Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Pest Manag Sci ; 78(4): 1594-1604, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34984812

ABSTRACT

BACKGROUND: The massive use of synthetic insecticides strongly affects the level of insecticide resistance in populations of Myzus persicae worldwide. The selection of target site insensitivity-mutations is particularly worrying in areas where agro-industrial crops are vulnerable to the attacks of aphids that vector viruses, as in the case of Tunisia. Knowledge of the resistance mechanisms evolved locally in this aphid pest is a prerequisite to improving and retaining the sustainability of integrated pest management strategies. RESULTS: Target site mutations were surveyed in several populations of M. persicae collected from peach and potato crops between 2011 and 2017 in three Tunisian regions using real-time allele-specific PCR. The L1014F mutation (kdr locus) was found at a moderate frequency mostly in the heterozygous state and the homozygous resistant genotype was very uncommon. The M918T mutation (super-kdr locus) was present in a few heterozygous individuals, whereas the M918L mutation was detected for the first time in Tunisia and extreme North Africa. This latter mutation was shown to be widespread and well-established in Tunisia mainly as homozygous individuals, and was more abundant on peach than on potato crops. The S431F mutation (MACE) was found in a few heterozygous individuals. No individuals carrying the R81T mutation linked to neonicotinoid resistance were detected. CONCLUSION: This study points out a critical situation for the efficacy of pyrethroid insecticides to control M. persicae populations in Tunisia. It also confirms the rapid spread of the M918L mutation which has been detected in many different areas of the Mediterranean basin. © 2022 Society of Chemical Industry.


Subject(s)
Aphids , Insecticides , Pyrethrins , Solanum tuberosum , Animals , Aphids/genetics , Humans , Insecticide Resistance/genetics , Insecticides/pharmacology , Mutation , Solanum tuberosum/genetics
2.
J Econ Entomol ; 114(4): 1789-1795, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34137856

ABSTRACT

Pyrethroid insecticides have been widely utilized for insect pest control. Target-site resistance is one of the major mechanisms explaining pest resistance to pyrethroids. This study quantified pyrethroid resistance and fitness cost conferred by the voltage-gated sodium channel (VGSC) M918L mutation in Rhopalosiphum padi. Six s-kdr-SS and six s-kdr-RS parthenogenetic lineages were established from the same field population and were reared in the laboratory without exposure to pesticides for more than one year. Enzyme activity analysis demonstrated that metabolic resistance had no impact on these lineages. Bioassays showed that the M918L mutation strongly affected pyrethroid efficiency, conferring moderate resistance to bifenthrin (type I) (39.0-fold) and high resistance to lambda-cyhalothrin (type II) (194.7-fold). Compared with the life table of s-kdr-SS lineages, s-kdr-RS lineages exhibited a relative fitness cost with significant decreases in longevity and fecundity. Meanwhile, competitive fitness was measured by blending various ratios of s-kdr-SS and s-kdr-SS aphids. The results indicated that M918L-mediated resistance showed a significant fitness cost in the presence of wild aphids without insecticide pressure. The fitness cost strongly correlated with the initial resistance allele frequency. This work characterized the novel s-kdr M918L mutation in R. padi, defined its function in resistance to different types of pyrethroids, and documented that the M918L-mediated resistance has a significant fitness cost.


Subject(s)
Aphids , Insecticides , Pyrethrins , Animals , Aphids/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Mutation
3.
Pest Manag Sci ; 76(8): 2809-2817, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32222020

ABSTRACT

BACKGROUND: Rhopalosiphum padi is an important pest affecting cereal crops worldwide. Pyrethroid, including lambda-cyhalothrin, has been widely used to control R. padi in the field. This work investigated the resistance levels of R. padi field populations to lambda-cyhalothrin, and analysed biochemical and molecular mechanisms of aphid resistance to the insecticide pyrethroid. RESULTS: A lambda-cyhalothrin-resistant field population (JY) was sampled, and a super-kdr mutation, M918L, in the voltage-gated sodium channel (VGSC) was identified in the population. The lambda-cyhalothrin-resistant strain (LC-R) was subsequently established by selecting the field population with lambda-cyhalothrin. All individuals of the R. padi LC-R strain showed the M918L heterozygous mutation in the VGSC IIS4-IIS6 region. Cross-resistance profiles of the LC-R strain to nine insecticides were detected. Both synergistic and enzyme activity studies indicated that cytochrome P450 monooxygenase played an important role in this resistance. Further gene expression analysis showed that seven P450 genes were significantly upregulated in the LC-R strain compared with the susceptible strain. CONCLUSION: Field-evolved resistance to pyrethroid insecticides has been found in R. padi. The M918L (super-kdr) mutation in the VGSC was documented for the first time in field samples obtained from an important wheat-growing area. The super-kdr mutation, as well as metabolic resistance mediated by P450 genes, was determined to contribute to the lambda-cyhalothrin resistance in R. padi. © 2020 Society of Chemical Industry.


