Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Comput Assist Radiol Surg ; 19(2): 233-240, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37535263

ABSTRACT

PURPOSE: The segmentation of the hepatic arteries (HA) is essential for state-of-the-art pre-interventional planning of selective internal radiation therapy (SIRT), a treatment option for malignant tumors in the liver. In SIRT a catheter is placed through the aorta into the tumor-feeding hepatic arteries, injecting small beads filled with radiation emitting material for local radioembolization. In this study, we evaluate the suitability of a deep neural network (DNN) based vessel segmentation for SIRT planning. METHODS: We applied our DNN-based HA segmentation on 36 contrast-enhanced computed tomography (CT) scans from the arterial contrast agent phase and rated its segmentation quality as well as the overall image quality. Additionally, we applied a traditional machine learning algorithm for HA segmentation as comparison to our deep learning (DL) approach. Moreover, we assessed by expert ratings whether the produced HA segmentations can be used for SIRT planning. RESULTS: The DL approach outperformed the traditional machine learning algorithm. The DL segmentation can be used for SIRT planning in [Formula: see text] of the cases, while the reference segmentations, which were manually created by experienced radiographers, are sufficient in [Formula: see text]. Seven DL cases cannot be used for SIRT planning while the corresponding reference segmentations are sufficient. However, there are two DL segmentations usable for SIRT, where the reference segmentations for the same cases were rated as insufficient. CONCLUSIONS: HA segmentation is a difficult and time-consuming task. DL-based methods have the potential to support and accelerate the pre-interventional planning of SIRT therapy.


Subject(s)
Liver Neoplasms , Neural Networks, Computer , Humans , Tomography, X-Ray Computed/methods , Algorithms , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/radiotherapy , Image Processing, Computer-Assisted/methods
2.
Comput Methods Programs Biomed ; 224: 107003, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35868034

ABSTRACT

BACKGROUND AND OBJECTIVE: The segmentation and visualization of liver vessels in 3D CT images are essential for computer-aided diagnosis and preoperative planning of liver diseases. Due to the irregular structure of liver vessels and image noise, accurate extraction of liver vessels is difficult. In particular, accurate segmentation of small vessels is always a challenge, as multiple single down-sampling usually results in a loss of information. METHODS: In this paper, we propose a hierarchical progressive multiscale learning network (HPM-Net) framework for liver vessel segmentation. Firstly, the hierarchical progressive multiscale learning network combines internal and external progressive learning methods to learn semantic information about liver vessels at different scales by acquiring receptive fields of different sizes. Secondly, to better capture vessel features, we propose a dual-branch progressive 3D Unet, which uses a dual-branch progressive (DBP) down-sampling strategy to reduce the loss of detailed information in the process of network down-sampling. Finally, a deep supervision mechanism is introduced into the framework and backbone network to speed up the network convergence and achieve better training of the network. RESULTS: We conducted experiments on the public dataset 3Dircadb for liver vessel segmentation. The average dice coefficient and sensitivity of the proposed method reached 75.18% and 78.84%, respectively, both higher than the original network. CONCLUSION: Experimental results show that the proposed hierarchical progressive multiscale network can accurately segment the labeled liver vessels from the CT images.


Subject(s)
Deep Learning , Diagnosis, Computer-Assisted , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional , Liver/diagnostic imaging , Tomography, X-Ray Computed
3.
J Hepatobiliary Pancreat Sci ; 29(3): 359-368, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34779139

ABSTRACT

BACKGROUND/PURPOSE: Current conventional algorithms used for 3-dimensional simulation in virtual hepatectomy still have difficulties distinguishing the portal vein (PV) and hepatic vein (HV). The accuracy of these algorithms was compared with a new deep-learning based algorithm (DLA) using artificial intelligence. METHODS: A total of 110 living liver donor candidates until 2017, and 46 donor candidates until 2019 were allocated to the training group and validation groups for the DLA, respectively. All PV or HV branches were labeled based on Couinaud's segment classification and the Brisbane 2000 Terminology by hepato-biliary surgeons. Misclassified and missing branches were compared between a conventional tracking-based algorithm (TA) and DLA in the validation group. RESULTS: The sensitivity, specificity, and Dice coefficient for the PV were 0.58, 0.98, and 0.69 using the TA; and 0.84, 0.97, and 0.90 using the DLA (P < .001, excluding specificity); and for the HV, 0.81, 087, and 0.83 using the TA; and 0.93, 0.94 and 0.94 using the DLA (P < .001 to P = .001). The DLA exhibited greater accuracy than the TA. CONCLUSION: Compared with the TA, artificial intelligence enhanced the accuracy of extraction of the PV and HVs in computed tomography.


Subject(s)
Hepatectomy , Hepatic Veins , Artificial Intelligence , Hepatectomy/methods , Hepatic Veins/diagnostic imaging , Hepatic Veins/surgery , Humans , Portal Vein/diagnostic imaging , Portal Vein/surgery , Tomography, X-Ray Computed/methods
4.
Sensors (Basel) ; 21(6)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809361

ABSTRACT

The segmentation of liver blood vessels is of major importance as it is essential for formulating diagnoses, planning and delivering treatments, as well as evaluating the results of clinical procedures. Different imaging techniques are available for application in clinical practice, so the segmentation methods should take into account the characteristics of the imaging technique. Based on the literature, this review paper presents the most advanced and effective methods of liver vessel segmentation, as well as their performance according to the metrics used. This paper includes results available for four imaging methods, namely: computed tomography (CT), computed tomography angiography (CTA), magnetic resonance (MR), and ultrasonography (USG). The publicly available datasets used in research are also presented. This paper may help researchers gain better insight into the available materials and methods, making it easier to develop new, more effective solutions, as well as to improve existing approaches. This article analyzes in detail various segmentation methods, which can be divided into three groups: active contours, tracking-based, and machine learning techniques. For each group of methods, their theoretical and practical characteristics are discussed, and the pros and cons are highlighted. The most advanced and promising approaches are also suggested. However, we conclude that liver vasculature segmentation is still an open problem, because of the various deficiencies and constraints researchers need to address and try to eliminate from the solutions used.


Subject(s)
Algorithms , Tomography, X-Ray Computed , Angiography , Liver/diagnostic imaging , Machine Learning
5.
Phys Med ; 32(5): 709-16, 2016 May.
Article in English | MEDLINE | ID: mdl-27132031

ABSTRACT

Liver-vessel segmentation plays an important role in vessel structure analysis for liver surgical planning. This paper presents a liver-vessel segmentation method based on extreme learning machine (ELM). Firstly, an anisotropic filter is used to remove noise while preserving vessel boundaries from the original computer tomography (CT) images. Then, based on the knowledge of prior shapes and geometrical structures, three classical vessel filters including Sato, Frangi and offset medialness filters together with the strain energy filter are used to extract vessel structure features. Finally, the ELM is applied to segment liver vessels from background voxels. Experimental results show that the proposed method can effectively segment liver vessels from abdominal CT images, and achieves good accuracy, sensitivity and specificity.


Subject(s)
Anisotropy , Imaging, Three-Dimensional , Liver/diagnostic imaging , Liver/pathology , Machine Learning , Tomography, X-Ray Computed , Algorithms , Diffusion , False Positive Reactions , Humans , Image Processing, Computer-Assisted , Radiography, Abdominal , Radiotherapy Planning, Computer-Assisted , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL