Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
1.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39065715

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by the absence of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor type 2 expression. It is known for its high malignancy, invasiveness, and propensity for metastasis, resulting in a poor prognosis due to the absence of beneficial therapeutic targets. Natural products derived from mushrooms have gained significant attention in neoplastic therapy due to their potential medicinal properties. The therapeutic potential of Ganoderma lucidum in breast cancer has been highlighted by our group, suggesting its use as an adjuvant treatment. The present study aims to assess the potential antineoplastic capacity of two Caribbean native Ganoderma species found in Puerto Rico, Ganoderma multiplicatum (G. multiplicatum) and Ganoderma martinicense (G. martinicense). Antiproliferative studies were conducted via cell viability assays after cultivation, harvesting, and fractionation of both species. The obtained results indicate that most of the fractions show some cytotoxicity against all cell lines, but 33% of the fractions (F1, F2, F7, F12) display selectivity towards cancer cell models. We demonstrate for the first time that native Ganoderma species can generate metabolites with anti-TNBC properties. Future avenues will focus on structure elucidation of the most active fractions of these Ganoderma extracts.

2.
bioRxiv ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39071333

ABSTRACT

Epidermal growth factor receptor (EGFR) is a transmembrane tyrosine kinase that is frequently modified by glycosylation post-translationally. In cancer, EGFR amplifications and hotspot mutations such as L858R that promote proliferation have been detected in a significant fraction of non-small cell lung carcinomas and breast adenocarcinomas. Molecular dynamic simulations suggested that glycosylation at asparagine residue 361 (N361) promotes dimerization and ligand binding. We stably expressed glycosylation-deficient mutant EGFR N361A, with or without the oncogenic mutation L858R. Immunofluorescence and flow cytometry demonstrated that the mutants were each well expressed at the cell membrane. N361A decreased proliferation relative to wild-type EGFR as well as decreased sensitivity to ligands. Proximity ligation assays measuring co-localization of EGFR with its binding partner HER2 in cells revealed that N361A mutations increased co-localization. N361A, located near the binding interface for the EGFR inhibitor necitumumab, desensitized cells expressing the oncogenic EGFR L858R to antibody-based inhibition. These findings underline the critical relevance of post-translational modifications on oncogene function.

3.
Cell Biol Int ; 48(9): 1354-1363, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38894528

ABSTRACT

Ecto-5'-nucleotidase (CD73) hydrolyses 5'AMP to adenosine and inorganic phosphate. Breast cancer cells (MDA-MB-231) express high CD73 levels, and this enzyme has been found to play a tumour-promoting role in breast cancer. However, no studies have sought to investigate whether CD73 has differential affinity or substrate preferences between noncancerous and cancerous breast cells. In the present study, we aimed to biochemically characterise ecto-5'-nucleotidase in breast cancer cell lines and assess whether its catalytic function and tumour progression are correlated in breast cancer cells. The results showed that compared to nontumoral breast MCF-10A cells, triple-negative breast cancer MDA-MB-231 cells had a higher ecto-5'-nucleotidase expression level and enzymatic activity. Although ecto-5'-nucleotidase activity in the MDA-MB-231 cell line showed no selectivity among monophosphorylated substrates, 5'AMP was preferred by the MCF-10A cell line. Compared to the MCF-10A cell line, the MDA-MB-231 cell line has better hydrolytic ability, lower substrate affinity, and high inhibitory potential after treatment with a specific CD73 inhibitor α,ß­methylene ADP (APCP). Therefore, we demonstrated that a specific inhibitor of the ecto-5-nucleotidase significantly reduced the migratory and invasive capacity of MDA-MB-231 cells, suggesting that ecto-5-nucleotidase activity might play an important role in metastatic progression.


Subject(s)
5'-Nucleotidase , Triple Negative Breast Neoplasms , Humans , 5'-Nucleotidase/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Cell Line, Tumor , Female , GPI-Linked Proteins/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Cell Movement , Adenosine/metabolism , Adenosine/analogs & derivatives
4.
Biol Trace Elem Res ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777874

ABSTRACT

Selenium is an essential trace element co-translationally incorporated into selenoproteins with important biological functions. Health benefits have long been associated with selenium supplementation. However, cytotoxicity is observed upon excessive selenium intake. The aim of this study is to investigate the metabolic pathways underlying the response to the selenium-containing amino acids selenomethionine and selenocysteine in a normal human breast epithelial cell model. We show that both selenomethionine and selenocystine inhibit the proliferation of non-cancerous MCF-10A cells in the same concentration range as cancerous MCF-7 and Hela cells, which results in apoptotic cell death. Selenocystine exposure in MCF-10A cells caused a severe depletion of free low molecular weight thiols, which might explain the observed upregulation of the expression of the oxidative stress pathway transcription factor NRF2. Both selenomethionine and selenocystine induced the expression of target genes of the unfolded protein response (GRP78, ATF4, CHOP). Using a redox-sensitive fluorescent probe targeted to the endoplasmic reticulum (ER), we show that both selenoamino acids shifted the ER redox balance towards an even more oxidizing environment. These results suggest that alteration of the redox state of the ER may disrupt protein folding and cause ER stress-induced apoptosis in MCF-10A cells exposed to selenoamino acids.

5.
Cancers (Basel) ; 16(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38473331

ABSTRACT

Obesity is strongly associated with occurrence, metastasis, and resistance to therapy in breast cancers, which also exhibit high adipose content in the tumor microenvironment. Adipose tissue-derived mesenchymal stromal cells (ASCs) are recruited to breast cancer by many mechanisms, including hypoxia, and contribute to metastatic transition of the cancer. Breast cancers are characterized by regions of hypoxia, which can be temporally unstable owing to a mismatch between oxygen supply and consumption. Using a high-sensitivity nanopatterned stromal invasion assay, we found that ASCs could promote stromal invasion of not only breast cancer cell lines but also MCF10A1, a cell line derived from untransformed breast epithelium. RNA sequencing of MCF10A1 cells conditioned with medium from ASCs revealed upregulation of genes associated with increased cell migration, chemotaxis, and metastasis. Furthermore, we found that fluctuating or oscillating hypoxia could induce senescence in ASCs, which could result in an increased invasive potential in the treated MCF10A1 cells. These findings highlight the complex interplay within the breast cancer microenvironment, hypoxia, and the role of ASCs in transforming even non-cancerous breast epithelium toward an invasive phenotype, providing insights into early metastatic events.

6.
Food Chem Toxicol ; 186: 114523, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382870

ABSTRACT

The carcinogenic role of cadmium (Cd2+) in breast cancer is still debatable. Current data points to duration of exposure as the most important element. In our study, we designed an in vitro model to investigate the effects of 3 weeks versus 6 weeks of low-level CdCl2 exposure on MCF10A cells. Our results demonstrated that after 3 weeks of CdCl2 exposure the cells displayed significant changes in the DNA integrity, but there was no development of malignant features. Interestingly, after 6 weeks of exposure, the cells significantly increased their invasion, migration and colony formation capacities. Additionally, MCF10A cells exposed for 6 weeks to CdCl2 had many dysregulated genes (4905 up-regulated and 4262 down-regulated). As follows, Cd-induced phenotypical changes are accompanied by a profound modification of the transcriptomic landscape. Furthermore, the molecular alterations driving carcinogenesis in MCF10A cells exposed to CdCl2 were found to be influenced by the duration of exposure, as in the case of MEG8. This long non-coding RNA was down-regulated at 3 weeks, but up-regulated at 6 weeks of exposure. In conclusion, even very low levels of Cd (0.5 µM) can have significant carcinogenic effects on breast cells in the case of subchronic exposure.


