic B, Durán A, Ferreira M, Fu C-H, Garcia L, Hieno A, Ho H-H, Hong C, Junaid M, Kageyama K, Kuswinanti T, Maia C, Májek T, Masuya H, Magnano di San Lio G, Mendieta-Araica B, Nasri N, Oliveira LSS, Pane A, Pérez-Sierra A, Rosmana A, Sanfuentes von Stowasser E, Scanu B, Singh R, Stanivukovic Z, Tarigan M, Thu PQ, Tomic Z, Tomsovský M, Uematsu S, Webber JF, Zeng H-C, Zheng F-C, Brasier CM, Horta Jung M (2024). Worldwide forest surveys reveal forty-three new species in Phytophthora major Clade 2 with fundamental implications for the evolution and biogeography of the genus and global plant biosecurity. Studies in Mycology 107: 251-388. doi: 10.3114/sim.2024.107.04.

3.
New Phytol ; 242(2): 700-716, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382573

ABSTRACT

Orchids constitute one of the most spectacular radiations of flowering plants. However, their origin, spread across the globe, and hotspots of speciation remain uncertain due to the lack of an up-to-date phylogeographic analysis. We present a new Orchidaceae phylogeny based on combined high-throughput and Sanger sequencing data, covering all five subfamilies, 17/22 tribes, 40/49 subtribes, 285/736 genera, and c. 7% (1921) of the 29 524 accepted species, and use it to infer geographic range evolution, diversity, and speciation patterns by adding curated geographical distributions from the World Checklist of Vascular Plants. The orchids' most recent common ancestor is inferred to have lived in Late Cretaceous Laurasia. The modern range of Apostasioideae, which comprises two genera with 16 species from India to northern Australia, is interpreted as relictual, similar to that of numerous other groups that went extinct at higher latitudes following the global climate cooling during the Oligocene. Despite their ancient origin, modern orchid species diversity mainly originated over the last 5 Ma, with the highest speciation rates in Panama and Costa Rica. These results alter our understanding of the geographic origin of orchids, previously proposed as Australian, and pinpoint Central America as a region of recent, explosive speciation.


Subject(s)
Climate , Orchidaceae , Australia , Phylogeny , Phylogeography , Orchidaceae/genetics
4.
Mol Phylogenet Evol ; 180: 107698, 2023 03.
Article in English | MEDLINE | ID: mdl-36587885

ABSTRACT

The water boatmen of Corixoidea, a group of aquatic bugs with more than 600 extant species, is one of the largest superfamilies of Nepomorpha. Contrary to the other nepomorphan lineages, the Corixoidea are most diverse in the Laurasian remnant Holarctic region. To explicitly test whether the present-day Holarctic distribution of diverse corixids is associated with the arising of the Laurasian landmass that was separated from Gondwana, we investigated the phylogeny, divergence times and historical biogeography of Corixoidea based on morphological and molecular characters sampled from 122 taxa representing all families, subfamilies, tribes and approximately 54 % of the genera. Our results were largely congruent with the phylogenetic relationships within the established nepomorphan phylogenetic context. The fossil calibrated chronogram, diversification analysis and ancestral ranges reconstruction indicated that Corixoidea began to diversify in Gondwana in the late Triassic approximately at 224 Ma and the arising of the most diverse subfamily Corixinae in Corixidae in the Holarctic region was largely congruent with the time of separation of Laurasia from Gondwana. The large-scale expansion of the temperate and cold zones on the northward-moving Laurasian landmass after the breakup of the Pangea provided new aquatic niches and ecological opportunities for promoting rapid diversification for the Holarctic corixid lineage.


Subject(s)
Heteroptera , Humans , Animals , Phylogeny , Heteroptera/genetics , Environment , Fossils
5.
J Plant Res ; 136(2): 159-177, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36520246

ABSTRACT

Coryphoideae are palmate-leaved palms from the family Arecaceae consisting of 46 genera representing 421 species. Although several phylogenetic analyses based on different genomic regions have been carried out on Coryphoideae, a fully resolved molecular phylogenetic tree has not been reported yet. To achieve this, we applied two phylogenetic reconstruction methods: Maximum Likelihood and Bayesian Inference, using amplified sampling by retrieving chloroplast and nuclear DNA sequences from NCBI and adding newly produced sequences from Indian accession into the dataset. The same dataset (chloroplast + nuclear DNA sequences) was used to estimate divergence times and the evolutionary history of Coryphoideae with a Bayesian uncorrelated, lognormal relaxed-clock approach and a Statistical Divergence-Vicariance Analysis method, respectively. The phylogenetic analyses based on a combined chloroplast and nuclear DNA sequence dataset showed well-resolved relationships within the subfamily. Both phylogenetic trees divide Coryphoideae into two main groups: CSPT (Crysophileae, Sabaleae, Phoeniceae, and Trachycarpeae) and the Syncarpous group. These main groups are segregated into eight tribes (Trachycarpeae, Phoeniceae, Sabaleae, Crysophileae, Borasseae, Corypheae, Caryoteae, and Chuniophoeniceae) and four subtribes (Rhapidine, Livistoninae, Hyphaeninae, and Lataniinae) with strong support-values. Most previously unresolved and doubtful relationships within tribes Trachycarpeae and Crysophilieae are now resolved and well-supported. The reconstructed phylogenetic trees support all previous systematic revisions of the subfamily. All Indian sampled species of Arenga, Bentinckia, Hyphaene, and Trachycarpus show close relation with their respective congeneric species. Molecular dating results and integration of biogeography suggest that Coryphoideae originated in Laurasia at ~95.12 Ma and then diverged into the tropical and subtropical regions of the whole world. This study offers the correct combination of nuclear and plastid regions to test the current and future systematic revisions.


Subject(s)
Arecaceae , Phylogeny , Bayes Theorem , Biological Evolution , DNA , DNA, Chloroplast , Plastids/genetics
6.
Dokl Biol Sci ; 502(1): 46-50, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35298754

ABSTRACT

The phylogenetic relationships established in the family Allocreadiidae by genetic methods suggest that the center of origin, distribution, and divergence of the studied family is, apparently, eastern regions of Laurasia (the territory of the modern Southeast Asia), from where these trematodes penetrated through the Amur paleomicrocontinent and Beringia to North America and further through Central America to South, as well as through Transbaikalia and Yakutia to the western part of Eurasia.


Subject(s)
Trematoda , Animals , North America , Phylogeny , Trematoda/genetics
7.
Persoonia ; 49: 1-57, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-38234379

ABSTRACT

During extensive surveys of global Phytophthora diversity 14 new species detected in natural ecosystems in Chile, Indonesia, USA (Louisiana), Sweden, Ukraine and Vietnam were assigned to Phytophthora major Clade 10 based on a multigene phylogeny of nine nuclear and three mitochondrial gene regions. Clade 10 now comprises three subclades. Subclades 10a and 10b contain species with nonpapillate sporangia, a range of breeding systems and a mainly soil- and waterborne lifestyle. These include the previously described P. afrocarpa, P. gallica and P. intercalaris and eight of the new species: P. ludoviciana, P. procera, P. pseudogallica, P. scandinavica, P. subarctica, P. tenuimura, P. tonkinensis and P. ukrainensis. In contrast, all species in Subclade 10c have papillate sporangia and are self-fertile (or homothallic) with an aerial lifestyle including the known P. boehmeriae, P. gondwanensis, P. kernoviae and P. morindae and the new species P. celebensis, P. chilensis, P. javanensis, P. multiglobulosa, P. pseudochilensis and P. pseudokernoviae. All new Phytophthora species differed from each other and from related species by their unique combinations of morphological characters, breeding systems, cardinal temperatures and growth rates. The biogeography and evolutionary history of Clade 10 are discussed. We propose that the three subclades originated via the early divergence of pre-Gondwanan ancestors > 175 Mya into water- and soilborne and aerially dispersed lineages and subsequently underwent multiple allopatric and sympatric radiations during their global spread. Citation: Jung T, Milenkovic I, Corcobado T, et al. 2022. Extensive morphological and behavioural diversity among fourteen new and seven described species in Phytophthora Clade 10 and its evolutionary implications. Persoonia 49: 1-57. https://doi.org/10.3767/persoonia.2022.49.01.

