Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 226
Filter
1.
Comput Methods Programs Biomed ; 256: 108401, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39232374

ABSTRACT

BACKGROUND AND OBJECTIVE: Registration of pulmonary computed tomography (CT) images with radiation-induced lung diseases (RILD) was essential to investigate the voxel-wise relationship between the formation of RILD and the radiation dose received by different tissues. Although various approaches had been developed for the registration of lung CTs, their performances remained clinically unsatisfactory for registration of lung CT images with RILD. The main difficulties arose from the longitudinal change in lung parenchyma, including RILD and volumetric change of lung cancers, after radiation therapy, leading to inaccurate registration and artifacts caused by erroneous matching of the RILD tissues. METHODS: To overcome the influence of the parenchymal changes, a divide-and-conquer approach rooted in the coherent point drift (CPD) paradigm was proposed. The proposed method was based on two kernel ideas. One was the idea of component structure wise registration. Specifically, the proposed method relaxed the intrinsic assumption of equal isotropic covariances in CPD by decomposing a lung and its surrounding tissues into component structures and independently registering the component structures pairwise by CPD. The other was the idea of defining a vascular subtree centered at a matched branch point as a component structure. This idea could not only provide a sufficient number of matched feature points within a parenchyma, but avoid being corrupted by the false feature points resided in the RILD tissues due to globally and indiscriminately sampling using mathematical operators. The overall deformation model was built by using the Thin Plate Spline based on all matched points. RESULTS: This study recruited 30 pairs of lung CT images with RILD, 15 of which were used for internal validation (leave-one-out cross-validation) and the other 15 for external validation. The experimental results showed that the proposed algorithm achieved a mean and a mean of maximum 1 % of average surface distances <2 and 8 mm, respectively, and a mean and a maximum target registration error <2 mm and 5 mm on both internal and external validation datasets. The paired two-sample t-tests corroborated that the proposed algorithm outperformed a recent method, the Stavropoulou's method, on the external validation dataset (p < 0.05). CONCLUSIONS: The proposed algorithm effectively reduced the influence of parenchymal changes, resulting in a reasonably accurate and artifact-free registration.


Subject(s)
Algorithms , Lung Diseases , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Lung Diseases/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Lung/diagnostic imaging , Radiography, Thoracic/methods , Image Processing, Computer-Assisted/methods , Artifacts
2.
EClinicalMedicine ; 75: 102772, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39170939

ABSTRACT

Background: Acute respiratory distress syndrome (ARDS) is a life-threatening condition with a high incidence and mortality rate in intensive care unit (ICU) admissions. Early identification of patients at high risk for developing ARDS is crucial for timely intervention and improved clinical outcomes. However, the complex pathophysiology of ARDS makes early prediction challenging. This study aimed to develop an artificial intelligence (AI) model for automated lung lesion segmentation and early prediction of ARDS to facilitate timely intervention in the intensive care unit. Methods: A total of 928 ICU patients with chest computed tomography (CT) scans were included from November 2018 to November 2021 at three centers in China. Patients were divided into a retrospective cohort for model development and internal validation, and three independent cohorts for external validation. A deep learning-based framework using the UNet Transformer (UNETR) model was developed to perform the segmentation of lung lesions and early prediction of ARDS. We employed various data augmentation techniques using the Medical Open Network for AI (MONAI) framework, enhancing the training sample diversity and improving the model's generalization capabilities. The performance of the deep learning-based framework was compared with a Densenet-based image classification network and evaluated in external and prospective validation cohorts. The segmentation performance was assessed using the Dice coefficient (DC), and the prediction performance was assessed using area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. The contributions of different features to ARDS prediction were visualized using Shapley Explanation Plots. This study was registered with the China Clinical Trial Registration Centre (ChiCTR2200058700). Findings: The segmentation task using the deep learning framework achieved a DC of 0.734 ± 0.137 in the validation set. For the prediction task, the deep learning-based framework achieved AUCs of 0.916 [0.858-0.961], 0.865 [0.774-0.945], 0.901 [0.835-0.955], and 0.876 [0.804-0.936] in the internal validation cohort, external validation cohort I, external validation cohort II, and prospective validation cohort, respectively. It outperformed the Densenet-based image classification network in terms of prediction accuracy. Moreover, the ARDS prediction model identified lung lesion features and clinical parameters such as C-reactive protein, albumin, bilirubin, platelet count, and age as significant contributors to ARDS prediction. Interpretation: The deep learning-based framework using the UNETR model demonstrated high accuracy and robustness in lung lesion segmentation and early ARDS prediction, and had good generalization ability and clinical applicability. Funding: This study was supported by grants from the Shanghai Renji Hospital Clinical Research Innovation and Cultivation Fund (RJPY-DZX-008) and Shanghai Science and Technology Development Funds (22YF1423300).

3.
PeerJ Comput Sci ; 10: e2178, 2024.
Article in English | MEDLINE | ID: mdl-39145207

ABSTRACT

This work presents the application of an Encoder-Decoder convolutional neural network (ED-CNN) model to automatically segment COVID-19 computerised tomography (CT) data. By doing so we are producing an alternative model to current literature, which is easy to follow and reproduce, making it more accessible for real-world applications as little training would be required to use this. Our simple approach achieves results comparable to those of previously published studies, which use more complex deep-learning networks. We demonstrate a high-quality automated segmentation prediction of thoracic CT scans that correctly delineates the infected regions of the lungs. This segmentation automation can be used as a tool to speed up the contouring process, either to check manual contouring in place of a peer checking, when not possible or to give a rapid indication of infection to be referred for further treatment, thus saving time and resources. In contrast, manual contouring is a time-consuming process in which a professional would contour each patient one by one to be later checked by another professional. The proposed model uses approximately 49 k parameters while others average over 1,000 times more parameters. As our approach relies on a very compact model, shorter training times are observed, which make it possible to easily retrain the model using other data and potentially afford "personalised medicine" workflows. The model achieves similarity scores of Specificity (Sp) = 0.996 ± 0.001, Accuracy (Acc) = 0.994 ± 0.002 and Mean absolute error (MAE) = 0.0075 ± 0.0005.

4.
Comput Med Imaging Graph ; 115: 102397, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735104

ABSTRACT

We address the problem of lung CT image registration, which underpins various diagnoses and treatments for lung diseases. The main crux of the problem is the large deformation that the lungs undergo during respiration. This physiological process imposes several challenges from a learning point of view. In this paper, we propose a novel training scheme, called stochastic decomposition, which enables deep networks to effectively learn such a difficult deformation field during lung CT image registration. The key idea is to stochastically decompose the deformation field, and supervise the registration by synthetic data that have the corresponding appearance discrepancy. The stochastic decomposition allows for revealing all possible decompositions of the deformation field. At the learning level, these decompositions can be seen as a prior to reduce the ill-posedness of the registration yielding to boost the performance. We demonstrate the effectiveness of our framework on Lung CT data. We show, through extensive numerical and visual results, that our technique outperforms existing methods.


Subject(s)
Stochastic Processes , Tomography, X-Ray Computed , Tomography, X-Ray Computed/methods , Humans , Radiographic Image Interpretation, Computer-Assisted/methods , Lung/diagnostic imaging , Algorithms , Lung Diseases/diagnostic imaging , Lung Diseases/physiopathology
5.
Article in English | MEDLINE | ID: mdl-38765483

ABSTRACT

Parametric response mapping (PRM) is a voxel-based quantitative CT imaging biomarker that measures the severity of chronic obstructive pulmonary disease (COPD) by analyzing both inspiratory and expiratory CT scans. Although PRM-derived measurements have been shown to predict disease severity and phenotyping, their quantitative accuracy is impacted by the variability of scanner settings and patient conditions. The aim of this study was to evaluate the variability of PRM-based measurements due to the changes in the scanner types and configurations. We developed 10 human chest models with emphysema and air-trapping at end-inspiration and end-expiration states. These models were virtually imaged using a scanner-specific CT simulator (DukeSim) to create CT images at different acquisition settings for energy-integrating and photon-counting CT systems. The CT images were used to estimate PRM maps. The quantified measurements were compared with ground truth values to evaluate the deviations in the measurements. Results showed that PRM measurements varied with scanner type and configurations. The emphysema volume was overestimated by 3 ± 9.5 % (mean ± standard deviation) of the lung volume, and the functional small airway disease (fSAD) volume was underestimated by 7.5±19 % of the lung volume. PRM measurements were more accurate and precise when the acquired settings were photon-counting CT, higher dose, smoother kernel, and larger pixel size. This study demonstrates the development and utility of virtual imaging tools for systematic assessment of a quantitative biomarker accuracy.