Subject(s)
Breast Neoplasms , Cadmium , Humans , Female , Cadmium/toxicity , Epithelial Cells , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinogens/toxicity , Gene Expression Profiling , Cadmium Chloride/toxicity
7.
Saudi Pharm J ; 32(1): 101915, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38178853

ABSTRACT

In this study we presented a novel series of NNO tridentate ligands generating imino, amido and oxo donor pocket for Pd(II) coordination. All the compounds were meticulously characterized by elemental analysis and advanced spectroscopic techniques, including FTIR, proton and carbon NMR. The synthesized compounds underwent rigorous evaluation for their potential as anti-cancer agents, utilizing the aggressive breast cancer cell lines MDA-MB (ATCC) and MCF-7 as a crucial model for assessing growth inhibition in cancer cells. Remarkably, the MTT assay unveiled the robust anti-cancer activity for all palladium complexes against MDA-MB-231 and MCF-7 cells. Particularly, complex [Pd(L1)(CH3CN)] exhibited exceptional potency with an IC50 value of 25.50 ± 0.30 µM (MDA-MB-231) and 20.76 ± 0.30 µM (MCF-7), compared to respective 27.00 ± 0.80 µM and 24.10 ± 0.80 µM for cisplatin, underscoring its promising therapeutic potential. Furthermore, to elucidate the mechanistic basis for the anti-cancer effects, molecular docking studies on tyrosine kinases, an integral target in cancer research, were carried out. The outcome of these investigations further substantiated the remarkable anticancer properties inherent to these innovative compounds. This research offers a compelling perspective on the development of potent anti-cancer agents rooted in the synergy between ligands and Pd(II) complexes and presenting a promising avenue for future cancer therapy endeavors.

8.
Metabolites ; 13(11)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37999245

ABSTRACT

Breast milk is widely considered to be the most natural, safe, and complete food for infants. However, current breastfeeding rates fall short of the recommendations established by the World Health Organization. Despite this, there are few studies that have focused on the promotion of human lactation through nutrient supplementation. Therefore, the aim of this study was to investigate the effect of methionine on milk synthesis in human mammary epithelial cells (MCF-10A cells) and to explore the underlying mechanisms. To achieve this, MCF-10A cells were cultured with varying concentrations of methionine, ranging from 0 to 1.2 mM. Our results indicated that 0.6 mM of methionine significantly promoted the synthesis of milk protein. An RNA-seq analysis revealed that methionine acted through the PI3K pathway. This finding was validated through real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting. In addition, PI3K inhibition assays confirmed that methionine upregulated the expression of both mTOR and p-mTOR through activation of PI3K. Taken together, these findings suggest that methionine positively regulates milk protein synthesis in MCF-10A cells through the PI3K-mTOR signaling pathway.

9.
Taiwan J Obstet Gynecol ; 62(6): 874-883, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38008508

ABSTRACT

OBJECTIVE: The data on the association between phthalates and breast cancer risk remains inconsistent. This study aimed to explore the possible mechanism of low-dose exposures of phthalates, including Butyl benzyl phthalate (BBP), di(n-butyl) phthalate (DBP), and di(20ethylhexyl) phthalate (DEHP), on breast tumorigenesis. METHODS AND METHODS: MCF-10A normal breast cells were treated with phthalates (10 and 100 nM) and 17ß-estradiol (E2, 10 nM), which were co-cultured with fibroblasts from normal mammary tissue. Cell viability, cycle, and apoptosis were detected by MTT assay, flow cytometry, and TUNEL assay respectively. The expression levels of related proteins were determined by Western blot. RESULTS: Like E2, both 10 nM and 100 nM phthalates exerted significantly higher cell viability, lower apoptosis, and increased cell numbers in the S and G2/M phases with up-regulation of cyclin D/CDK4, cyclin E/CDK2, cyclin A/CDK2, cyclin A/CDK1, and cyclin B/CDK1, compared with the control group. Significant increase in PDK1, P13K, p-AKT, p-mTOR, and BCL-2 expression and a decrease in Bax protein, cytochrome C, caspase 8, and caspase 3 levels were noted in cells treated with 10 nM and 100 nM phthalates and E2, compared with the control group and MCF-10A cells co-cultured with fibroblasts. The effects of the three phthalates were noted to be dose-dependent. CONCLUSIONS: The results indicate that phthalates at a level below its no-observed-adverse-effect concentration, as defined by the current standards, still induce cell cycle progression and proliferation as well as inhibit apoptosis of normal breast cells. Thus, the possibility of breast tumorigenesis through chronic phthalate exposure should be considered.


Subject(s)
Phthalic Acids , Humans , No-Observed-Adverse-Effect Level , Cell Proliferation , Phthalic Acids/toxicity , Cell Division , Dibutyl Phthalate/pharmacology , Cyclin A/pharmacology , Carcinogenesis
10.
Int J Biochem Cell Biol ; 165: 106478, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37866655

ABSTRACT

Remodeling of the extracellular matrix (ECM) is a key hallmark of cancer progression. A critical component of ECM remodeling is the assembly of the glycoprotein fibronectin (FN) into insoluble fibrils, which provide a scaffold for invading vascular endothelial cells and escaping cancer cells, as well as a framework for collagen deposition and oncogenic cytokine tethering. FN fibril assembly is induced by Transforming Growth Factor-ß1 (TGF-ß1), which was originally identified for its role in malignant transformation. Addition of exogenous TGF-ß1 drives FN fibril assembly while also upregulating endogenous TGF-ß1 expression and autocrine signaling. In the current study, we sought to determine if autocrine TGF-ß1 signaling plays a role in FN fibril formation in either MCF10A mammary epithelial cells, which behave similarly to healthy epithelia, or malignant MDA- MB-231 breast cancer cells. Our results show two interesting findings: first, malignant MDA-MB- 231 cells assemble less FN into fibrils, despite expressing and secreting more soluble FN; second, autocrine TGF-ß1 signaling is required for FN fibril formation in MCF10A epithelial cells, even in the presence of exogenous, active TGF-ß1. This suggests that autocrine TGF-ß1 is signaling through distinct pathways from active exogenous TGF-ß1. We hypothesized that this signaling was mediated by interactions between the TGF-ß1 latency associated peptide (LAP) and αv integrins; indeed, incubating MCF10As with soluble LAP, even in the absence of the active TGF-ß1 ligand, partially recovered FN fibril assembly. Taken together, these data suggests that autocrine TGF-ß1 plays a critical role in FN fibril assembly, and this interaction is mediated by LAP-integrin signaling.


Subject(s)
Fibronectins , Transforming Growth Factor beta1 , Fibronectins/metabolism , Transforming Growth Factor beta1/metabolism , Endothelial Cells/metabolism , Autocrine Communication , Epithelial Cells/metabolism
11.
Front Cell Dev Biol ; 11: 1243763, 2023.
Article in English | MEDLINE | ID: mdl-37779899

ABSTRACT

Introduction: Breast cancer is the most common cancer in women, with roughly 10-15% of new cases classified as triple-negative breast cancer (TNBC). Traditional chemotherapies are often toxic to normal cells. Therefore, it is important to discover new anticancer compounds that target TNBC while causing minimal damage to normal cells. Receptor tyrosine kinase-like Orphan Receptor 1 (ROR1) is an oncofetal protein overexpressed in numerous human malignancies, including TNBC. This study investigated potential small molecules targeting ROR1. Methodology: Using AutoDock Vina and Glide, we screened 70,000 chemicals for our investigation. We obtained 10 representative compounds via consensus voting, deleting structural alerts, and clustering. After manual assessment, compounds 2 and 4 were chosen for MD simulation and cell viability experiment. Compound 4 showed promising results in the viability assay, which led us to move further with the apoptosis assay and immunoblotting. Results: Compound 4 (CID1261330) had docking scores of -6.635 and -10.8. It fits into the pocket and shows interactions with GLU64, ASP174, and PHE93. Its RMSD fluctuates around 0.20 nm and forms two stable H-bonds indicating compound 4 stability. It inhibits cell proliferation in MDA-MB-231, HCC1937, and HCC1395 cell lines, with IC50 values of approximately 2 µM to 10 µM, respectively. Compound 4 did not kill non-malignant epithelial breast cells MCF-10A (IC50 > 27 µM). These results were confirmed by the significant number of apoptotic cells in MDA-MB-231 cells (47.6%) but not in MCF-10A cells (7.3%). Immunoblot analysis provided additional support in the same direction. Discussion: These findings collectively suggest that compound 4 has the potential to effectively eliminate TNBC cells while causing minimal harm to normal breast cells. The promising outcomes of this study lay the groundwork for further testing of compound 4 in other malignancies characterized by ROR1 upregulation, serving as a proof-of-concept for its broader applicability.