9.
R Soc Open Sci ; 6(8): 191057, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31598266

ABSTRACT

Titanosaurs were a globally distributed clade of Cretaceous sauropods. Historically regarded as a primarily Gondwanan radiation, there is a growing number of Eurasian taxa, with several putative titanosaurs contemporaneous with, or even pre-dating, the oldest known Southern Hemisphere remains. The early Late Cretaceous Jinhua Formation, in Zhejiang Province, China, has yielded two putative titanosaurs, Jiangshanosaurus lixianensis and Dongyangosaurus sinensis. Here, we provide a detailed re-description and diagnosis of Jiangshanosaurus, as well as new anatomical information on Dongyangosaurus. Previously, a 'derived' titanosaurian placement for Jiangshanosaurus was primarily based on the presence of procoelous anterior caudal centra. We show that this taxon had amphicoelous anterior-middle caudal centra. Its only titanosaurian synapomorphy is that the dorsal margins of the scapula and coracoid are approximately level with one another. Dongyangosaurus can clearly be differentiated from Jiangshanosaurus, and displays features that indicate a closer relationship to the titanosaur radiation. Revised scores for both taxa are incorporated into an expanded phylogenetic data matrix, comprising 124 taxa scored for 548 characters. Under equal weights parsimony, Jiangshanosaurus is recovered as a member of the non-titanosaurian East Asian somphospondylan clade Euhelopodidae, and Dongyangosaurus lies just outside of Titanosauria. However, when extended implied weighting is applied, both taxa are placed within Titanosauria. Most other 'middle' Cretaceous East Asian sauropods are probably non-titanosaurian somphospondylans, but at least Xianshanosaurus appears to belong to the titanosaur radiation. Our analyses also recover the Early Cretaceous European sauropod Normanniasaurus genceyi as a 'derived' titanosaur, clustering with Gondwanan taxa. These results provide further support for a widespread diversification of titanosaurs by at least the Early Cretaceous.

10.
PeerJ ; 7: e6348, 2019.
Article in English | MEDLINE | ID: mdl-30697494

ABSTRACT

The Jurassic/Cretaceous (J/K) boundary, 145 million years ago, has long been recognised as an extinction event or faunal turnover for sauropod dinosaurs, with many 'basal' lineages disappearing. However, recently, a number of 'extinct' groups have been recognised in the Early Cretaceous, including diplodocids in Gondwana, and non-titanosauriform macronarians in Laurasia. Turiasauria, a clade of non-neosauropod eusauropods, was originally thought to have been restricted to the Late Jurassic of western Europe. However, its distribution has recently been extended to the Late Jurassic of Tanzania (Tendaguria tanzaniensis), as well as to the Early Cretaceous of the USA (Mierasaurus bobyoungi and Moabosaurus utahensis), demonstrating the survival of another 'basal' clade across the J/K boundary. Teeth from the Middle Jurassic-Early Cretaceous of western Europe and North Africa have also tentatively been attributed to turiasaurs, whilst recent phylogenetic analyses recovered Late Jurassic taxa from Argentina and China as further members of Turiasauria. Here, an anterior dorsal centrum and neural arch (both NHMUK 1871) from the Early Cretaceous Wealden Supergroup of the UK are described for the first time. NHMUK 1871 shares several synapomorphies with Turiasauria, especially the turiasaurs Moabosaurus and Tendaguria, including: (1) a strongly dorsoventrally compressed centrum; (2) the retention of prominent epipophyses; and (3) an extremely low, non-bifid neural spine. NHMUK 1871 therefore represents the first postcranial evidence for Turiasauria from European deposits of Early Cretaceous age. Although turiasaurs show clear heterodont dentition, only broad, characteristically 'heart'-shaped teeth can currently be attributed to Turiasauria with confidence. As such, several putative turiasaur occurrences based on isolated teeth from Europe, as well as the Middle Jurassic and Early Cretaceous of Africa, cannot be confidently referred to Turiasauria. Unequivocal evidence for turiasaurs is therefore restricted to the late Middle Jurassic-Early Cretaceous of western Europe, the Late Jurassic of Tanzania, and the late Early Cretaceous of the USA, although remains from elsewhere might ultimately demonstrate that the group had a near-global distribution.

11.
Mol Phylogenet Evol ; 127: 416-428, 2018 10.
Article in English | MEDLINE | ID: mdl-29747009

ABSTRACT

Beetles have colonized freshwater habitats multiple times throughout their evolutionary history. Some of these aquatic lineages are associated exclusively with waterfall-like habitats, often with modified morphologies to cope with their unusual way of life. The historical biogeography of such cascade beetle lineages has been shown to strongly reflect ancient tectonic events. We focus on the pantropical genus Oocyclus of which species dwell in waterfalls and associated habitats. We infer the first molecular phylogeny of Oocyclus using a dataset of seven gene fragments. We recover a well resolved phylogenetic hypothesis, with a monophyletic Oocyclus divided in three genetically well-differentiated subclades which correspond to geography. Comparative dating analyses across Hydrophilidae based on ten fossil calibrations recover a Cretaceous origin for the genus. Based on a comprehensive suite of ancestral range analyses, we suggest a unique pattern with an origin in Southeast Asia followed by the successive colonization of India and the Neotropics via transoceanic stepping-stone dispersal. Diversification rate analyses support a scenario in which old Oocyclus lineages diversified slowly with a homogeneous rate regime. Waterfall beetle radiations are ancient and remarkably track Earth's paleogeological history, shedding light on intricate patterns of macroevolution.


Subject(s)
Coleoptera/classification , Phylogeography , Tropical Climate , Animals , Bayes Theorem , Ecosystem , Fossils , Genetic Variation , Phylogeny , Time Factors
12.
PeerJ ; 5: e3217, 2017.
Article in English | MEDLINE | ID: mdl-28480136

ABSTRACT

Brachiosauridae is a clade of titanosauriform sauropod dinosaurs that includes the well-known Late Jurassic taxa Brachiosaurus and Giraffatitan. However, there is disagreement over the brachiosaurid affinities of most other taxa, and little consensus regarding the clade's composition or inter-relationships. An unnamed partial sauropod skeleton was collected from middle-late Oxfordian (early Late Jurassic) deposits in Damparis, in the Jura department of eastern France, in 1934. Since its brief description in 1943, this specimen has been informally known in the literature as the 'Damparis sauropod' and 'French Bothriospondylus', and has been considered a brachiosaurid by most authors. If correctly identified, this would make the specimen the earliest known titanosauriform. Coupled with its relatively complete nature and the rarity of Oxfordian sauropod remains in general, this is an important specimen for understanding the early evolution of Titanosauriformes. Full preparation and description of this specimen, known from teeth, vertebrae and most of the appendicular skeleton of a single individual, recognises it as a distinct taxon: Vouivria damparisensis gen. et sp. nov. Phylogenetic analysis of a data matrix comprising 77 taxa (including all putative brachiosaurids) scored for 416 characters recovers a fairly well resolved Brachiosauridae. Vouivria is a basal brachiosaurid, confirming its status as the stratigraphically oldest known titanosauriform. Brachiosauridae consists of a paraphyletic array of Late Jurassic forms, with Europasaurus, Vouivria and Brachiosaurus recovered as successively more nested genera that lie outside of a clade comprising (Giraffatitan + Sonorasaurus) + (Lusotitan + (Cedarosaurus + Venenosaurus)). Abydosaurus forms an unresolved polytomy with the latter five taxa. The Early Cretaceous South American sauropod Padillasaurus was previously regarded as a brachiosaurid, but is here placed within Somphospondyli. A recent study contended that a number of characters used in a previous iteration of this data matrix are 'biologically related', and thus should be excluded from phylogenetic analysis. We demonstrate that almost all of these characters show variation between taxa, and implementation of sensitivity analyses, in which these characters are excluded, has no effect on tree topology or resolution. We argue that where there is morphological variation, this should be captured, rather than ignored. Unambiguous brachiosaurid remains are known only from the USA, western Europe and Africa, and the clade spanned the Late Jurassic through to the late Albian/early Cenomanian, with the last known occurrences all from the USA. Regardless of whether their absence from the Cretaceous of Europe, as well as other regions entirely, reflects regional extinctions and genuine absences, or sampling artefacts, brachiosaurids appear to have become globally extinct by the earliest Late Cretaceous.

13.
Biol Rev Camb Philos Soc ; 92(2): 776-814, 2017 May.
Article in English | MEDLINE | ID: mdl-26888552

ABSTRACT

The Late Jurassic to Early Cretaceous interval represents a time of environmental upheaval and cataclysmic events, combined with disruptions to terrestrial and marine ecosystems. Historically, the Jurassic/Cretaceous (J/K) boundary was classified as one of eight mass extinctions. However, more recent research has largely overturned this view, revealing a much more complex pattern of biotic and abiotic dynamics than has previously been appreciated. Here, we present a synthesis of our current knowledge of Late Jurassic-Early Cretaceous events, focusing particularly on events closest to the J/K boundary. We find evidence for a combination of short-term catastrophic events, large-scale tectonic processes and environmental perturbations, and major clade interactions that led to a seemingly dramatic faunal and ecological turnover in both the marine and terrestrial realms. This is coupled with a great reduction in global biodiversity which might in part be explained by poor sampling. Very few groups appear to have been entirely resilient to this J/K boundary 'event', which hints at a 'cascade model' of ecosystem changes driving faunal dynamics. Within terrestrial ecosystems, larger, more-specialised organisms, such as saurischian dinosaurs, appear to have suffered the most. Medium-sized tetanuran theropods declined, and were replaced by larger-bodied groups, and basal eusauropods were replaced by neosauropod faunas. The ascent of paravian theropods is emphasised by escalated competition with contemporary pterosaur groups, culminating in the explosive radiation of birds, although the timing of this is obfuscated by biases in sampling. Smaller, more ecologically diverse terrestrial non-archosaurs, such as lissamphibians and mammaliaforms, were comparatively resilient to extinctions, instead documenting the origination of many extant groups around the J/K boundary. In the marine realm, extinctions were focused on low-latitude, shallow marine shelf-dwelling faunas, corresponding to a significant eustatic sea-level fall in the latest Jurassic. More mobile and ecologically plastic marine groups, such as ichthyosaurs, survived the boundary relatively unscathed. High rates of extinction and turnover in other macropredaceous marine groups, including plesiosaurs, are accompanied by the origin of most major lineages of extant sharks. Groups which occupied both marine and terrestrial ecosystems, including crocodylomorphs, document a selective extinction in shallow marine forms, whereas turtles appear to have diversified. These patterns suggest that different extinction selectivity and ecological processes were operating between marine and terrestrial ecosystems, which were ultimately important in determining the fates of many key groups, as well as the origins of many major extant lineages. We identify a series of potential abiotic candidates for driving these patterns, including multiple bolide impacts, several episodes of flood basalt eruptions, dramatic climate change, and major disruptions to oceanic systems. The J/K transition therefore, although not a mass extinction, represents an important transitional period in the co-evolutionary history of life on Earth.


Subject(s)
Environment , Extinction, Biological , Fossils , Animals , Biodiversity , Climate Change , Dinosaurs , Oceans and Seas
14.
Biol Lett ; 12(9)2016 Sep.
Article in English | MEDLINE | ID: mdl-27651536

ABSTRACT

During the Mesozoic (242-66 million years ago), terrestrial regions underwent a massive shift in their size, position and connectivity. At the beginning of the era, the land masses were joined into a single supercontinent called Pangaea. However, by the end of the Mesozoic, terrestrial regions had become highly fragmented, both owing to the drifting apart of the continental plates and the extremely high sea levels that flooded and divided many regions. How terrestrial biodiversity was affected by this fragmentation and large-scale flooding of the Earth's landmasses is uncertain. Based on a model using the species-area relationship (SAR), terrestrial vertebrate biodiversity would be expected to nearly double through the Mesozoic owing to continental fragmentation, despite a decrease of 24% in total terrestrial area. Previous studies of Mesozoic vertebrates have generally found increases in terrestrial diversity towards the end of the era, although these increases are often attributed to intrinsic or climatic factors. Instead, continental fragmentation over this time may largely explain any observed increase in terrestrial biodiversity. This study demonstrates the importance that non-intrinsic effects can have on the taxonomic success of a group, and the importance of geography to understanding past biodiversity.


Subject(s)
Biodiversity , Vertebrates/classification , Animals , Floods , Geography , Models, Theoretical
15.
Mol Phylogenet Evol ; 69(3): 1135-45, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23954655

ABSTRACT

The family Ctenizidae is a worldwide-distributed trapdoor spider group, with a modest number of genera and species but interesting biogeography. Its monophyly has been questioned on the basis of both morphological and molecular evidence. The family is represented in the Mediterranean Basin by three genera and nine species: Cteniza and Cyrtocarenum, mostly endemic to the region, and Ummidia, long considered an anthropogenic introduction to the Mediterranean because the bulk of its diversity is in the New World. The taxonomic status of some of the species and genera (e.g. Mediterranean Ummidia species or Cteniza and Cyrtocarenum) has been called into question due to their close morphological affinities. Here, we use a multilocus approach that combines DNA sequence data from three nuclear genes 28S rRNA, EF1γ and H3 to investigate the origins and phylogenetic position of the Mediterranean taxa within the context of ctenizid generic-level diversity. For the first time, all known ctenizid genera are included in a phylogenetic analysis. Additionally, Bayesian relaxed clock methods and specific substitution rates are used to infer the timing of the group's diversification. Our results disagree with the traditional division of the family Ctenizidae into two subfamilies finding them polyphyletic and stress the need for re-evaluating the morphological characters that have been used in the group's classification. Time estimates indicate an ancient origin and long history of Mediterranean ctenizids. The present day disjunct distribution of Ummidia seems to be the result of the opening of the Atlantic Ocean, suggesting a former Laurasian distribution of the genus that is further supported by Baltic amber fossils. Similarly, the opening of the western Mediterranean Basin has likely played a key role in the diversification of both Ummidia and Cteniza, whereas the origin of Cyrtocarenum species preceded the breakup of the former continuous landmass that formed the Aegean region. Deep divergence times and reciprocal monophyly support the status of Cteniza and Cyrtocarenum as independent evolutionary lineages. Alternatively, the taxonomic status of Ummidia with regard to the closely related genus Conothele remains unclear; a more thorough sampling of the latter is needed to evaluate whether the synonymy of the two genera is necessary.


Subject(s)
Biological Evolution , Phylogeny , Spiders/classification , Animals , Bayes Theorem , Cell Nucleus/genetics , Geography , Likelihood Functions , Mediterranean Region , Models, Genetic , Sequence Analysis, DNA , Spiders/genetics
SELECTION OF CITATIONS
SEARCH DETAIL