6.
Med Biol Eng Comput ; 62(9): 2669-2686, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38658497

ABSTRACT

The assessment of deformable registration uncertainty is an important task for the safety and reliability of registration methods in clinical applications. However, it is typically done by a manual and time-consuming procedure. We propose a novel automatic method to predict registration uncertainty based on multi-category features and supervised learning. Three types of features, including deformation field statistical features, deformation field physiologically realistic features, and image similarity features, are introduced and calculated to train the random forest regressor for local registration uncertain prediction. Deformation field statistical features represent the numerical stability of registration optimization, which are correlated to the uncertainty of deformation fields; deformation field physiologically realistic features represent the biomechanical properties of organ motions, which mathematically reflect the physiological reality of deformation; image similarity features reflect the similarity between the warped image and fixed image. The multi-category features comprehensively reflect the registration uncertainty. The strategy of spatial adaptive random perturbations is also introduced to accurately simulate spatial distribution of registration uncertainty, which makes deformation field statistical features more discriminative to the uncertainty of deformation fields. Experiments were conducted on three publicly available thoracic CT image datasets. Seventeen randomly selected image pairs are used to train the random forest model, and 9 image pairs are used to evaluate the prediction model. The quantitative experiments on lung CT images show that the proposed method outperforms the baseline method for uncertain prediction of classical iterative optimization-based registration and deep learning-based registration with different registration qualities. The proposed method achieves good performance for registration uncertain prediction, which has great potential in improving the accuracy of registration uncertain prediction.


Subject(s)
Lung , Supervised Machine Learning , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Lung/diagnostic imaging , Lung/physiology , Uncertainty , Image Processing, Computer-Assisted/methods , Algorithms , Radiographic Image Interpretation, Computer-Assisted/methods
7.
Lancet Reg Health Am ; 33: 100733, 2024 May.
Article in English | MEDLINE | ID: mdl-38680501

ABSTRACT

Background: COVID-19 lung sequelae can impact the course of patient lives. We investigated the evolution of pulmonary abnormalities in post-COVID-19 patients 18-24 months after hospital discharge. Methods: A cohort of COVID-19 patients admitted to the Hospital das Clínicas da Faculdade de Medicina da USP in São Paulo, Brazil, between March and August of 2020, were followed-up 6-12 months after hospital discharge. A subset of patients with pulmonary involvement and chest computed tomography (CT) scans were eligible to participate in this second follow-up (18-24 months). Data was analyzed in an ambidirectional manner, including retrospective data from the hospitalization, and from the first follow-up (6-12 months after discharge), and compared with the prospective data collected in this new follow-up. Findings: From 348 patients eligible, 237 (68%) participated in this follow-up. Among participants, 139 (58%) patients presented ground-glass opacities and reticulations, and 80 (33%) presented fibrotic-like lesions (traction bronchiectasis and architectural distortion). Five (2%) patients improved compared to the 6-12-month assessment, but 20 (25%) of 80 presented worsening of lung abnormalities. For those with relevant assessments on both occasions, comparing the CT findings between this follow-up with the previous assessment, there was an increase in patients with architectural distortion (43 [21%] of 204 vs 57 [28%] of 204, p = 0.0093), as well as in traction bronchiectasis (55 [27%] of 204 vs 69 [34%] of 204, p = 0.0043). Patients presented a persistent functional impairment with demonstrated restrictive pattern in both follow-ups (87 [42%] of 207 vs 91 [44%] of 207, p = 0.76), as well as for the reduced diffusion capacity (88 [42%] of 208 vs 87 [42%] of 208, p = 1.0). Length of hospitalization (OR 1.04 [1.01-1.07], p = 0.0040), invasive mechanical ventilation (OR 3.11 [1.3-7.5] p = 0.011), patient's age (OR 1.03 [1.01-1.06] p = 0.0074 were consistent predictors for development of fibrotic-like lung lesions in post-COVID-19 patients. Interpretation: Post-COVID-19 lung sequelae can persist and progress after hospital discharge, suggesting airways involvement and formation of new fibrotic-like lesions, mainly in patients who were in intensive care unit (ICU). Funding: São Paulo Research Foundation (22/01769-5) and Instituto Todos pela Saúde (C1721).

8.
IJID Reg ; 10: 183-190, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38351902

ABSTRACT

Objectives: Patients with COVID-19 may experience a lung injury without presenting clinical symptoms. Early detection of lung injury in patients with COVID-19 is required to enhance prediction and prevent severe progression. Methods: Lung lesions in patients with COVID-19 were defined using the Fleischner Society terminology. Chest computed tomography lesions and their correlation with demographic characteristics and medical variables were identified. Results: Patients with mild and moderate COVID-19 had up to 45% lung injuries, whereas critical patients had 55%. However, patients with mild and moderate COVID-19 typically had low-level lung injuries. Ground-glass (68.1%), consolidation (48.8%), opacity (36.3%), and nodular (6.9%) lung lesions were the most prevalent in patients with COVID-19. Patients with COVID-19 infected with the Delta variant had worse lung injury than those infected with the Alpha and Omicron. People vaccinated with ≥2 doses showed a lower risk of lung injury than those vaccinated with <1 dose. Patients <18 years old were less likely to have a lung injury than patients >18 years old. The treatment outcomes were unaffected by the severity of the lung injury. Conclusion: Patients with mild COVID-19 had a similar risk of lung injury as patients with severe COVID-19. Thus, using chest computed tomography to detect lung injury can enhance the treatment outcomes and reduce the patient's risk of pulmonary complications.

9.
Med Phys ; 51(3): 1974-1984, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37708440

ABSTRACT

BACKGROUND: An automated, accurate, and efficient lung four-dimensional computed tomography (4DCT) image registration method is clinically important to quantify respiratory motion for optimal motion management. PURPOSE: The purpose of this work is to develop a weakly supervised deep learning method for 4DCT lung deformable image registration (DIR). METHODS: The landmark-driven cycle network is proposed as a deep learning platform that performs DIR of individual phase datasets in a simulation 4DCT. This proposed network comprises a generator and a discriminator. The generator accepts moving and target CTs as input and outputs the deformation vector fields (DVFs) to match the two CTs. It is optimized during both forward and backward paths to enhance the bi-directionality of DVF generation. Further, the landmarks are used to weakly supervise the generator network. Landmark-driven loss is used to guide the generator's training. The discriminator then judges the realism of the deformed CT to provide extra DVF regularization. RESULTS: We performed four-fold cross-validation on 10 4DCT datasets from the public DIR-Lab dataset and a hold-out test on our clinic dataset, which included 50 4DCT datasets. The DIR-Lab dataset was used to evaluate the performance of the proposed method against other methods in the literature by calculating the DIR-Lab Target Registration Error (TRE). The proposed method outperformed other deep learning-based methods on the DIR-Lab datasets in terms of TRE. Bi-directional and landmark-driven loss were shown to be effective for obtaining high registration accuracy. The mean and standard deviation of TRE for the DIR-Lab datasets was 1.20 ± 0.72 mm and the mean absolute error (MAE) and structural similarity index (SSIM) for our datasets were 32.1 ± 11.6 HU and 0.979 ± 0.011, respectively. CONCLUSION: The landmark-driven cycle network has been validated and tested for automatic deformable image registration of patients' lung 4DCTs with results comparable to or better than competing methods.


Subject(s)
Four-Dimensional Computed Tomography , Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Lung/diagnostic imaging , Computer Simulation , Motion , Algorithms
10.
Diagnostics (Basel) ; 13(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38066737

ABSTRACT

The patterns of idiopathic pulmonary fibrosis (IPF) lung disease that directly correspond to elevated hyperpolarised gas diffusion-weighted (DW) MRI metrics are currently unknown. This study aims to develop a spatial co-registration framework for a voxel-wise comparison of hyperpolarised gas DW-MRI and CALIPER quantitative CT patterns. Sixteen IPF patients underwent 3He DW-MRI and CT at baseline, and eleven patients had a 1-year follow-up DW-MRI. Six healthy volunteers underwent 129Xe DW-MRI at baseline only. Moreover, 3He DW-MRI was indirectly co-registered to CT via spatially aligned 3He ventilation and structural 1H MRI. A voxel-wise comparison of the overlapping 3He apparent diffusion coefficient (ADC) and mean acinar dimension (LmD) maps with CALIPER CT patterns was performed at baseline and after 1 year. The abnormal lung percentage classified with the LmD value, based on a healthy volunteer 129Xe LmD, and CALIPER was compared with a Bland-Altman analysis. The largest DW-MRI metrics were found in the regions classified as honeycombing, and longitudinal DW-MRI changes were observed in the baseline-classified reticular changes and ground-glass opacities regions. A mean bias of -15.3% (95% interval -56.8% to 26.2%) towards CALIPER was observed for the abnormal lung percentage. This suggests DW-MRI may detect microstructural changes in areas of the lung that are determined visibly and quantitatively normal by CT.

11.
Artif Organs ; 47(11): 1742-1751, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37578196

ABSTRACT

BACKGROUND: Pulmonary complications often occur in patients receiving veno-arterial extracorporeal membrane oxygenation (VA ECMO). However, the prognostic impact of lung damage has not been fully elucidated. METHODS: This single-center retrospective observational study targeted patients with cardiogenic shock who received VA ECMO between 2012 and 2021. This study included 65 patients who underwent chest computed tomography (CT) on VA ECMO, followed by escalation to central mechanical circulatory support (MCS) with left ventricular venting. The average density of lung CT images was measured using region-of-interest methods, and the primary endpoint was 180-day all-cause death after escalation to the central MCS. RESULTS: Twenty-two patients (34%) developed 180-day all-cause death. According to the Cox regression analysis, age (hazard ratio [HR], 1.08; 95% confidence interval [CI], 1.03-1.14; p = 0.001), ischemic etiology (HR, 5.53; 95% CI, 2.09-14.62; p < 0.001), duration of VA ECMO support (HR, 1.19; 95% CI, 1.00-1.40; p = 0.045), and lung CT density (≥ -481 Hounsfield unit [HU]) (HR, 6.33; 95% CI, 2.26-17.72; p < 0.001) were independently associated with all-cause death. Receiver operating characteristic curve analysis determined that lung CT density ≥ -481 HU is an optimal cutoff value for predicting all-cause death (area under the curve [AUC], 0.72). The 180-day overall survival rate for patients with high lung CT density (≥ -481 HU) was significantly lower than that for those with low lung CT density (< -481 HU) (44.4% vs. 81.6%, respectively, p = 0.002). CONCLUSIONS: Higher lung CT density could be a useful predictor of death in patients with VA ECMO requiring central MCS escalation.


Subject(s)
Extracorporeal Membrane Oxygenation , Shock, Cardiogenic , Humans , Prognosis , Shock, Cardiogenic/diagnostic imaging , Shock, Cardiogenic/etiology , Shock, Cardiogenic/therapy , Extracorporeal Membrane Oxygenation/methods , Retrospective Studies , Tomography, X-Ray Computed , Lung/diagnostic imaging
12.
Med Phys ; 50(11): 6864-6880, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37289193

ABSTRACT

BACKGROUND: Deformable Image Registration (DIR) is an essential technique required in many applications of radiation oncology. However, conventional DIR approaches typically take several minutes to register one pair of 3D CT images and the resulting deformable vector fields (DVFs) are only specific to the pair of images used, making it less appealing for clinical application. PURPOSE: A deep-learning-based DIR method using CT images is proposed for lung cancer patients to address the common drawbacks of the conventional DIR approaches and in turn can accelerate the speed of related applications, such as contour propagation, dose deformation, adaptive radiotherapy (ART), etc. METHODS: A deep neural network based on VoxelMorph was developed to generate DVFs using CT images collected from 114 lung cancer patients. Two models were trained with the weighted mean absolute error (wMAE) loss and structural similarity index matrix (SSIM) loss (optional) (i.e., the MAE model and the M+S model). In total, 192 pairs of initial CT (iCT) and verification CT (vCT) were included as a training dataset and the other independent 10 pairs of CTs were included as a testing dataset. The vCTs usually were taken 2 weeks after the iCTs. The synthetic CTs (sCTs) were generated by warping the vCTs according to the DVFs generated by the pre-trained model. The image quality of the synthetic CTs was evaluated by measuring the similarity between the iCTs and the sCTs generated by the proposed methods and the conventional DIR approaches, respectively. Per-voxel absolute CT-number-difference volume histogram (CDVH) and MAE were used as the evaluation metrics. The time to generate the sCTs was also recorded and compared quantitatively. Contours were propagated using the derived DVFs and evaluated with SSIM. Forward dose calculations were done on the sCTs and the corresponding iCTs. Dose volume histograms (DVHs) were generated based on dose distributions on both iCTs and sCTs generated by two models, respectively. The clinically relevant DVH indices were derived for comparison. The resulted dose distributions were also compared using 3D Gamma analysis with thresholds of 3 mm/3%/10% and 2 mm/2%/10%, respectively. RESULTS: The two models (wMAE and M+S) achieved a speed of 263.7±163 / 265.8±190 ms and a MAE of 13.15±3.8 / 17.52±5.8 HU for the testing dataset, respectively. The average SSIM scores of 0.987±0.006 and 0.988±0.004 were achieved by the two proposed models, respectively. For both models, CDVH of a typical patient showed that less than 5% of the voxels had a per-voxel absolute CT-number-difference larger than 55 HU. The dose distribution calculated based on a typical sCT showed differences of ≤2cGy[RBE] for clinical target volume (CTV) D95 and D5 , within ±0.06% for total lung V5 , ≤1.5cGy[RBE] for heart and esophagus Dmean , and ≤6cGy[RBE] for cord Dmax compared to the dose distribution calculated based on the iCT. The good average 3D Gamma passing rates (> 96% for 3 mm/3%/10% and > 94% for 2 mm/2%/10%, respectively) were also observed. CONCLUSION: A deep neural network-based DIR approach was proposed and has been shown to be reasonably accurate and efficient to register the initial CTs and verification CTs in lung cancer.


Subject(s)
Deep Learning , Lung Neoplasms , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional , Radiotherapy Planning, Computer-Assisted/methods , Tomography, X-Ray Computed
13.
Bioengineering (Basel) ; 10(5)2023 May 08.
Article in English | MEDLINE | ID: mdl-37237632

ABSTRACT

Deformable lung CT image registration is an essential task for computer-assisted interventions and other clinical applications, especially when organ motion is involved. While deep-learning-based image registration methods have recently achieved promising results by inferring deformation fields in an end-to-end manner, large and irregular deformations caused by organ motion still pose a significant challenge. In this paper, we present a method for registering lung CT images that is tailored to the specific patient being imaged. To address the challenge of large deformations between the source and target images, we break the deformation down into multiple continuous intermediate fields. These fields are then combined to create a spatio-temporal motion field. We further refine this field using a self-attention layer that aggregates information along motion trajectories. By leveraging temporal information from a respiratory cycle, our proposed methods can generate intermediate images that facilitate image-guided tumor tracking. We evaluated our approach extensively on a public dataset, and our numerical and visual results demonstrate the effectiveness of the proposed method.

14.
Procedia Comput Sci ; 218: 1660-1667, 2023.
Article in English | MEDLINE | ID: mdl-36743788

ABSTRACT

Segmentation of pneumonia lesions from Lung CT images has become vital for diagnosing the disease and evaluating the severity of the patients during the COVID-19 pandemic. Several AI-based systems have been proposed for this task. However, some low-contrast abnormal zones in CT images make the task challenging. The researchers investigated image preprocessing techniques to accomplish this problem and to enable more accurate segmentation by the AI-based systems. This study proposes a COVID-19 Lung-CT segmentation system based on histogram-based non-parametric region localization and enhancement (LE) methods prior to the U-Net architecture. The COVID-19-infected lung CT images were initially processed by the LE method, and the infected regions were detected and enhanced to provide more discriminative features to the deep learning segmentation methods. The U-Net is trained using the enhanced images to segment the regions affected by COVID-19. The proposed system achieved 97.75%, 0.85, and 0.74 accuracy, dice score, and Jaccard index, respectively. The comparison results suggested that the use of LE methods as a preprocessing step in CT Lung images significantly improved the feature extraction and segmentation abilities of the U-Net model by a 0.21 dice score. The results might lead to implementing the LE method in segmenting varied medical images.

15.
Appl Soft Comput ; 132: 109851, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36447954

ABSTRACT

The world has been undergoing the most ever unprecedented circumstances caused by the coronavirus pandemic, which is having a devastating global effect in different aspects of life. Since there are not effective antiviral treatments for Covid-19 yet, it is crucial to early detect and monitor the progression of the disease, thereby helping to reduce mortality. While different measures are being used to combat the virus, medical imaging techniques have been examined to support doctors in diagnosing the disease. In this paper, we present a practical solution for the detection of Covid-19 from chest X-ray (CXR) and lung computed tomography (LCT) images, exploiting cutting-edge Machine Learning techniques. As the main classification engine, we make use of EfficientNet and MixNet, two recently developed families of deep neural networks. Furthermore, to make the training more effective and efficient, we apply three transfer learning algorithms. The ultimate aim is to build a reliable expert system to detect Covid-19 from different sources of images, making it be a multi-purpose AI diagnosing system. We validated our proposed approach using four real-world datasets. The first two are CXR datasets consist of 15,000 and 17,905 images, respectively. The other two are LCT datasets with 2,482 and 411,528 images, respectively. The five-fold cross-validation methodology was used to evaluate the approach, where the dataset is split into five parts, and accordingly the evaluation is conducted in five rounds. By each evaluation, four parts are combined to form the training data, and the remaining one is used for testing. We obtained an encouraging prediction performance for all the considered datasets. In all the configurations, the obtained accuracy is always larger than 95.0%. Compared to various existing studies, our approach yields a substantial performance gain. Moreover, such an improvement is statistically significant.

16.
Article in English | MEDLINE | ID: mdl-36465979

ABSTRACT

Lung nodule tracking assessment relies on cross-sectional measurements of the largest lesion profile depicted in initial and follow-up computed tomography (CT) images. However, apparent changes in nodule size assessed via simple image-based measurements may also be compromised by the effect of the background lung tissue deformation on the GGN between the initial and follow-up images, leading to erroneous conclusions about nodule changes due to disease. To compensate for the lung deformation and enable consistent nodule tracking, here we propose a feature-based affine registration method and study its performance vis-a-vis several other registration methods. We implement and test each registration method using both a lung- and a lesion-centered region of interest on ten patient CT datasets featuring twelve nodules, including both benign and malignant GGO lesions containing pure GGNs, part-solid, or solid nodules. We evaluate each registration method according to the target registration error (TRE) computed across 30 - 50 homologous fiducial landmarks surrounding the lesions and selected by expert radiologists in both the initial and follow-up patient CT images. Our results show that the proposed feature-based affine lesion-centered registration yielded a 1.1 ± 1.2 mm TRE, while a Symmetric Normalization deformable registration yielded a 1.2 ± 1.2 mm TRE, and a least-square fit registration of the 30-50 validation fiducial landmark set yielded a 1.5 ± 1.2 mm TRE. Although the deformable registration yielded a slightly higher registration accuracy than the feature-based affine registration, it is significantly more computationally efficient, eliminates the need for ambiguous segmentation of GGNs featuring ill-defined borders, and reduces the susceptibility of artificial deformations introduced by the deformable registration, which may lead to increased similarity between the registered initial and follow-up images, over-compensating for the background lung tissue deformation, and, in turn, compromising the true disease-induced nodule change assessment. We also assessed the registration qualitatively, by visual inspection of the subtraction images, and conducted a pilot pre-clinical study that showed the proposed feature-based lesion-centered affine registration effectively compensates for the background lung tissue deformation between the initial and follow-up images and also serves as a reliable baseline registration method prior to assessing lung nodule changes due to disease.

17.
Ann Med Surg (Lond) ; 84: 104892, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36536699

ABSTRACT

Background: There is no specific test in the definitive diagnostic approach to Allergic bronchopulmonary aspergillosis (ABPA) especially in the background of cystic fibrosis, but comprehensive and simultaneous clinical, radiological and serological examination will be the basis of ABPA diagnosis. The increasing in attenuation of bronchoceles in imaging has recently been proposed as a valuable diagnostic criterion. Purpose: The present study aimed to assess bronchocele attenuation in pulmonary CT scan of patients with complicated cystic fibrosis for diagnosis of ABPA. Methods: This cross-sectional study was performed on 74 consecutive patients aged 3-18 years suffering cystic fibrosis presented with exacerbation of pulmonary symptoms and were suspected of having ABPA. All were examined by 16 Slice CT Scan and the density of bronchoceles above 5 mm in diameter were measured in Hounsfield unit. The total serum IgE titer, skin prick test for aspergillus and anti-aspergillus IgG and IgE level were obtained for all subjects and both cutoff values of IgE level (>500 IU/mL and >1000 IU/mL) were considered as the criteria for ABPA diagnosis. Results: Considering IgE level of greater than 500 IU/mL and 1000 IU/mL as the diagnostic criteria, 24.3% and 10.8% had evidence of ABPA, respectively. Considering the two pointed diagnostic IgE ranges and based on the analysis of the area under the ROC curve, bronchocele attenuation could effectively predict the presence of ABPA with the best cutoff values of 37.25 (with a sensitivity of 70.6% and a specificity of 66.7%) and 40.00 (with a sensitivity of 85.7% and a specificity of 65.1%), respectively. Conclusion: The presence of bronchocele and an increase in its attenuation on CT scan will be diagnostic for the occurrence of ABPA.

18.
Eur J Hybrid Imaging ; 6(1): 32, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36424511

ABSTRACT

BACKGROUND: Lung perfusion using 99mTc-macroaggregated albumin single-photon emission computed tomography (SPECT) and lung computed tomography (CT) is a useful modality for identifying patients with pulmonary artery embolism. However, conformity between SPECT and CT at the bottom of the lung is generally low. This study aims to investigate the progression of conformity between lung perfusion SPECT and lung CT using a breathing synchronization software. METHODS: Among 95 consecutive patients who underwent lung perfusion SPECT and lung CT within 14 days because of suspected pulmonary embolism between June 2019 and August 2020 in department of cardiovascular medicine, we identified 28 patients (73 ± 10 years) who had normal pulmonary artery on contrast lung CT. We compared lung volumes calculated using lung perfusion SPECT and lung CT as gold standard. Visual conformity between lung SPECT and lung CT was scored 0-4 (0: 0-25%, 1: 25-50%, 2: 50-75%, 3: 75-90%, 4: > 90%) by two specialists in nuclear medicine and assessed. RESULTS: The lung volume calculated from lung CT was 3749 ± 788 ml. The lung volume calculated from lung perfusion SPECT without using the breathing synchronization software was 3091 ± 610 ml. There was a significant difference between the lung volume calculated from CT and SPECT without using the breathing synchronization software (P < 0.01). The lung volume calculated from lung perfusion SPECT using the breathing synchronization software was 3435 ± 686 ml, and there was no significant difference between the lung volume calculated from CT and SPECT using the breathing synchronization software. The visual score improved with the use of breathing synchronization software (without software; 1.9 ± 0.6 vs. with software; 3.4 ± 0.7, P < 0.001). CONCLUSION: This study demonstrated that the breathing synchronization software could improve conformity between lung perfusion SPECT and lung CT.

19.
J Med Syst ; 46(10): 62, 2022 Aug 21.
Article in English | MEDLINE | ID: mdl-35988110

ABSTRACT

Variations in COVID-19 lesions such as glass ground opacities (GGO), consolidations, and crazy paving can compromise the ability of solo-deep learning (SDL) or hybrid-deep learning (HDL) artificial intelligence (AI) models in predicting automated COVID-19 lung segmentation in Computed Tomography (CT) from unseen data leading to poor clinical manifestations. As the first study of its kind, "COVLIAS 1.0-Unseen" proves two hypotheses, (i) contrast adjustment is vital for AI, and (ii) HDL is superior to SDL. In a multicenter study, 10,000 CT slices were collected from 72 Italian (ITA) patients with low-GGO, and 80 Croatian (CRO) patients with high-GGO. Hounsfield Units (HU) were automatically adjusted to train the AI models and predict from test data, leading to four combinations-two Unseen sets: (i) train-CRO:test-ITA, (ii) train-ITA:test-CRO, and two Seen sets: (iii) train-CRO:test-CRO, (iv) train-ITA:test-ITA. COVILAS used three SDL models: PSPNet, SegNet, UNet and six HDL models: VGG-PSPNet, VGG-SegNet, VGG-UNet, ResNet-PSPNet, ResNet-SegNet, and ResNet-UNet. Two trained, blinded senior radiologists conducted ground truth annotations. Five types of performance metrics were used to validate COVLIAS 1.0-Unseen which was further benchmarked against MedSeg, an open-source web-based system. After HU adjustment for DS and JI, HDL (Unseen AI) > SDL (Unseen AI) by 4% and 5%, respectively. For CC, HDL (Unseen AI) > SDL (Unseen AI) by 6%. The COVLIAS-MedSeg difference was < 5%, meeting regulatory guidelines.Unseen AI was successfully demonstrated using automated HU adjustment. HDL was found to be superior to SDL.


Subject(s)
COVID-19 , Deep Learning , Artificial Intelligence , COVID-19/diagnostic imaging , Humans , Lung/diagnostic imaging , Tomography, X-Ray Computed/methods
20.
Front Med (Lausanne) ; 9: 912752, 2022.
Article in English | MEDLINE | ID: mdl-35847782

ABSTRACT

Objective: This study aimed to detect possible associations between lung computed tomography (CT) findings in COVID-19 and patients' age, body weight, vital signs, and medical regimen in Jordan. Methods: The present cross-sectional study enrolled 230 patients who tested positive for COVID-19 in Prince Hamza Hospital in Jordan. Demographic data, as well as major lung CT scan findings, were obtained from the hospital records of the COVID-19 patients. Results: The main observed major lung changes among the enrolled COVID-19 patients included ground-glass opacification in 47 (20.4%) patients and consolidation in 22 (9.6%) patients. A higher percentage of patients with major lung changes (24%) was observed among patients above 60 years old, while (50%) of patients with no changes in their lung findings were in the age group of 18-29 years old. Results obtained from the present study showed that only patients with major CT lung changes (9.7%) were prescribed more than three antibiotics. Additionally, 41.6 % of patients with major lung CT scan changes had either dry (31.0%) or productive (10.6%) cough at admission. Conclusion: Several factors have been identified by this study for their ability to predict lung changes. Early assessment of these predictors could help provide a prompt intervention that may enhance health outcomes and reduce the risk for further lung changes.

SELECTION OF CITATIONS
SEARCH DETAIL