12.
Molecules ; 28(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37687177

ABSTRACT

Thienopyrimidines are structural analogs of quinazolines, and the creation of new 2-alkyl derivatives of ethyl 4-aminothienopyrimidine-6-carboxylates for the study of their anti-proliferative properties is of great pharmacological interest. Some 2-alkyl-4-amino-thieno[2,3-d]pyrimidines 2-5 were synthesized, and their cyto- and phototoxicity against BALB 3T3 cells were established by an in vitro 3T3 NRU test. The obtained results indicate that the tested compounds are not cytotoxic or phototoxic, and that they are appropriate to be studied for their anti-proliferative and anti-tumor properties. The anti-proliferative potential of the compounds was investigated on MCF-7 and MDA-MB-231 cancer cells, as well as a MCF-10A cell line (normal human mammary epithelial cells). The most toxic to MCF-7 was thienopyrimidine 3 with IC50 13.42 µg/mL (IC50 0.045 µM), followed by compound 4 (IC50 28.89 µg/mL or IC50 0.11 µM). The thienopyrimidine 4 revealed higher selectivity to MCF-7 and lower activity (IC50 367 µg/mL i.e., 1.4 µM) than compound 3 with MCF-10A cells. With respect to MDA-MB-231 cells, ester 2 manifested the highest effect with IC50 52.56 µg/mL (IC50 0.16 µM), and 2-ethyl derivative 4 revealed IC50 62.86 µg/mL (IC50 0.24 µM). It was estimated that the effect of the substances on the cell cycle progression was due to cell cycle arrest in the G2 stage for MDA-MB-231, while arrest in G1 was detected for the estrogen (ER)-positive MCF-7 cell line. The tested compound's effects on the change of the zeta potential in the tumorigenic cells utilized in this study were determined. The calculation which we performed of the physicochemical properties and pharmacokinetic parameters influencing the biological activity suggested high intestinal absorption, as well as drug-likeness.


Subject(s)
Dermatitis, Phototoxic , Estrogens , Animals , Mice , Humans , BALB 3T3 Cells , Carboxylic Acids , Carcinogenesis , MCF-7 Cells
13.
Adv Pharm Bull ; 13(2): 385-392, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37342383

ABSTRACT

Purpose: Non-viral transfection approaches are extensively used in cancer therapy. The future of cancer therapy lies on targeted and efficient drug/gene delivery. The aim of this study was to determine the transfection yields of two commercially available transfection reagents (i.e. Lipofectamine 2000, as a cationic lipid and PAMAM G5, as a cationic dendrimer) in two breast cell lines: cancerous cells (T47D) and non-cancerous ones (MCF-10A). Methods: We investigated the efficiencies of Lipofectamine 2000 and PAMAM G5 for transfection/delivery of a labeled short RNA into T47D and MCF-10A. In addition to microscopic assessments, the cellular uptakes of the complexes (fluorescein tagged-scrambled RNA with Lipofectamine or PAMAM dendrimer) were quantified by flow cytometry. Furthermore, the safety of the mentioned reagents was assessed by measuring cell necrosis through the cellular PI uptake. Results: Our results showed significantly better efficiencies of Lipofectamine compared to PAMAM dendrimer for short RNA transfection in both cell types. On the other hand, MCF-10A resisted more than T47D to the toxicity of higher concentrations of the transfection reagents. Conclusion: Altogether, our research demonstrated a route for comprehensive epigenetic modification of cancer cells and depicted an approach to efficient drug delivery, which eventually improves both short RNA-based biopharmaceutical industry and non-viral strategies in epigenetic therapy.

14.
Methods Mol Biol ; 2679: 25-39, 2023.
Article in English | MEDLINE | ID: mdl-37300607

ABSTRACT

Rapid and accurate cancer drug screening is of great importance in precision medicine. However, the limited amount of tumor biopsy samples has hindered the application of traditional drug screening methods with microwell plates for individual patients. A microfluidic system provides an ideal platform for handling trace amounts of samples. This emerging platform has a good role in nucleic acid-related and cell related assays. Nevertheless, convenient drug dispensing remains a challenge for clinical on-chip cancer drug screening. Similar sized droplets are merged to add drugs for a desired screened concentration which significantly complicated the on-chip drug dispensing protocols. Here, we introduce a novel digital microfluidic system with a specially structured electrode (a drug dispenser) to dispense drugs by droplet electro-ejection under a high-voltage actuation signal, which can be conveniently adjusted by external electric controls. With this system, the screened drug concentrations span up to four orders of magnitude with small sample consumption. Various amounts of drugs can be delivered to the cell sample with desired amount in a flexible electric control. Moreover, single drug or combinatorial multidrug on-chip screening can be readily achieved. The drug response of normal MCF-10A breast cells and MDA-MB-231 breast tumor cells to two chemotherapeutic substances, cisplatin (Cis) and epirubicin (EP), was tested individually and in combination for proof-of-principle verification. The comparable on-chip and off-chip results confirmed the feasibility of our innovative DMF system for cancer drug screening.


Subject(s)
Antineoplastic Agents , Microfluidic Analytical Techniques , Humans , Microfluidics/methods , Microfluidic Analytical Techniques/methods , Drug Evaluation, Preclinical , Antineoplastic Agents/pharmacology , Cisplatin/pharmacology
15.
Mol Biotechnol ; 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37378861

ABSTRACT

Transfection efficiency of the immortalized human breast epithelial cell line MCF-10A remains an issue that needs to be resolved. In this study, it was aimed to deliver a recombinant DNA (pCMV-Azu-GFP) to the MCF-10A cells by the magnetofection method using magnetic nanoparticles (MNPs) and a simple magnet to accelerate the DNA delivery. Surface positively modified silica-coated iron oxide MNPs (MSNP-NH2) were produced and characterized via TEM, FTIR, and DLS analyses. The recombinant DNA (rDNA) was obtained by the integration of codon-optimized azurin to produce a fusion protein. Then, rDNA cloned in Escherichia coli cells was validated by sequence analysis. The electrostatically conjugated rDNA on MSNP-NH2 with an enhancer polyethyleneimine (PEI) was studied by agarose gel electrophoresis and the optimum conditions were determined to apply to the cell. A dose-dependent statistical difference was observed on treated cells based on the MTS test. The expression of the fusion protein after magnetofection was determined using laser scanning confocal microscope imaging and western blot analysis. It was observed that the azurin gene could be transferred to MCF-10A cells by magnetofection. Thus, when the azurin gene is used as a breast cancer treatment agent, it can be expressed in healthy cells without toxic effects.

16.
Molecules ; 28(9)2023 May 07.
Article in English | MEDLINE | ID: mdl-37175345

ABSTRACT

As a major apurinic/apyrimidinic endonuclease and a redox signaling protein in human cells, APE1 plays a crucial role in cellular function and survival. The relationship between alterations of APE1 expression and subcellular localization and the initiation, development and treatment of various cancers has received extensive attention. However, comparing the in-vivo activity of APE1 in normal and cancerous breast live cells remains challenging due to the low efficiency of commonly used liposome transfection methods in delivering DNA substrate probes into human normal breast epithelial cells (MCF-10A). In this work, we develop a DNA/RNA hybrid-based small magnetic fluorescent nanoprobe (25 ± 3 nm) that can be taken up by various live cells under magnetic transfection. The D0/R-nanoprobe demonstrates an outstanding specificity toward APE1 and strong resistance to the cellular background interference. Using this nanoprobe, we are not only able to visualize the intracellular activity of APE1 in breast ductal carcinoma (MCF-7) live cells, but also demonstrate the APE1 activity in MCF-10A live cells for the first time. The method is then extended to observe the changes in APE1 levels in highly metabolically active neuroendocrine cells under normal conditions and severe attacks by reactive oxygen species in real-time. The fluorescent nanoprobe provides a useful tool for studying the dynamic changes of intracellular APE1 in normal or cancerous live cells. It also displays the potential for visible and controllable release of miRNA drugs within live cells for therapeutic purposes.


Subject(s)
Breast Neoplasms , MicroRNAs , Humans , Female , Breast Neoplasms/pathology , DNA , Neurons/metabolism , Endonucleases , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism
17.
Taiwan J Obstet Gynecol ; 62(3): 434-439, 2023 May.
Article in English | MEDLINE | ID: mdl-37188449

ABSTRACT

OBJECTIVE: To investigate the impact of phthalates, including Butyl benzyl phthalate (BBP), di(n-butyl) phthalate (DBP), and di(2-ethylhexyl) phthalate (DEHP), in breast carcinogenesis. MATERIALS AND METHODS: MCF-10A normal breast cells were treated with phthalates (100 nM) and 17ß-estradiol (E2, 10 nM), which were co-cultured with fibroblasts from normal mammary tissue adjacent to estrogen receptor positive primary breast cancers. Cell viability was determined using a 3-(4,5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Cell cycles were analyzed using flow cytometry. The proteins involving cell cycles and P13K/AKT/mTOR signaling pathway were then evaluated by Western blot analysis. RESULTS: MCF-10A co-cultured cells treated with E2, BBP, DBP, and DEHP exhibited a significant increase in cell viability using MTT assay. The expressions of P13K, p-AKT, and p-mTOR, as well as PDK1 expression, were significantly higher in MCF-10A cells treated with E2 and phthalates. E2, BBP, DBP, and DEHP significantly increased cell percentages in the S and G2/M phases. The significantly higher expression of cyclin D/CDK4, cyclin E/CDK2, cyclin A/CDK2, cyclin A/CDK1, and cyclin B/CDK1 in MCF-10A co-cultured cells were induced by E2 and these three phthalates. CONCLUSION: These results provide consistent data regarding the potential role of phthalates exposure in the stimulating proliferation of normal breast cells, enhancing cell viability, and driving P13K/AKT/mTOR signaling pathway and cell cycle progression. These findings strongly support the hypothesis that phthalates may play a crucial role in breast tumorigenesis.


Subject(s)
Breast Neoplasms , Diethylhexyl Phthalate , Phthalic Acids , Female , Humans , Cell Division , Cyclin A/metabolism , Dibutyl Phthalate/pharmacology , Diethylhexyl Phthalate/pharmacology , Phthalic Acids/toxicity , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Phosphatidylinositol 3-Kinases/metabolism
18.
PeerJ ; 11: e15207, 2023.
Article in English | MEDLINE | ID: mdl-37187521

ABSTRACT

Background: The epithelial-mesenchymal transition (EMT) is a multi-step morphogenetic process in which epithelial cells lose their epithelial properties and gain mesenchymal characteristics. The process of EMT has been shown to mediate mammary gland fibrosis. Understanding how mesenchymal cells emerge from an epithelial default state will aid in unravelling the mechanisms that control fibrosis and, ultimately, in identifying therapeutic targets to alleviate fibrosis. Methods: The effects of EGF and high glucose (HG) on EMT in mammary epithelial cells, MCF10A and GMECs, as well as their pathogenic role, were studied. In-silico analysis was used to find interacting partners and protein-chemical/drug molecule interactions. Results: On treatment with EGF and/or HG, qPCR analysis showed a significant increase in the gene expression of EMT markers and downstream signalling genes. The expression of these genes was reduced on treatment with EGF+HG combination in both cell lines. The protein expression of COL1A1 increased as compared to the control in cells treated with EGF or HG alone, but when the cells were treated with EGF and HG together, the protein expression of COL1A1 decreased. ROS levels and cell death increased in cells treated with EGF and HG alone, whereas cells treated with EGF and HG together showed a decrease in ROS production and apoptosis. In-silico analysis of protein-protein interactions suggest the possible role of MAPK1, actin alpha 2 (ACTA2), COL1A1, and NFκB1 in regulating TGFß1, ubiquitin C (UBC), specificity protein 1 (SP1) and E1A binding protein P300 (EP300). Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment suggests advanced glycation end products-receptor for advanced glycation end products (AGE-RAGE) signalling pathway, relaxin signalling pathway and extra cellular matrix (ECM) receptor interactions underlying fibrosis mechanism. Conclusion: This study demonstrates that EGF and HG induce EMT in mammary epithelial cells and may also have a role in fibrosis.