Subject(s)
Aphids , Animals , Cytochrome P-450 Enzyme System , Insecticide Resistance , Mutation , Pyrethrins
4.
Pest Manag Sci ; 73(11): 2353-2359, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28544677

ABSTRACT

BACKGROUND: The cotton aphid, Aphis gossypii (Glover), is a destructive pest that affects numerous crops throughout the world. Pyrethroid resistance has become endemic in A. gossypii populations in the cotton growing areas of China due to wide- spread application of insecticides. To assess the extent of pyrethroid resistance, bioassays were conducted on field populations collected from several cotton cultivation areas from 2010 to 2015. The frequency of a known resistance-associated sodium channel mutation (M918 L) in A. gossypii was evaluated and the bioassay of bifenthrin with or without the synergist was performed to illuminate the mechanisms underlying resistance to pyrethroids. RESULTS: The field populations exhibited very high levels of resistance to both beta-cypermethrin and deltamethrin. Pretreatment with synergists, DEF and PBO, significantly increased the toxicity of bifenthrin to cotton aphid populations collected from Bt cotton fields in China. Further, 96.8-100% of individuals with the M918 L mutation (including both RR and RS individuals) were observed in various populations, and only 2.8-3.2% of individuals with wild-type homozygotes (SS) were detected. CONCLUSION: The mutation M918 L in the voltage-gated sodium channel along with detoxifying metabolism was contributed to the pyrethroid resistance in the field populations of Aphis gossypii from cotton growing regions of China. And insecticides with different modes of action should be recommended for the control of A. gossypii in the future. © 2017 Society of Chemical Industry.


Subject(s)
Aphids/drug effects , Insecticide Resistance , Insecticides/pharmacology , Nitriles/pharmacology , Pyrethrins/pharmacology , Animals , Aphids/enzymology , Aphids/genetics , Bacillus thuringiensis/genetics , China , Gossypium/genetics , Gossypium/growth & development , Inactivation, Metabolic , Mutation , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development
5.
Bull Entomol Res ; 107(1): 96-105, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27444359

ABSTRACT

Chemical insecticides have been widely used to control insect pests, leading to the selection of resistant populations. To date, several single nucleotide polymorphisms (SNPs) have already been associated with insecticide resistance, causing reduced sensitivity to many classes of products. Monitoring and detection of target-site resistance is currently one of the most important factors for insect pest management strategies. Several methods are available for this purpose: automated and high-throughput techniques (i.e. TaqMan or pyrosequencing) are very costly; cheaper alternatives (i.e. RFLP or PASA-PCRs) are time-consuming and limited by the necessity of a final visualization step. This work presents a new approach (QSGG, Qualitative Sybr Green Genotyping) which combines the specificity of PASA-PCR with the rapidity of real-time PCR analysis. The specific real-time detection of Cq values of wild-type or mutant alleles (amplified used allele-specific primers) allows the calculation of ΔCqW-M values and the consequent identification of the genotypes of unknown samples, on the basis of ranges previously defined with reference clones. The methodology is applied here to characterize mutations described in Myzus persicae and Musca domestica and we demonstrate it represents a valid, rapid and cost-effective technique that can be adopted for monitoring target-site resistance in field populations of these and other insect species.


Subject(s)
Aphids/genetics , Houseflies/genetics , Insecticide Resistance , Insecticides/pharmacology , Polymorphism, Single Nucleotide , Animals , Real-Time Polymerase Chain Reaction
6.
Pest Manag Sci ; 71(6): 878-84, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25346186

ABSTRACT

BACKGROUND: Pyrethroids have been widely employed in order to control several agricultural pests, including Myzus persicae. Target-site resistance is the main mechanism that confers insensitivity to this class of compounds, and the most common amino acid substitutions are kdr (L1014F) and s-kdr (M918T), but recently another mutation in the s-kdr locus (M918L) has been described in French and Korean populations of M. persicae. RESULTS: Molecular analysis of several Italian populations of M. persicae by pyrosequencing revealed the presence of the new s-kdr mutation (M918L) in different forms. It was found in two different nucleotide polymorphisms (a/t or a/c substitution), in heterozygous or homozygous status, and also in combination with the classic kdr and s-kdr. Bioassays on populations carrying the M918L mutation show that it strongly affects pyrethroid efficacy, particularly of type II pyrethroids such as lambda-cyhalothrin, while it has no effect against DDT. CONCLUSION: This work provides more information about the new s-kdr M918L mutation in M. persicae, describing a more complicated situation arising from the possible combination with the classic L1014F and M918T. Our data open new questions concerning the origin of these new genotypes with different combinations of target-site mutations, and also their possible influence on control strategies.


Subject(s)
Aphids/genetics , Voltage-Gated Sodium Channels/genetics , Amino Acid Substitution , Animals , Aphids/drug effects , DDT/pharmacology , Insecticide Resistance , Insecticides/pharmacology , Mutation , Nitriles/pharmacology , Pyrethrins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL