Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 334
Filter
1.
Exp Hematol ; : 104651, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39362576

ABSTRACT

The proper uptake of drugs in liposome formulations into target cells markedly impacts therapeutic efficacy. The protein corona (PC), formed by the adsorption of serum proteins onto the liposome surface, binds to specific surface receptors of target cells, influencing the uptake pathway. We investigated the uptake pathway into leukemia cells based on PC analysis of CPX-351, a liposome containing cytarabine and daunorubicin in a fixed 5:1 synergistic molar ratio. The PC of CPX-351 mixed with fetal bovine serum was analyzed by nanoflow liquid chromatography-tandem mass spectrometry. CPX-351 uptake in HL-60, K562, and THP-1 leukemia cell lines, was measured by flow cytometry using daunorubicin fluorescence. The major components of CPX-351 PC were apolipoproteins A-I and A-II, which bind to scavenger receptor class B type 1 (SR-BI), a nonendocytic pathway that takes up only liposome contents. SR-BI was expressed in each cell, and its expression correlated with CPX-351 uptake. The uptake was significantly decreased by the inhibition of clathrin-mediated endocytosis and macropinocytosis. Additionally, blocks lipid transport-1 (BLT-1), a selective inhibitor of SR-BI, decreased the uptake; however, high-dose BLT-1 addition significantly increased the uptake, which was more strongly inhibited by macropinocytosis suppression compared with clathrin-mediated endocytosis. BLT-1 enhances the binding of SR-BI to liposomes in a dose-dependent manner. These findings indicate that the enhancement of binding between SR-BI and CPX-351 activates different pathways, such as macropinocytosis, distinct from CPX-351 alone. SR-BI may be a biomarker for CPX-351 therapy, and the combination of CPX-351 with high-dose BLT-1 may augment therapeutic efficacy.

2.
J Biol Chem ; 300(10): 107738, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39233230

ABSTRACT

Membrane asymmetry is critical for maintenance of several different processes such as cell signaling, apoptosis, and vesicular transport in various eukaryotic systems. Flippases of the P4-ATPase family are associated with flipping phospholipids from the luminal or exoplasmic leaflet to the cytosolic leaflet. P4-ATPases belong to the P-type ATPase family, which are activated by phosphorylation and couple ATPase activity to substrate translocation. These proteins possess a transmembrane domain responsible for substrate transport, while the cytosolic machinery performs the necessary ATP hydrolysis for this process. Several high-resolution structures of human or yeast P4-ATPases have recently been resolved, but a comprehensive overview of the changes for reaction cycle in different members was crucial for future research. In this review, we have compiled available data reflecting the reaction cycle-associated changes in conformation of P4-ATPases. Together, this will provide an improved understanding of the similarities and differences between these members, which will drive further structural, functional, and computational studies to understand the mechanisms of these flippases.

3.
Biochem J ; 481(18): 1187-1202, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39258799

ABSTRACT

Phosphatidylinositol is a precursor of various phosphoinositides, which play crucial roles in intracellular signaling and membrane dynamics and have impact on diverse aspects of cell physiology. Phosphoinositide synthesis and turnover occur in the cytoplasmic leaflet of the organellar and plasma membranes. P4-ATPases (lipid flippases) are responsible for translocating membrane lipids from the exoplasmic (luminal) to the cytoplasmic leaflet, thereby regulating membrane asymmetry. However, the mechanism underlying phosphatidylinositol translocation across cellular membranes remains elusive. Here, we discovered that the phosphatidylcholine flippases ATP8B1, ATP8B2, and ATP10A can also translocate phosphatidylinositol at the plasma membrane. To explore the function of these phosphatidylinositol flippases, we used cells depleted of CDC50A, a protein necessary for P4-ATPase function and ATP8B1 and ATP8B2, which express in HeLa cells. Upon activation of the Gq-coupled receptor, depletion of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] was accelerated in CDC50A knockout (KO) and ATP8B1/8B2 double KO cells compared with control cells, suggesting a decrease in PtdIns(4,5)P2 levels within the plasma membrane of the KO cells upon stimulation. These findings highlight the important role of P4-ATPases in maintaining phosphoinositide homeostasis and suggest a mechanism for asymmetry of phosphatidylinositol in the cytoplasmic leaflet of the plasma membrane.


Subject(s)
Adenosine Triphosphatases , Cell Membrane , Homeostasis , Phosphatidylinositols , Humans , Cell Membrane/metabolism , HeLa Cells , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Phosphatidylinositols/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Phospholipid Transfer Proteins/metabolism , Phospholipid Transfer Proteins/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/genetics
4.
JHEP Rep ; 6(8): 101060, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39183731

ABSTRACT

Background & Aims: There are no studies investigating the direct effects of elevated xanthine oxidase (XO) on lipid metabolism disorders. Here, we aimed to clarify the role of XO in lipid metabolism in a prospective cohort study and elucidate the underlying mechanisms. Methods: The association between serum XO activity and metabolic associated steatotic liver disease (MASLD) was examined in Cox proportional hazard models in a population-based cohort of 3,358 participants (20-75 years) at baseline. In addition, mouse models were used to investigate the underlying mechanism for the association between overexpression of XO and the lipid metabolism disorders. Results: After an average 5.8 years of follow up, we found elevated serum XO activity was associated with an increased risk of developing MASLD (hazard ratio [HR]: 2.08; 95% CI: 1.44-3.01; p-trend <0.001). Moreover, serum XO activity was significantly associated with serum triglyceride levels (r = 0.68, p <0.001). We demonstrated that hepatic XO expression increased in liver samples from patients with MASLD. Using tissue-specific Xdh knockin mice, we observed rapid lipid metabolism disorders under a high-fat diet rather than a normal chow diet. We found that XO overexpression promotes the absorption of excess dietary fat in the small intestine. Inhibition of XO also significantly reduced the absorption of fat in mice fed a high-fat diet. Conclusions: Our study clarified the association between serum XO activity levels and the development of MASLD in a large population-based prospective cohort study. Furthermore, our mouse models demonstrated that XO overexpression promotes lipid accumulation through mechanisms involving excessive fat absorption by the small intestine. Impact and implications: Using a prospective population-based cohort and various animal models, we have identified novel mechanisms by which xanthine oxidase regulates lipid metabolism. Our findings indicate that xanthine oxidase overexpression promotes lipid accumulation by increasing the absorption of excess dietary fat and possibly facilitating lipid transport in vivo. These results could be important for the development of therapies to treat diseases associated with lipid metabolism disorders.

5.
Contact (Thousand Oaks) ; 7: 25152564241273598, 2024.
Article in English | MEDLINE | ID: mdl-39210909

ABSTRACT

This review discusses how research around the oxysterol-binding protein family has evolved. We briefly summarize how this protein family, designated OSBP-related (ORP) or OSBP-like (OSBPL) proteins, was discovered, how protein domains highly conserved among family members between taxa paved the way for understanding their mechanisms of action, and how insights into protein structural and functional features help to understand their versatility as lipid transporters. We also discuss questions and future avenues of research opened by these findings. The investigations on oxysterol-binding protein family serve as a real-life example of the notion that science often advances as a collective effort of multiple lines of enquiry, including serendipitous routes. While original articles invariably explain the motivation of the research undertaken in rational terms, the actual paths to findings may be less intentional. Fortunately, this does not reduce the impact of the discoveries made. Besides hopefully providing a useful account of ORP family proteins, we aim to convey this message.

6.
mBio ; : e0218324, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39212407

ABSTRACT

Infections caused by Mycobacterium spp. are very challenging to treat, and multidrug-resistant strains rapidly spread in human populations. Major contributing factors include the unique physiological features of these bacteria, drug efflux, and the low permeability barrier of their outer membrane. Here, we focus on MmpL3 from Mycobacterium tuberculosis, an essential inner membrane transporter of the resistance-nodulation-division superfamily required for the translocation of mycolic acids in the form of trehalose monomycolates (TMM) from the cytoplasm or plasma membrane to the periplasm or outer membrane. The MmpL3-dependent transport of TMM is essential for the growth of M. tuberculosis in vitro, inside macrophages, and in M. tuberculosis-infected mice. MmpL3 is also a validated target for several recently identified anti-mycobacterial agents. In this study, we reconstituted the lipid transport activity of the purified MmpL3 using a two-lipid vesicle system and established the ability of MmpL3 to actively extract phospholipids from the outer leaflet of a lipid bilayer. In contrast, we found that MmpL3 lacks the ability to translocate the same phospholipid substrate across the plasma membrane indicating that it is not an energy-dependent flippase. The lipid extraction activity was modulated by substitutions in critical charged and polar residues of the periplasmic substrate-binding pocket of MmpL3, coupled to the proton transfer activity of MmpL3 and inhibited by a small molecule inhibitor SQ109. Based on the results, we propose a mechanism of allosteric coupling wherein substrate translocation by MmpL3 is coupled to the energy provided by the downhill transfer of protons. The reconstituted activities will facilitate understanding the mechanism of MmpL3-dependent transport of lipids and the discovery of new therapeutic options for Mycobacterium spp. infections.IMPORTANCEMmpL3 from Mycobacterium tuberculosis is an essential transporter involved in the assembly of the mycobacterial outer membrane. It is also an important target in undergoing efforts to discover new anti-tuberculosis drugs effective against multidrug-resistant strains spreading in human populations. The recent breakthrough structural studies uncovered features of MmpL3 that suggested a possible lipid transport mechanism. In this study, we reconstituted and characterized the lipid transport activity of MmpL3 and demonstrated that this activity is blocked by MmpL3 inhibitors and substrate mimics. We further uncovered the mechanism of how the binding of a substrate in the periplasmic domain is communicated to the transmembrane proton relay of MmpL3. The uncovered mechanism and the developed assays provide new opportunities for mechanistic analyses of MmpL3 function and its inhibition.

7.
Free Radic Res ; 58(6-7): 417-429, 2024.
Article in English | MEDLINE | ID: mdl-39079051

ABSTRACT

Ovarian cancer, marked by high rate of recurrence, novel therapeutic strategies are needed to improve patient outcome. One of the potential strategies is inducing ferroptosis in ovarian cancer cells. Ferroptosis is an iron-dependent, lipid peroxidation-driven mode of cell death primarily occurring on the cell membrane. PTRF, an integral component of the caveolae structures located on the cell membrane, is involved in a multitude of physiological processes, including but not limited to, endocytosis, signal transduction, and lipid metabolism. This study elucidates the relationship between PTRF and ferroptosis in ovarian cancer, offering a fresh perspective for the development of new therapeutic strategies. We knocked down PTRF employing siRNA in the ovarian cancer cell lines HEY and SKOV3, following which we stimulated ferroptosis with Erastin (Era). Our research indicates that the lack of PTRF sensitizes cancer cells to ferroptosis, likely by altering membrane stability and tension, thereby affecting signal pathways related to ferroptosis, such as lipid and atherosclerosis, fluid shear stress, and atherosclerosis. Our findings provide new insights for developing new treatments for ovarian cancer.


Subject(s)
Ferroptosis , Ovarian Neoplasms , Humans , Ferroptosis/genetics , Female , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/drug therapy , Cell Line, Tumor , RNA-Binding Proteins
8.
Adv Exp Med Biol ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38874888

ABSTRACT

Insects need to transport lipids through the aqueous medium of the hemolymph to the organs in demand, after they are absorbed by the intestine or mobilized from the lipid-producing organs. Lipophorin is a lipoprotein present in insect hemolymph, and is responsible for this function. A single gene encodes an apolipoprotein that is cleaved to generate apolipophorin I and II. These are the essential protein constituents of lipophorin. In some physiological conditions, a third apolipoprotein of different origin may be present. In most insects, lipophorin transports mainly diacylglycerol and hydrocarbons, in addition to phospholipids. The fat body synthesizes and secretes lipophorin into the hemolymph, and several signals, such as nutritional, endocrine, or external agents, can regulate this process. However, the main characteristic of lipophorin is the fact that it acts as a reusable shuttle, distributing lipids between organs without being endocytosed or degraded in this process. Lipophorin interacts with tissues through specific receptors of the LDL receptor superfamily, although more recent results have shown that other proteins may also be involved. In this chapter, we describe the lipophorin structure in terms of proteins and lipids, in addition to reviewing what is known about lipoprotein synthesis and regulation. In addition, we reviewed the results investigating lipophorin's function in the movement of lipids between organs and the function of lipophorin receptors in this process.

9.
BioTech (Basel) ; 13(2)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38921051

ABSTRACT

Worldwide meat consumption and production have nearly quintupled in the last 60 years. In this context, research and the application of new technologies related to animal reproduction have evolved in an accelerated way. The objective of the present study was to apply nanoemulsions (NEs) as carriers of lipids to feed bovine embryos in culture media and verify their impact on the development of embryos produced in vitro. The NEs were characterized by particle size, polydispersity, size distribution, physical stability, morphology using atomic force microscopy (AFM), surface tension, density, pH, and rheological behavior. The NEs were prepared by the emulsification/evaporation technique. A central composite rotatable design (CCRD) was used to optimize the NE fabrication parameters. The three optimized formulations used in the embryo application showed an emulsion stability index (ESI) between 0.046 and 0.086, which reflects high stability. The mean droplet diameter analyzed by laser diffraction was approximately 70-80 nm, suggesting a possible transit across the embryonic zona pellucida with pores of an average 90 nm in diameter. AFM images clearly confirm the morphology of spherical droplets with a mean droplet diameter of less than 100 nm. The optimized formulations added during the higher embryonic genome activation phase in bovine embryos enhanced early embryonic development.

10.
J Biol Chem ; 300(6): 107387, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763336

ABSTRACT

The cryo-EM resolution revolution has heralded a new era in our understanding of eukaryotic lipid flippases with a rapidly growing number of high-resolution structures. Flippases belong to the P4 family of ATPases (type IV P-type ATPases) that largely follow the reaction cycle proposed for the more extensively studied cation-transporting P-type ATPases. However, unlike the canonical P-type ATPases, no flippase cargos are transported in the phosphorylation half-reaction. Instead of being released into the intracellular or extracellular milieu, lipid cargos are transported to their destination at the inner leaflet of the membrane. Recent flippase structures have revealed multiple conformational states during the lipid transport cycle. Nonetheless, critical conformational states capturing the lipid cargo "in transit" are still missing. In this review, we highlight the amazing structural advances of these lipid transporters, discuss various perspectives on catalytic and regulatory mechanisms in the literature, and shed light on future directions in further deciphering the detailed molecular mechanisms of lipid flipping.


Subject(s)
Adenosine Triphosphatases , Humans , Animals , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Cryoelectron Microscopy , Biological Transport , Phospholipid Transfer Proteins/metabolism , Phospholipid Transfer Proteins/chemistry , Phospholipid Transfer Proteins/genetics , Lipid Metabolism , Protein Conformation
11.
Proc Natl Acad Sci U S A ; 121(21): e2321512121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38748582

ABSTRACT

The outer membrane (OM) of didermic gram-negative bacteria is essential for growth, maintenance of cellular integrity, and innate resistance to many antimicrobials. Its asymmetric lipid distribution, with phospholipids in the inner leaflet and lipopolysaccharides (LPS) in the outer leaflet, is required for these functions. Lpt proteins form a transenvelope bridge that transports newly synthesized LPS from the inner membrane (IM) to OM, but how the bulk of phospholipids are transported between these membranes is poorly understood. Recently, three members of the AsmA-like protein family, TamB, YhdP, and YdbH, were shown to be functionally redundant and were proposed to transport phospholipids between IM and OM in Escherichia coli. These proteins belong to the repeating ß-groove superfamily, which includes eukaryotic lipid-transfer proteins that mediate phospholipid transport between organelles at contact sites. Here, we show that the IM-anchored YdbH protein interacts with the OM lipoprotein YnbE to form a functional protein bridge between the IM and OM in E. coli. Based on AlphaFold-Multimer predictions, genetic data, and in vivo site-directed cross-linking, we propose that YnbE interacts with YdbH through ß-strand augmentation to extend the continuous hydrophobic ß-groove of YdbH that is thought to shield acyl chains of phospholipids as they travel through the aqueous intermembrane periplasmic compartment. Our data also suggest that the periplasmic protein YdbL prevents extensive amyloid-like multimerization of YnbE in cells. We, therefore, propose that YdbL has a chaperone-like function that prevents uncontrolled runaway multimerization of YnbE to ensure the proper formation of the YdbH-YnbE intermembrane bridge.


Subject(s)
Bacterial Outer Membrane Proteins , Bacterial Outer Membrane , Escherichia coli Proteins , Escherichia coli , Homeostasis , Bacterial Outer Membrane/metabolism , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Cell Membrane/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Lipopolysaccharides/metabolism , Lipoproteins/metabolism , Phospholipids/metabolism
12.
EMBO J ; 43(10): 2035-2061, 2024 May.
Article in English | MEDLINE | ID: mdl-38627600

ABSTRACT

Phosphatidylinositol (PI) is the precursor lipid for the minor phosphoinositides (PPIns), which are critical for multiple functions in all eukaryotic cells. It is poorly understood how phosphatidylinositol, which is synthesized in the ER, reaches those membranes where PPIns are formed. Here, we used VT01454, a recently identified inhibitor of class I PI transfer proteins (PITPs), to unravel their roles in lipid metabolism, and solved the structure of inhibitor-bound PITPNA to gain insight into the mode of inhibition. We found that class I PITPs not only distribute PI for PPIns production in various organelles such as the plasma membrane (PM) and late endosomes/lysosomes, but that their inhibition also significantly reduced the levels of phosphatidylserine, di- and triacylglycerols, and other lipids, and caused prominent increases in phosphatidic acid. While VT01454 did not inhibit Golgi PI4P formation nor reduce resting PM PI(4,5)P2 levels, the recovery of the PM pool of PI(4,5)P2 after receptor-mediated hydrolysis required both class I and class II PITPs. Overall, these studies show that class I PITPs differentially regulate phosphoinositide pools and affect the overall cellular lipid landscape.


Subject(s)
Phosphatidylinositols , Phospholipid Transfer Proteins , Humans , Phosphatidylinositols/metabolism , Phospholipid Transfer Proteins/metabolism , Phospholipid Transfer Proteins/genetics , Lipid Metabolism , Cell Membrane/metabolism , HeLa Cells , Organelles/metabolism , Endosomes/metabolism , Animals
13.
Proc Natl Acad Sci U S A ; 121(17): e2319476121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38621120

ABSTRACT

Glycerophospholipids are synthesized primarily in the cytosolic leaflet of the endoplasmic reticulum (ER) membrane and must be equilibrated between bilayer leaflets to allow the ER and membranes derived from it to grow. Lipid equilibration is facilitated by integral membrane proteins called "scramblases." These proteins feature a hydrophilic groove allowing the polar heads of lipids to traverse the hydrophobic membrane interior, similar to a credit card moving through a reader. Nevertheless, despite their fundamental role in membrane expansion and dynamics, the identity of most scramblases has remained elusive. Here, combining biochemical reconstitution and molecular dynamics simulations, we show that lipid scrambling is a general feature of protein insertases, integral membrane proteins which insert polypeptide chains into membranes of the ER and organelles disconnected from vesicle trafficking. Our data indicate that lipid scrambling occurs in the same hydrophilic channel through which protein insertion takes place and that scrambling is abolished in the presence of nascent polypeptide chains. We propose that protein insertases could have a so-far-overlooked role in membrane dynamics as scramblases.


Subject(s)
Membrane Proteins , Peptides , Cell Membrane/metabolism , Membrane Proteins/metabolism , Peptides/metabolism , Membranes/metabolism , Lipids , Lipid Bilayers/chemistry
14.
EMBO Rep ; 25(4): 1711-1720, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38467907

ABSTRACT

The assembly of ß-barrel proteins into the bacterial outer membrane is an essential process enabling the colonization of new environmental niches. The TAM was discovered as a module of the ß-barrel protein assembly machinery; it is a heterodimeric complex composed of an outer membrane protein (TamA) bound to an inner membrane protein (TamB). The TAM spans the periplasm, providing a scaffold through the peptidoglycan layer and catalyzing the translocation and assembly of ß-barrel proteins into the outer membrane. Recently, studies on another membrane protein (YhdP) have suggested that TamB might play a role in phospholipid transport to the outer membrane. Here we review and re-evaluate the literature covering the experimental studies on the TAM over the past decade, to reconcile what appear to be conflicting claims on the function of the TAM.


Subject(s)
Escherichia coli Proteins , Biological Transport , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Membrane Proteins/metabolism , Protein Folding , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism
15.
J Cell Sci ; 137(6)2024 03 15.
Article in English | MEDLINE | ID: mdl-38488070

ABSTRACT

Sphingolipid dysregulation is involved in a range of rare and fatal diseases as well as common pathologies including cancer, infectious diseases or neurodegeneration. Gaining insights into how sphingolipids are involved in these diseases would contribute much to our understanding of human physiology, as well as the pathology mechanisms. However, scientific progress is hampered by a lack of suitable tools that can be used in intact systems. To overcome this, efforts have turned to engineering modified lipids with small clickable tags and to harnessing the power of click chemistry to localize and follow these minimally modified lipid probes in cells. We hope to inspire the readers of this Review to consider applying existing click chemistry tools for their own aspects of sphingolipid research. To this end, we focus here on different biological applications of clickable lipids, mainly to follow metabolic conversions, their visualization by confocal or superresolution microscopy or the identification of their protein interaction partners. Finally, we describe recent approaches employing organelle-targeted and clickable lipid probes to accurately follow intracellular sphingolipid transport with organellar precision.


Subject(s)
Neoplasms , Sphingolipids , Humans , Sphingolipids/metabolism , Click Chemistry , Biological Transport
16.
J Biol Chem ; 300(3): 105757, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38364889

ABSTRACT

Phosphoinositides are amphipathic lipid molecules derived from phosphatidylinositol that represent low abundance components of biological membranes. Rather than serving as mere structural elements of lipid bilayers, they represent molecular switches for a broad range of biological processes, including cell signaling, membrane dynamics and remodeling, and many other functions. Here, we focus on the molecular mechanisms that turn phosphoinositides into molecular switches and how the dysregulation of these processes can lead to disease.


Subject(s)
Disease , Phosphatidylinositols , Signal Transduction , Cell Membrane/metabolism , Phosphatidylinositols/metabolism , Humans
17.
EMBO Rep ; 25(1): 82-101, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38228789

ABSTRACT

The E. coli Paraquat Inducible (Pqi) Pathway is a putative Gram-negative phospholipid transport system. The pathway comprises three components: an integral inner membrane protein (PqiA), a periplasmic spanning MCE family protein (PqiB) and an outer membrane lipoprotein (PqiC). Interactions between all complex components, including stoichiometry, remain uncharacterised; nevertheless, once assembled into their quaternary complex, the trio of Pqi proteins are anticipated to provide a continuous channel between the inner and outer membranes of diderms. Here, we present X-ray structures of both the native and a truncated, soluble construct of the PqiC lipoprotein, providing insight into its biological assembly, and utilise neutron reflectometry to characterise the nature of the PqiB-PqiC-membrane interaction. Finally, we employ phenotypic complementation assays to probe specific PqiC residues, which imply the interaction between PqiB and PqiC is less intimate than previously anticipated.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Membrane Proteins/metabolism , Biological Transport , Lipoproteins/metabolism
18.
EMBO J ; 43(4): 595-614, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38267654

ABSTRACT

Miro proteins are universally conserved mitochondrial calcium-binding GTPases that regulate a multitude of mitochondrial processes, including transport, clearance, and lipid trafficking. The exact role of Miro in these functions is unclear but involves binding to a variety of client proteins. How this binding is operated at the molecular level and whether and how it is important for mitochondrial health, however, remains unknown. Here, we show that known Miro interactors-namely, CENPF, Trak, and MYO19-all use a similar short motif to bind the same structural element: a highly conserved hydrophobic pocket in the first calcium-binding domain of Miro. Using these Miro-binding motifs, we identified direct interactors de novo, including MTFR1/2/1L, the lipid transporters Mdm34 and VPS13D, and the ubiquitin E3-ligase Parkin. Given the shared binding mechanism of these functionally diverse clients and its conservation across eukaryotes, we propose that Miro is a universal mitochondrial adaptor coordinating mitochondrial health.


Subject(s)
Calcium , Mitochondria , Humans , Calcium/metabolism , Mitochondria/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Homeostasis , Lipids , Mitochondrial Proteins/metabolism , rho GTP-Binding Proteins/metabolism , Proteins/metabolism
19.
FEBS Lett ; 598(10): 1292-1298, 2024 May.
Article in English | MEDLINE | ID: mdl-38268324

ABSTRACT

Lipid trafficking is critical for the biogenesis and expansion of organelle membranes. Lipid transport proteins (LTPs) have been proposed to facilitate lipid transport at contact sites between organelles. Despite the fundamental importance of LTPs in cell physiology, our knowledge on the mechanisms of interorganelle lipid distribution remains poor due to the scarcity of assays to monitor lipid flux in vivo. In this review, we highlight the recent development of a versatile method named METALIC (Mass tagging-Enabled Tracking of Lipids in Cells), which uses a combination of enzymatic mass tagging and mass spectrometry to track lipid flux between organelles inside living cells. We discuss the methodology, its distinct advantages, limitations as well as its potential to unearth the pipelines of lipid transport and LTP function in vivo.


Subject(s)
Lipid Metabolism , Humans , Biological Transport , Animals , Mass Spectrometry/methods , Organelles/metabolism , Lipids/chemistry
20.
Proc Natl Acad Sci U S A ; 121(3): e2314093121, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38190532

ABSTRACT

Lipid droplets (LDs) are organelles critical for energy storage and membrane lipid homeostasis, whose number and size are carefully regulated in response to cellular conditions. The molecular mechanisms underlying lipid droplet biogenesis and degradation, however, are not well understood. The Troyer syndrome protein spartin (SPG20) supports LD delivery to autophagosomes for turnover via lipophagy. Here, we characterize spartin as a lipid transfer protein whose transfer ability is required for LD degradation. Spartin copurifies with phospholipids and neutral lipids from cells and transfers phospholipids in vitro via its senescence domain. A senescence domain truncation that impairs lipid transfer in vitro also impairs LD turnover in cells while not affecting spartin association with either LDs or autophagosomes, supporting that spartin's lipid transfer ability is physiologically relevant. Our data indicate a role for spartin-mediated lipid transfer in LD turnover.


Subject(s)
Autophagosomes , Lipid Droplets , Autophagy , Membrane Lipids
SELECTION OF CITATIONS
SEARCH DETAIL