Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38.383
Filter
1.
Article in English | MEDLINE | ID: mdl-38817688

ABSTRACT

Gossypiboma is an extremely rare adverse event occurring post-surgery, where surgical gauze is left within the body. If aseptically retained, it can lead to the formation of granulation tissue through chronic inflammation and adhesion with surrounding tissues, potentially persisting asymptomatically for many years. While diagnosis of this condition has been reported through various imaging modalities such as abdominal ultrasound and computed tomography, cases not presenting with typical findings are difficult for preoperative diagnosis, and instances where it is discovered postoperatively exist. Particularly when in contact with the gastrointestinal tract within the abdominal cavity, differentiation from submucosal tumors of the digestive tract becomes problematic. This report describes the imaging characteristics of endoscopic ultrasound and the usefulness of endoscopic ultrasound-fine-needle-aspiration for tissue diagnosis in the preoperative diagnosis of intra-abdominal gossypiboma.

2.
J Environ Sci (China) ; 147: 217-229, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003041

ABSTRACT

Dissolved black carbon (DBC) plays a crucial role in the migration and bioavailability of iron in water. However, the properties of DBC releasing under diverse pyrolysis conditions and dissolving processes have not been systematically studied. Here, the compositions of DBC released from biochar through redox processes dominated by bacteria and light were thoroughly studied. It was found that the DBC released from straw biochar possess more oxygen-containing functional groups and aromatic substances. The content of phenolic and carboxylic groups in DBC was increased under influence of microorganisms and light, respectively. The concentration of phenolic hydroxyl groups increased from 10.0∼57.5 mmol/gC to 6.6 ∼65.2 mmol/gC, and the concentration of carboxyl groups increased from 49.7∼97.5 mmol/gC to 62.1 ∼113.3 mmol/gC. Then the impacts of DBC on pyrite dissolution and microalgae growth were also investigated. The complexing Fe3+ was proved to play a predominant role in the dissolution of ferrous mineral in DBC solution. Due to complexing between iron ion and DBC, the amount of dissolved Fe in aquatic water may rise as a result of elevated number of aromatic components with oxygen containing groups and low molecular weight generated under light conditions. Fe-DBC complexations in solution significantly promoted microalga growth, which might be attributed to the stimulating effect of dissolved Fe on the chlorophyll synthesis. The results of study will deepen our understanding of the behavior and ultimate destiny of DBC released into an iron-rich environment under redox conditions.


Subject(s)
Carbon , Charcoal , Iron , Oxidation-Reduction , Iron/chemistry , Charcoal/chemistry , Carbon/chemistry , Water Pollutants, Chemical/chemistry
3.
J Environ Sci (China) ; 148: 116-125, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095150

ABSTRACT

Perfluoroalkyl substances (PFASs) are typical persistent organic pollutants, and their removal is urgently required but challenging. Photocatalysis has shown potential in PFASs degradation due to the redox capabilities of photoinduced charge carriers in photocatalysts. Herein, hexagonal ZnIn2S4 (ZIS) nanosheets were synthesized by a one-pot oil bath method and were well characterized by a series of techniques. In the degradation of sodium p-perfluorous nonenoxybenzenesulfonate (OBS), one kind of representative PFASs, the as-synthesized ZIS showed activity superior to P25 TiO2 under both simulated sunlight and visible-light irradiation. The good photocatalytic performance was attributed to the enhanced light absorption and facilitated charge separation. The pH conditions were found crucial in the photocatalytic process by influencing the OBS adsorption on the ZIS surface. Photogenerated e- and h+ were the main active species involved in OBS degradation in the ZIS system. This work confirmed the feasibility and could provide mechanistic insights into the degradation and defluorination of PFASs by visible-light photocatalysis.


Subject(s)
Fluorocarbons , Light , Photolysis , Fluorocarbons/chemistry , Nanostructures/chemistry , Catalysis , Water Pollutants, Chemical/chemistry , Zinc/chemistry , Indium/chemistry , Models, Chemical
4.
J Environ Sci (China) ; 148: 283-297, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095165

ABSTRACT

In the quest for effective solutions to address Environ. Pollut. and meet the escalating energy demands, heterojunction photocatalysts have emerged as a captivating and versatile technology. These photocatalysts have garnered significant interest due to their wide-ranging applications, including wastewater treatment, air purification, CO2 capture, and hydrogen generation via water splitting. This technique harnesses the power of semiconductors, which are activated under light illumination, providing the necessary energy for catalytic reactions. With visible light constituting a substantial portion (46%) of the solar spectrum, the development of visible-light-driven semiconductors has become imperative. Heterojunction photocatalysts offer a promising strategy to overcome the limitations associated with activating semiconductors under visible light. In this comprehensive review, we present the recent advancements in the field of photocatalytic degradation of contaminants across diverse media, as well as the remarkable progress made in renewable energy production. Moreover, we delve into the crucial role played by various operating parameters in influencing the photocatalytic performance of heterojunction systems. Finally, we address emerging challenges and propose novel perspectives to provide valuable insights for future advancements in this dynamic research domain. By unraveling the potential of heterojunction photocatalysts, this review contributes to the broader understanding of their applications and paves the way for exciting avenues of exploration and innovation.


Subject(s)
Environmental Restoration and Remediation , Environmental Restoration and Remediation/methods , Catalysis , Solar Energy , Sunlight , Semiconductors , Renewable Energy , Photochemical Processes
5.
J Environ Sci (China) ; 148: 602-613, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095193

ABSTRACT

Airborne microplastics (MPs) are important pollutants that have been present in the environment for many years and are characterized by their universality, persistence, and potential toxicity. This study investigated the effects of terrestrial and marine transport of MPs in the atmosphere of a coastal city and compared the difference between daytime and nighttime. Laser direct infrared imaging (LDIR) and polarized light microscopy were used to characterize the physical and chemical properties of MPs, including number concentration, chemical types, shape, and size. Backward trajectories were used to distinguish the air masses from marine and terrestrial transport. Twenty chemical types were detected by LDIR, with rubber (16.7%) and phenol-formaldehyde resin (PFR; 14.8%) being major components. Three main morphological types of MPs were identified, and fragments (78.1%) are the dominant type. MPs in the atmosphere were concentrated in the small particle size segment (20-50 µm). The concentration of MPs in the air mass from marine transport was 14.7 items/m3 - lower than that from terrestrial transport (32.0 items/m3). The number concentration of airborne MPs was negatively correlated with relative humidity. MPs from terrestrial transport were mainly rubber (20.2%), while those from marine transport were mainly PFR (18%). MPs in the marine transport air mass were more aged and had a lower number concentration than those in the terrestrial transport air mass. The number concentration of airborne MPs is higher during the day than at night. These findings could contribute to the development of targeted control measures and methods to reduce MP pollution.


Subject(s)
Air Pollutants , Environmental Monitoring , Microplastics , China , Microplastics/analysis , Air Pollutants/analysis , Cities , Atmosphere/chemistry , Particle Size
6.
Environ Technol ; : 1-12, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092595

ABSTRACT

This is the first record on literature to use biochar as support for CoFe2O4 to applicate and evaluate it as photocatalyst for degradation of organic pollutants. The support was verified by XRD, FT-IR, SEM, EDS and band gap. Composites CFO1BQ3, CFO1BQ1, and CFO3BQ1 showed 100% degradation in 60 min. This outstanding performance can be related to the drop in band gap energy and recombination rate of e¯/h + . The composites showed better efficiency when compared to pure CoFe2O4 (∼78%). This might be associate to the fact that biochar has a high concentration of phenolic, hydroxyl and carboxylic functional groups on its surface. In this reaction h+, O2•-, and •OH were the reactive species involved in the degradation. The toxicity of ponceau was tested before and after the treatment, through biochemical biomarkers in Danio rerio fish. In general, the treatment proved to be efficient in reducing ponceau toxicity in D. rerio fish.

7.
ACS Synth Biol ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092606

ABSTRACT

3-Hydroxypropionic acid (3-HP) is a highly sought-after platform chemical serving as a precursor to a variety of high value-added chemical products. In this study, we designed and constructed a novel light-powered in vitro synthetic enzymatic biosystem comprising acetyl-CoA ligase, acetyl-CoA carboxylase, malonyl-CoA reductase, and phosphotransferase to efficiently produce 3-HP through CO2 fixation from acetate, a cost-effective and readily available substrate. The system employed natural thylakoid membranes (TMs) for the regeneration of adenosine triphosphate and nicotinamide adenine dinucleotide phosphate. Comprehensive investigations were conducted on the effects of buffer solutions, substrate concentrations, enzyme loading levels, and TMs loading levels to optimize the yield of 3-HP. Following optimization, a production of 0.46 mM 3-HP was achieved within 6 h from an initial 0.5 mM acetate, with a yield nearing 92%. This work underscores the simplicity of 3-HP production via an in vitro biomanufacturing platform and highlights the potential for incorporating TMs as a sustainable and environmentally friendly approach in biomanufacturing processes.

8.
Small ; : e2402796, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092679

ABSTRACT

Carbon dots (CDs) based room temperature phosphorescence (RTP) materials can be prepared via facile procedures and exhibit excellent photostability and biocompatibility. Furthermore, doping of hetero-atoms into CDs can afford multiple triplet levels. The RTP emission generated from the resultant CDs always displays outstanding dynamic behaviors and even can be efficiently excited by visible light. Given this, CDs-based RTP materials not only can be used for anti-counterfeiting but also exhibit great application potential in signage and illumination fields. In this contribution, a type of B, N, and P co-doped CDs are prepared in hectogram scale. Upon excitation by UV lamp and white LED, the obtained CDs emit green and yellow RTP, respectively, the lifetime of which are 851 and 481 ms, respectively. It is found that the luminescence color of the CDs can be further tuned. By controlling the degree of carbonization, the RTP color of the CDs can be facilely tuned from green to orange-red. Based on an energy transfer strategy, the luminescence color can be further tuned to red. Benefited from the dynamic and visible-excited colorful RTP emission, the application of these obtained CDs in anti-counterfeiting, fingerprint collection, and luminescent traffic signage are also explored.

10.
Environ Sci Technol ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088650

ABSTRACT

The widespread use of plastic products in daily life has raised concerns about the health hazards associated with nanoplastics (NPs). When exposed, NPs are likely to infiltrate the bloodstream, interact with plasma proteins, and trigger macrophage recognition and clearance. In this study, we focused on establishing a correlation between the unique protein coronal signatures of high-density (HDPE) and low-density (LDPE) polyethylene (PE) NPs with their ultimate impact on macrophage recognition and cytotoxicity. We observed that low-density and high-density lipoprotein receptors (LDLR and SR-B1), facilitated by apolipoproteins, played an essential role in PE-NP recognition. Consequently, PE-NPs activated the caspase-3/GSDME pathway and ultimately led to pyroptosis. Advanced imaging techniques, including label-free scattered light confocal imaging and cryo-soft X-ray transmission microscopy with 3D-tomographic reconstruction (nano-CT), provided powerful insights into visualizing NPs-cell interactions. These findings underscore the potential risks of NPs to macrophages and introduce analytical methods for studying the behavior of NPs in biological systems.

11.
Food Chem ; 459: 140259, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39089197

ABSTRACT

2-Aminoacetophenone is an off-flavor that can result from tryptophan degradation via riboflavin-photosensitized reaction. This study investigates the impact of light exposure, provided by a UV-C source, oxygen concentrations and transition metals on the formation of 2-aminoacetophenone in model wine containing tryptophan and riboflavin. Irrespective of oxygen and transition metals, >85% of tryptophan were degraded via first-order kinetics to unknown product(s). However, longer light exposure and more oxygen caused 2-aminoacetophenone concentrations to increase. Transition metals decelerated the 2-aminoacetophenone formation and acetaldehyde was formed suggesting photo-Fenton reaction occurred as a competitive reaction. The degradation rate of riboflavin inclined with less oxygen and in the presence of transition metals due to the depletion of oxygen by photo-Fenton reaction. Oxygen plays an important role in the regeneration of riboflavin and therefore must be seen as an intensifier for light-induced 2-aminoacetophenone formation. This paper provides new insights into riboflavin-photosensitized reactions.

12.
Gastroenterology ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39089466
13.
Adv Mater ; : e2405233, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39091054

ABSTRACT

Light-induced ferroelectric polarization in 2D layered ferroelectric materials holds promise in photodetectors with multilevel current and reconfigurable capabilities. However, translating this potential into practical applications for high-density optoelectronic information storage remains challenging. In this work, an α-In2Se3/Te heterojunction design that demonstrates spatially resolved, multilevel, nonvolatile photoresponsivity is presented. Using photocurrent mapping, the spatially localized light-induced poling state (LIPS) is visualized in the junction region. This localized ferroelectric polarization induced by illumination enables the heterojunction to exhibit enhanced photoresponsivity. Unlike previous reports that observe multilevel polarization enhancement in electrical resistance, the device shows nonvolatile photoresponsivity enhancement under illumination. After polarization saturation, the photocurrent increases up to 1000 times, from 10-12 to 10-9 A under the irradiation of a 520 nm laser with a power of 1.69 nW, compared to the initial state in a self-driven mode. The photodetector exhibits high detectivity of 4.6×1010 Jones, with a rise time of 27 µs and a fall time of 28 µs. Furthermore, the device's localized poling characteristics and multilevel photoresponse enable spatially multiplexed optical information storage. These results advance the understanding of LIPS in 2D ferroelectric materials, paving the way for optoelectronic information storage technologies.

14.
Alzheimers Dement (Amst) ; 16(3): e12628, 2024.
Article in English | MEDLINE | ID: mdl-39086497

ABSTRACT

Easily applied diagnostic tools such as digital biomarkers for Alzheimer's disease (AD) are urgently needed due to the recent approval of disease-modifying therapies. We aimed to determine the diagnostic performance of hand-held, quantitative light reflex pupillometry (qLRP) in patients with AD in a proof-of-concept, cross-sectional study. Participants underwent qLRP at a university memory clinic from August 2022 to October 2023. We fitted multivariable logistic regression models with qLRP, sex, and age as predictors evaluated with area under the receiver operating characteristics curve (AUROC). In total, 107 patients with AD, 44 patients with mixed AD and vascular cognitive dysfunction (VCD), 53 patients with dementia with Lewy bodies (DLB), and 50 healthy controls (HCs) were included. Our diagnostic models showed similar discriminatory ability (AUROC range 0.74-0.81) when distinguishing patients with AD from HCs and other dementias. The qLRP seems promising as a bedside digital biomarker to aid in diagnosing AD. Highlights: We demonstrated the diagnostic performance of qLRP in Alzheimer's disease.The diagnostic models were robust in sensitivity analyses.qLRP may assist in the bedside diagnostic evaluation of Alzheimer's disease.

16.
J Biomed Opt ; 29(8): 086502, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39086928

ABSTRACT

Significance: Lattice light-sheet structured illumination microscopy (latticeSIM) has proven highly effective in producing three-dimensional images with super resolution rapidly and with minimal photobleaching. However, due to the use of two separate objectives, sample-induced aberrations can result in an offset between the planes of excitation and detection, causing artifacts in the reconstructed images. Aim: We introduce a posterior approach to detect and correct the axial offset between the excitation and detection focal planes in latticeSIM and provide a method to minimize artifacts in the reconstructed images. Approach: We utilized the residual phase information within the overlap regions of the laterally shifted structured illumination microscopy information components in frequency space to retrieve the axial offset between the excitation and the detection focal planes in latticeSIM. Results: We validated our technique through simulations and experiments, encompassing a range of samples from fluorescent beads to subcellular structures of adherent cells. We also show that using transfer functions with the same axial offset as the one present during data acquisition results in reconstructed images with minimal artifacts and salvages otherwise unusable data. Conclusion: We envision that our method will be a valuable addition to restore image quality in latticeSIM datasets even for those acquired under non-ideal experimental conditions.


Subject(s)
Imaging, Three-Dimensional , Microscopy, Fluorescence , Imaging, Three-Dimensional/methods , Microscopy, Fluorescence/methods , Artifacts , Image Processing, Computer-Assisted/methods , Algorithms , Humans , Animals , Computer Simulation
17.
J Biol Rhythms ; 39(4): 323-330, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39086225

ABSTRACT

Light is recognized as an important component of the environment for laboratory animals. It supports vision, sets the phase of circadian clocks, and drives wide-ranging adjustments in physiological and behavioral state. Manipulating light is meanwhile a key experimental approach in the fields of vision science and chronobiology. Nevertheless, until recently, there has been no consensus on methods for quantifying light as experienced by laboratory animals. Widely adopted practices employ metrics such as illuminance (units = lux) that are designed to quantify light as experienced by human observers. These weight energy across the spectrum according to a spectral sensitivity profile for human vision that is not widely replicated for non-human species. Recently, a Consensus View was published that proposes methods of light measurement and standardization that take account of these species-specific differences in wavelength sensitivity. Here, we draw upon the contents of that consensus to provide simplified advice on light measurement in laboratory mammal experimentation and husbandry and quantitative guidance on what constitutes appropriate lighting for both visual and circadian function.


Subject(s)
Circadian Rhythm , Light , Mammals , Animals , Circadian Rhythm/physiology , Mammals/physiology , Lighting , Humans , Animals, Laboratory/physiology , Vision, Ocular/physiology , Circadian Clocks/physiology
18.
J Clin Pediatr Dent ; 48(4): 99-107, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39087219

ABSTRACT

Children with autism spectrum disorder (ASD) are frequently afflicted with sensory processing difficulties, which often impact their ability to cooperate with dental treatment. The objective of this pilot study was to determine the effects of green light exposure on behavior, pain, distress and anxiety in pediatric patients with ASD undergoing a dental prophylaxis. Twelve children diagnosed with ASD, aged 6-17 years, requiring a dental prophylaxis participated in this study. Participants completed two dental prophylaxes, three months apart, one in a standard white light-exposed dental operatory and one in a green light-exposed dental operatory. Behavioral cooperation, pain intensity, physiological stress and anxiety were assessed in all patients. The Wilcoxon matched-pairs signed rank test was used to estimate differences in measured outcomes according to the experimental condition. There was a trend towards reduced uncooperative behavior when children received a dental prophylaxis in the green light-exposed operatory (p = 0.06). Similar levels of heart rate variability (p = 0.41), salivary alpha amylase (p = 0.19), and salivary cortisol (p = 0.67) were observed at the start and end of each visit in both conditions. Green light exposure had no significant effect on pain intensity (p = 0.17) or behavioral anxiety (p = 0.31). These findings suggest a preliminary positive benefit of green light exposure on behavioral outcomes in pediatric patients with ASD and warrants a further, large-scale clinical trial.


Subject(s)
Autism Spectrum Disorder , Humans , Child , Pilot Projects , Autism Spectrum Disorder/psychology , Adolescent , Male , Female , Light , Dental Anxiety , Dental Prophylaxis , Saliva/chemistry , Saliva/metabolism , Hydrocortisone/analysis , Child Behavior , Anxiety , Pain Measurement , Heart Rate , Green Light
19.
Adv Mater ; : e2408060, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087402

ABSTRACT

Organic crystals are widely used by animals to manipulate light for producing structural colors and for improving vision. To date only seven crystal types are known to be used, and among them ß-guanine crystals are by far the most widespread. The fact that almost all these crystals have unusually high refractive indices (RIs) is consistent with their light manipulation function. Here, the physical, structural, and optical principles of how light interacts with the polarizable free-electron-rich environment of these quasiaromatic molecules are addressed. How the organization of these molecules into crystalline arrays introduces optical anisotropy and finally how organisms control crystal morphology and superstructural organization to optimize functions in light reflection and scattering are also discussed. Many open questions remain in this fascinating field, some of which arise out of this in-depth analysis of the interaction of light with crystal arrays. More types of organic crystals will probably be discovered, as well as other organisms that use these crystals to manipulate light. The insights gained from biological systems can also be harnessed for improving synthetic light-manipulating materials.

20.
Chemistry ; : e202402192, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087763

ABSTRACT

In this work, we used photoinert anhydrous cerium(III) chloride, to form a transient charge-transfer (CT) complex with NXS (N-bromosuccinimide or NBS and N-iodosuccinimide or NIS) in acetonitrile. These transient CT complexes acted as a semi-heterogeneous photocatalyst. These complexes allowed the Ce(III) ions to absorb light, turning them into strong electron donors that transferred electrons to NXS. This created halide radicals from NXS radical anions, helping to turn N-propargylamides into oxazole aldehydes. Experiments with DMPO and spin-trapping showed that a radical-based mechanism followed a single electron transfer (SET) pathway. Notably, CeCl3 was reused after the reaction without much decomposition, as it was regenerated and separated through simple filtration.

SELECTION OF CITATIONS
SEARCH DETAIL