Subject(s)
Epithelial-Mesenchymal Transition , Mammary Glands, Human , Humans , Epithelial-Mesenchymal Transition/genetics , Epidermal Growth Factor/pharmacology , Reactive Oxygen Species/pharmacology , Fibrosis
19.
Nutrients ; 15(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37111093

ABSTRACT

Free zinc is a critical regulator in signal transduction and affects many cellular processes relevant to cancer, including proliferation and cell death. Acting as a second messenger, altered free intracellular zinc has fundamental effects on regulating enzymes such as phosphatases and caspases. Therefore, the determination of free intracellular zinc levels is essential to assess its influence on the signaling processes involved in cancer development and progression. In this study, we compare three low-molecular-weight fluorescent probes, ZinPyr-1, TSQ, and FluoZin-3, for measuring free zinc in different mammary cell lines (MCF10A, MCF7, T47D, and MDA-MB-231). In summary, ZinPyr-1 is the most suitable probe for free Zn quantification. It responds well to calibration based on minimal fluorescence in the presence of the chelator TPEN (N,N,N',N'-Tetrakis(2-pyridylmethyl)ethylenediamine) and maximal fluorescence by saturation with ZnSO4, resulting in the detection of free intracellular zinc in breast cancer subtypes ranging from 0.62 nM to 1.25 nM. It also allows for measuring the zinc fluxes resulting from incubation with extracellular zinc, showing differences in the zinc uptake between the non-malignant MCF10A cell line and the other cell lines. Finally, ZinPyr-1 enables the monitoring of sub-cellular distributions by fluorescence microscopy. Altogether, these properties provide a basis for the further exploration of free zinc in order to realize its full potential as a possible biomarker or even therapeutic target in breast cancer.


Subject(s)
Breast Neoplasms , Fluorescent Dyes , Humans , Female , Fluorescent Dyes/metabolism , Fluoresceins/metabolism , Cells, Cultured , Zinc/metabolism , Chelating Agents
20.
Mol Biol Rep ; 50(2): 1005-1017, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36378418

ABSTRACT

BACKGROUND: The exposure of breast cancer to extremely low frequency magnetic fields (ELF-MFs) results in various biological responses. Some studies have suggested a possible cancer-enhancing effect, while others showed a possible therapeutic role. This study investigated the effects of in vitro exposure to 50 Hz ELF-MF for up to 24 h on the viability and cellular response of MDA-MB-231 and MCF-7 breast cancer cell lines and MCF-10A breast cell line. METHODS AND RESULTS: The breast cell lines were exposed to 50 Hz ELF-MF at flux densities of 0.1 mT and 1.0 mT and were examined 96 h after the beginning of ELF-MF exposure. The duration of 50 Hz ELF-MF exposure influenced the cell viability and proliferation of both the tumor and nontumorigenic breast cell lines. In particular, short-term exposure (4-8 h, 0.1 mT and 1.0 mT) led to an increase in viability in breast cancer cells, while long and high exposure (24 h, 1.0 mT) led to a decrease in viability and proliferation in all cell lines. Cancer and normal breast cells exhibited different responses to ELF-MF. Mitochondrial membrane potential and reactive oxygen species (ROS) production were altered after ELF-MF exposure, suggesting that the mitochondria are a probable target of ELF-MF in breast cells. CONCLUSIONS: The viability of breast cells in vitro is influenced by ELF-MF exposure at magnetic flux densities compatible with the limits for the general population and for workplace exposures. The effects are apparent after 96 h and are related to the ELF-MF exposure time.


Subject(s)
Breast Neoplasms , Humans , Female , Magnetic Fields , Reactive Oxygen Species/metabolism , Breast/metabolism , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL