Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters











Publication year range
1.
Cell Rep ; 43(7): 114397, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38935499

ABSTRACT

With exercise, muscle and bone produce factors with beneficial effects on brain, fat, and other organs. Exercise in mice increased fibroblast growth factor 23 (FGF23), urine phosphate, and the muscle metabolite L-ß-aminoisobutyric acid (L-BAIBA), suggesting that L-BAIBA may play a role in phosphate metabolism. Here, we show that L-BAIBA increases in serum with exercise and elevates Fgf23 in osteocytes. The D enantiomer, described to be elevated with exercise in humans, can also induce Fgf23 but through a delayed, indirect process via sclerostin. The two enantiomers both signal through the same receptor, Mas-related G-protein-coupled receptor type D, but activate distinct signaling pathways; L-BAIBA increases Fgf23 through Gαs/cAMP/PKA/CBP/ß-catenin and Gαq/PKC/CREB, whereas D-BAIBA increases Fgf23 indirectly through sclerostin via Gαi/NF-κB. In vivo, both enantiomers increased Fgf23 in bone in parallel with elevated urinary phosphate excretion. Thus, exercise-induced increases in BAIBA and FGF23 work together to maintain phosphate homeostasis.


Subject(s)
Aminoisobutyric Acids , Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Osteocytes , Signal Transduction , Animals , Signal Transduction/drug effects , Fibroblast Growth Factors/metabolism , Aminoisobutyric Acids/pharmacology , Mice , Osteocytes/metabolism , Osteocytes/drug effects , Stereoisomerism , Receptors, G-Protein-Coupled/metabolism , Male , Mice, Inbred C57BL , Humans , Adaptor Proteins, Signal Transducing/metabolism , Physical Conditioning, Animal
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167269, 2024 08.
Article in English | MEDLINE | ID: mdl-38810919

ABSTRACT

Hyperalgesia is typified by reduced pain thresholds and heightened responses to painful stimuli, with a notable prevalence in menopausal women, but the underlying mechanisms are far from understood. ß-Aminoisobutyric acid (BAIBA), a product of valine and thymine catabolism, has been reported to be a novel ligand of the Mas-related G protein coupled receptor D (MrgprD), which mediates pain and hyperalgesia. Here, we established a hyperalgesia model in 8-week-old female mice through ovariectomy (OVX). A significant increase in BAIBA plasma level was observed and was associated with decline of mechanical withdrawal threshold, thermal and cold withdrawal latency in mice after 6 weeks of OVX surgery. Increased expression of MrgprD in dorsal root ganglion (DRG) was shown in OVX mice compared to Sham mice. Interestingly, chronic loading with BAIBA not only exacerbated hyperalgesia in OVX mice, but also induced hyperalgesia in gonadally intact female mice. BAIBA supplementation also upregulated the MrgprD expression in DRG of both OVX and intact female mice, and enhanced the excitability of DRG neurons in vitro. Knockout of MrgprD markedly suppressed the effects of BAIBA on hyperalgesia and excitability of DRG neurons. Collectively, our data suggest the involvement of BAIBA in the development of hyperalgesia via MrgprD-dependent pathway, and illuminate the mechanisms underlying hyperalgesia in menopausal women.


Subject(s)
Aminoisobutyric Acids , Ganglia, Spinal , Hyperalgesia , Ovariectomy , Receptors, G-Protein-Coupled , Signal Transduction , Animals , Female , Hyperalgesia/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Mice , Signal Transduction/drug effects , Ganglia, Spinal/metabolism , Ganglia, Spinal/drug effects , Aminoisobutyric Acids/pharmacology , Aminoisobutyric Acids/metabolism , Mice, Inbred C57BL , Disease Models, Animal
3.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1025060

ABSTRACT

Objective To analyze and explore the analgesic effect of Angelica dahurica in neuropathic pain and its regulatory effect on the Mas-related G-protein coupled receptor member D(MrgprD)-transient receptor potential ankyrin 1(TRPA1)signaling pathway,using a mouse model of sciatic nerve chronic constriction injury(CCI).Methods A CCI mouse model was prepared by sterile surgical ligation and wrapping of the sciatic nerve in 30 mice.Pain-related behavioral changes induced by mechanical stimulation were detected by the VonFrey method,and the thermal hyperalgesic effects of Angelica dahurica were evaluated by thermal radiation experiments.The effects of Angelica dahurica on the protein expression levels MrgprD and TRPA1,the number of dorsal root ganglion(DRG)positive neurons,and mRNA levels of MrgprD and TRPA1 in mice were detected by Western Blot,immunofluorescence,and reverse transcription-polymerase chain reaction,respectively.Differences in fluorescence signal intensity in HEK293 cells after single transfection and co-transfection with MrgprD and TRPA1 plasmids,respectively,were analyzed by calcium imaging experiments.Results A total of 25 CCI mouse models were successfully prepared,with a modeling rate of 83.33%(25/30).The mechanical threshold and foot retraction latency were significantly higher in CCI mice treated with Angelica dahurica compared with the control group(P<0.05).Expression levels of MrgprD and TRPA1 proteins were significantly lower in CCI mice treated with Angelica dahurica than in the control group(P<0.05).The number of MrgprD-and TRPA1-positive neurons in the DRG was significantly lower group(P<0.05)and the mRNA levels of MrgprD and TRPA1 were also significantly lower in CCI mice treated with Angelica dahurica than in the control group(P<0.05).The fluorescence intensity was significantly higher in HEK293 cells co-transfected with MrgprD and TRPA1 plasmids than in single-transfected and blank control cells(P<0.05).Conclusions This study demonstrated that the MrgprD-TRPA1 pathway is an important target for neuropathic pain,and indicated that Angelica dahurica can inhibit neuropathic pain by regulating this signal transduction pathway.These result provide a foundation for further research on the development of new clinical analgesic drugs and analgesic mechanisms.

4.
Cell Rep ; 42(11): 113316, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37889748

ABSTRACT

Pain and itch coding mechanisms in polymodal sensory neurons remain elusive. MrgprD+ neurons represent a major polymodal population and mediate both mechanical pain and nonhistaminergic itch. Here, we show that chemogenetic activation of MrgprD+ neurons elicited both pain- and itch-related behavior in a dose-dependent manner, revealing an unanticipated compatibility between pain and itch in polymodal neurons. While VGlut2-dependent glutamate release is required for both pain and itch transmission from MrgprD+ neurons, the neuropeptide neuromedin B (NMB) is selectively required for itch signaling. Electrophysiological recordings further demonstrated that glutamate synergizes with NMB to excite NMB-sensitive postsynaptic neurons. Ablation of these spinal neurons selectively abolished itch signals from MrgprD+ neurons, without affecting pain signals, suggesting a dedicated itch-processing central circuit. These findings reveal distinct neurotransmitters and neural circuit requirements for pain and itch signaling from MrgprD+ polymodal sensory neurons, providing new insights on coding and processing of pain and itch.


Subject(s)
Pruritus , Sensory Receptor Cells , Humans , Sensory Receptor Cells/physiology , Pain , Signal Transduction/physiology , Glutamates
5.
J Cell Physiol ; 238(4): 813-828, 2023 04.
Article in English | MEDLINE | ID: mdl-36879552

ABSTRACT

Chronic kidney disease (CKD) is a disease with decreased, irreversible renal function. Pruritus is the most common skin symptom in patients with CKD, especially in end-stage renal disease. The underlying molecular and neural mechanism of CKD-associated pruritus (CKD-aP) remains obscure. Our data show that the level of allantoin increases in the serum of CKD-aP and CKD model mice. Allantoin could induce scratching behavior in mice and active DRG neurons. The calcium influx and action potential reduced significantly in DRG neurons of MrgprD KO or TRPV1 KO mice. U73122, an antagonist of phospholipase C, could also block calcium influx in DRG neurons induced by allantoin. Thus, our results concluded that allantoin plays an important role in CKD-aP, mediated by MrgprD and TrpV1, in CKD patients.


Subject(s)
Allantoin , Pruritus , Renal Insufficiency, Chronic , Animals , Mice , Allantoin/adverse effects , Calcium , Pruritus/chemically induced , Pruritus/diagnosis , Receptors, G-Protein-Coupled , Renal Insufficiency, Chronic/complications
6.
Front Cell Neurosci ; 16: 910670, 2022.
Article in English | MEDLINE | ID: mdl-35693883

ABSTRACT

The high incidence of treatment-resistant pain calls for the urgent preclinical translation of new analgesics. Understanding the behavioral readout of pain in animals is crucial for efficacy evaluation when developing novel analgesics. Mas-related G protein-coupled receptor D-positive (Mrgprd+) and transient receptor potential vanilloid 1-positive (TRPV1+) sensory neurons are two major non-overlapping subpopulations of C-fiber nociceptors. Their activation has been reported to provoke diverse nocifensive behaviors. However, what kind of behavior reliably represents subjectively conscious pain perception needs to be revisited. Here, we generated transgenic mice in which Mrgprd+ or TRPV1+ sensory neurons specifically express channelrhodopsin-2 (ChR2). Under physiological conditions, optogenetic activation of hindpaw Mrgprd+ afferents evoked reflexive behaviors (lifting, etc.), but failed to produce aversion. In contrast, TRPV1+ afferents activation evoked marked reflexive behaviors and affective responses (licking, etc.), as well as robust aversion. Under neuropathic pain conditions induced by spared nerve injury (SNI), affective behaviors and avoidance can be elicited by Mrgprd+ afferents excitation. Mechanistically, spinal cord-lateral parabrachial nucleus (lPBN) projecting neurons in superficial layers (lamina I-II o ) were activated by TRPV1+ nociceptors in naïve conditions or by Mrgprd+ nociceptors after SNI, whereas only deep spinal cord neurons were activated by Mrgprd+ nociceptors in naïve conditions. Moreover, the excitatory inputs from Mrgprd+ afferents to neurons within inner lamina II (II i ) are partially gated under normal conditions. Altogether, we conclude that optogenetic activation of the adult Mrgprd+ nociceptors drives non-pain-like reflexive behaviors via the deep spinal cord pathway under physiological conditions and drives pain-like affective behaviors via superficial spinal cord pathway under pathological conditions. The distinct spinal pathway transmitting different forms of nocifensive behaviors provides different therapeutic targets. Moreover, this study appeals to the rational evaluation of preclinical analgesic efficacy by using comprehensive and suitable behavioral assays, as well as by assessing neural activity in the two distinct pathways.

7.
Cell Tissue Res ; 388(2): 479-484, 2022 May.
Article in English | MEDLINE | ID: mdl-35258714

ABSTRACT

Mas-related G protein-coupled receptor D (MrgprD) was first identified in small-diameter sensory neurons of mouse dorsal root ganglion (DRG). The role of MrgprD has been studied in somatosensation, especially in pain and itch response. We recently showed that MrgprD also participated in the modulation of murine intestinal motility. The treatment of MrgprD receptor agonist suppressed the spontaneous contractions in the isolated intestinal rings of mice, indicating the intrinsic expression of MrgprD in the murine gastrointestinal (GI) tract. Although the expression of Mrgprd in GI tract has been previously detected by the way of quantitative real-time PCR, the cell-type-specific expression of MrgprD in GI tract is no yet determined. Herein, we employed Mrgprd-tdTomato reporter mouse line and the whole-mount immunohistochemistry to observe the localization of MrgprD in the smooth muscle layers of ileum and colon. We show that tdTomato-positive cells colocalized with NeuN-immunostaining in the myenteric plexus in the whole-mount preparations of the ileum and the colon. Further immunohistochemistry using the commercially available MrgprD antibody revealed the expression of MrgprD in NeuN-labeled enteric neurons in the myenteric plexus. Our results demonstrate the expression of MrgprD in the enteric neurons in the murine GI tract, highlighting the implications of MrgprD in the physiology and pathophysiology of the GI tract.


Subject(s)
Ganglia, Spinal , Myenteric Plexus , Receptors, G-Protein-Coupled , Animals , Gastrointestinal Motility , Mice , Mice, Inbred C57BL , Neurons/metabolism , Receptors, G-Protein-Coupled/metabolism
8.
IBRO Neurosci Rep ; 12: 65-72, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35024688

ABSTRACT

ß-Aminoisobutyric acid (BAIBA) is a myokine that is secreted from skeletal muscles by the exercise. Recently, increasing evidence has suggested the multifocal physiological activities of BAIBA. In this study, we investigated whether L-BAIBA has protective effects on rat pheochromocytoma (PC12) cells. Cultured PC12 cells were stimulated with L-BAIBA. Western blot analyses revealed that L-BAIBA stimulation significantly increased the phosphorylation of AMPK and Akt. In contrast, no effect was observed on neurite outgrowth by L-BAIBA. To investigate the effects of L-BAIBA on oxidative stress, PC 12 cells were exposed to hydrogen peroxide (H2O2) with and without L-BAIBA. Hydrogen peroxide significantly increased reactive oxygen species (ROS) production and apoptosis in PC12 cells. Pretreatment with L-BAIBA suppressed H2O2-induced ROS production and apoptosis, which was abolished by the inhibition of AMPK by compound C. On the other hand, the inhibitory effects of L-BAIBA on oxidative stress-induced apoptosis were abolished by the inhibition of both AMPK and PI3K/Akt. In conclusion, we demonstrated that L-BAIBA confers protection against oxidative stress in PC12 cells by activating the AMPK and PI3K/Akt pathways. These results suggest that L-BAIBA may play a crucial role on protection of neuron-like cells and become a pharmacological agent to treat neuronal diseases.

9.
Int J Mol Sci ; 22(24)2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34948051

ABSTRACT

G protein-coupled receptors (GPCRs) have emerged as key players in regulating (patho)physiological processes, including inflammation. Members of the Mas-related G protein coupled receptors (MRGPRs), a subfamily of GPCRs, are largely expressed by sensory neurons and known to modulate itch and pain. Several members of MRGPRs are also expressed in mast cells, macrophages, and in cardiovascular tissue, linking them to pseudo-allergic drug reactions and suggesting a pivotal role in the cardiovascular system. However, involvement of the human Mas-related G-protein coupled receptor D (MRGPRD) in the regulation of the inflammatory mediator interleukin 6 (IL-6) has not been demonstrated to date. By stimulating human MRGPRD-expressing HeLa cells with the agonist ß-alanine, we observed a release of IL-6. ß-alanine-induced signaling through MRGPRD was investigated further by probing downstream signaling effectors along the Gαq/Phospholipase C (PLC) pathway, which results in an IkB kinases (IKK)-mediated canonical activation of nuclear factor kappa-B (NF-κB) and stimulation of IL-6 release. This IL-6 release could be blocked by a Gαq inhibitor (YM-254890), an IKK complex inhibitor (IKK-16), and partly by a PLC inhibitor (U-73122). Additionally, we investigated the constitutive (ligand-independent) and basal activity of MRGPRD and concluded that the observed basal activity of MRGPRD is dependent on the presence of fetal bovine serum (FBS) in the culture medium. Consequently, the dynamic range for IL-6 detection as an assay for ß-alanine-mediated activation of MRGPRD is substantially increased by culturing the cells in FBS free medium before treatment. Overall, the observation that MRGPRD mediates the release of IL-6 in an in vitro system, hints at a role as an inflammatory mediator and supports the notion that IL-6 can be used as a marker for MRGPRD activation in an in vitro drug screening assay.


Subject(s)
Interleukin-6/metabolism , NF-kappa B/metabolism , Receptors, G-Protein-Coupled/metabolism , beta-Alanine/pharmacology , Animals , Estrenes/pharmacology , Gene Expression Regulation/drug effects , HeLa Cells , Humans , Peptides, Cyclic/pharmacology , Pyrrolidinones/pharmacology , Receptors, G-Protein-Coupled/agonists , Signal Transduction/drug effects
10.
Exp Physiol ; 106(12): 2502-2516, 2021 12.
Article in English | MEDLINE | ID: mdl-34647371

ABSTRACT

NEW FINDINGS: What is the central question of this study? The physiological function of Mas-related G protein-coupled receptor D (MrgprD) in gastrointestinal motility is unknown. The aim of this study was to assess the effects of MrgprD and its receptor agonists on murine gastrointestinal motility. What is the main finding and its importance? Mrgprd deficiency improved murine gastrointestinal motility in vivo but had no effects on the spontaneous contractions of murine intestinal rings ex vivo. Systemic administration of the MrgprD ligand, either ß-alanine or alamandine, delayed gastrointestinal transit in vivo and attenuated the spontaneous contractions of isolated intestinal rings ex vivo. ABSTRACT: Mas-related G protein-coupled receptor D (MrgprD) was first identified in sensory neurons of mouse dorsal root ganglion and has been demonstrated to be involved in sensations of pain and itch. Although expression of MrgprD has recently been found in the gastrointestinal (GI) tract, its physiological role in GI motility is unknown. To address this question, we used Mrgprd knockout (Mrgprd-/- ) mice and MrgprD agonists to examine the effects of Mrgprd gene deletion and MrgprD signalling activation, respectively, on murine intestinal motility, both in vivo and ex vivo. We observed that the deletion of Mrgprd accelerated the transmission of charcoal through the mouse GI tract. But Mrgprd deficiency did not affect the mean amplitudes and frequencies of spontaneous contractions in ileum ex vivo. Colonic motor complexes in the proximal and the distal colon were recorded from wild-type and Mrgprd-/- mice, but their control frequencies were not different. Moreover, in wild-type mice, systemic administration of an MrgprD agonist, either ß-alanine or alamandine, delayed GI transit in vivo and suppressed spontaneous contractions in the ileum and colonic motor complexes in the colon ex vivo. Our results suggest that MrgprD and its agonist are involved in the modulation of GI motility in mice.


Subject(s)
Ganglia, Spinal , Gastrointestinal Motility , Animals , Colon/metabolism , Ganglia, Spinal/metabolism , Gastrointestinal Transit , Mice , Mice, Inbred C57BL , Receptors, G-Protein-Coupled/metabolism
11.
Cell ; 184(8): 2151-2166.e16, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33765440

ABSTRACT

Cutaneous mast cells mediate numerous skin inflammatory processes and have anatomical and functional associations with sensory afferent neurons. We reveal that epidermal nerve endings from a subset of sensory nonpeptidergic neurons expressing MrgprD are reduced by the absence of Langerhans cells. Loss of epidermal innervation or ablation of MrgprD-expressing neurons increased expression of a mast cell gene module, including the activating receptor, Mrgprb2, resulting in increased mast cell degranulation and cutaneous inflammation in multiple disease models. Agonism of MrgprD-expressing neurons reduced expression of module genes and suppressed mast cell responses. MrgprD-expressing neurons released glutamate which was increased by MrgprD agonism. Inhibiting glutamate release or glutamate receptor binding yielded hyperresponsive mast cells with a genomic state similar to that in mice lacking MrgprD-expressing neurons. These data demonstrate that MrgprD-expressing neurons suppress mast cell hyperresponsiveness and skin inflammation via glutamate release, thereby revealing an unexpected neuroimmune mechanism maintaining cutaneous immune homeostasis.


Subject(s)
Glutamic Acid/metabolism , Mast Cells/metabolism , Neurons/metabolism , Skin/metabolism , Animals , Cells, Cultured , Dermatitis/metabolism , Dermatitis/pathology , Diphtheria Toxin/pharmacology , Disease Models, Animal , Female , Integrin beta Chains/genetics , Integrin beta Chains/metabolism , Langerhans Cells/cytology , Langerhans Cells/drug effects , Langerhans Cells/metabolism , Mast Cells/cytology , Mast Cells/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/cytology , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Skin/pathology , beta-Alanine/chemistry , beta-Alanine/metabolism , beta-Alanine/pharmacology
12.
Neurosci Lett ; 749: 135724, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33600909

ABSTRACT

Interplay between physiological systems in the body plays a prominent role in health and disease. At the cellular level, such interplay is orchestrated through the binding of specific ligands to their receptors expressed on cell surface. G protein-coupled receptors (GPCR) are seven-transmembrane domain receptors that initiate various cellular responses and regulate homeostasis. In this review, we focus on particular GPCRs named Mas-related G protein-coupled receptors (Mrgprs) mainly expressed by sensory neurons and specialized immune cells. We describe the different subfamilies of Mrgprs and their specific ligands, as well as recent advances in the field that illustrate the role played by these receptors in neuro-immune biological processes, including itch, pain and inflammation in diverse organs.


Subject(s)
Neuroimmunomodulation/physiology , Pain/metabolism , Receptors, G-Protein-Coupled/metabolism , Sensory Receptor Cells/metabolism , Animals , GTP-Binding Proteins/metabolism , Ganglia, Spinal/metabolism , Humans
13.
Cell Signal ; 76: 109813, 2020 12.
Article in English | MEDLINE | ID: mdl-33080316

ABSTRACT

Mas-related G protein-coupled receptor D (MrgprD) is mainly expressed in small-diameter sensory neurons of the dorsal root ganglion (DRG). Results from previous studies suggest that MrgprD participates in mechanical hyperalgesia and nerve injury-induced neuropathic pain. However, it remains elusive whether and how MrgprD is involved in inflammatory pain. Here, we used a mouse model of chronic inflammatory pain established by intraperitoneal administration of lipopolysaccharide (LPS). The LPS injection induced an evident peripheral neuroinflammation and mechanical hyperalgesia in the mice and increased MrgprD expression in the DRG. The LPS administration also augmented the proportion of MrgprD-expressing neurons in the lumbar 4 DRG. Behaviorally, the LPS-induced hypersensitivities to mechanical and cold stimuli, but not to a heat stimulus, were substantially attenuated in Mrgprd-knockout mice compared with wildtype littermates. Mrgprd deletion in DRGs suppressed the LPS-triggered activation of the NF-κB signaling pathway and attenuated LPS-induced up-regulation of pro-inflammatory factors. Moreover, ectopic overexpression of MrgprD in HEK293 cells stably expressing mouse toll-like receptor 4 (TLR4) markedly promoted the LPS-induced NF-κB activation and enhanced NF-κB's DNA-binding activity. Furthermore, MrgprD physically interacted with TGF-ß-activated kinase 1 (TAK1) and I-kappa-B-kinase (IKK) complexes, but not with mitogen-activated protein kinases (MAPKs) in mouse DRGs. In macrophage-like RAW 264.7 cells, MrgprD also interacted with TAK1 and IKK complex, and the treatment of MrgprD agonist elicited the activation of NF-κB signaling, but not of mitogen-activated protein kinases (MAPKs) signaling pathway. Our findings indicate that MrgprD facilitates the development of LPS-triggered persistent inflammatory hyperalgesia by promoting canonical NF-κB activation, highlighting the important roles of MrgprD in NF-κB-mediated inflammation and chronic pain.


Subject(s)
Hyperalgesia/metabolism , Inflammation/metabolism , MAP Kinase Kinase Kinases/metabolism , NF-kappa B/metabolism , Pain/metabolism , Receptors, G-Protein-Coupled/physiology , Animals , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , RAW 264.7 Cells
14.
Cell Tissue Res ; 378(3): 555-558, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31473818

ABSTRACT

Due to their pivotal role in nociception and mast cell biology, the family of Mas-related G protein-coupled receptors (Mrgprs) has recently gained attention for their possible expression and role(s) in the gastrointestinal tract. In this context, based on immunocytochemical stainings using a commercial antibody, a recent study by Zhou et al. reported that the murine Mrgprd member is expressed in mouse gut lamina propria immune cells and in the outer smooth muscle layers pointing to a potential role for MrgprD in inflammatory responses and intestinal immunity. Immunohistochemical staining for G protein-coupled receptors (GPCRs), however, remains challenging and should be cautiously interpreted using appropriate specificity controls. Using the same antibody with an identical dilution, we did observe a similar staining in the same wild-type mouse strain, but an identical staining pattern was also found in mice lacking the MrgprD receptor, indicating that this antibody recognizes epitopes other than those of MrgprD. Moreover, in situ hybridization for MrgprD further indicated the absence of receptor mRNA expression in lamina propria immune cells and in the outer smooth muscle layers. Therefore, the results and conclusions regarding the presence of MrgprD at protein level within the GI wall as described in the study of Zhou and collaborators should be interpreted with strong caution and should be reconsidered in the light of the emerging possible roles of MrgprD and therapeutic perspectives in gastrointestinal pathophysiology.


Subject(s)
Ileum/metabolism , Mucous Membrane/metabolism , Muscle, Smooth/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Mice , Mice, Inbred C57BL
15.
Cell Tissue Res ; 377(2): 259-268, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30919047

ABSTRACT

MrgprD, a Mas-related G protein-coupled receptor, is initially identified in sensory neurons of mouse dorsal root ganglia (DRG) and has been suggested to participate in somatosensation. However, MrgprD has recently been found to be expressed outside the nervous system such as in aortic endothelia cells and neutrophils. In this study, we used immunohistochemistry to detect the expression and localization of MrgprD in mouse intestinal tract. The immunoreactivity (IR) of MrgprD was found in the smooth muscle layers of small intestine, colon and rectum. In addition, MrgprD IR was colocalized with F4/80-positive macrophages and CD3-positive T lymphocytes resident in the lamina propria of intestinal mucosa. MrgprD was also found to be expressed in primary peritoneal macrophages and splenic T lymphocytes. Furthermore, the presence of MrgprD mRNA and its protein was detected in murine macrophage-like RAW 264.7 and human T lymphocyte Jurkat cell lines. Our study shows, for the first time, the expression and localization of MrgprD in the intestinal tract and in macrophages and T lymphocytes, indicating the potential roles of MrgprD in intestinal mobility and immunity.


Subject(s)
Intestinal Mucosa/metabolism , Macrophages/metabolism , Myocytes, Smooth Muscle/metabolism , Receptors, G-Protein-Coupled/metabolism , T-Lymphocytes/metabolism , Animals , Cell Line , Humans , Intestines/cytology , Macrophages/cytology , Mice , Mice, Inbred C57BL , Myocytes, Smooth Muscle/cytology , T-Lymphocytes/cytology
16.
Arch Oral Biol ; 85: 84-97, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29035722

ABSTRACT

OBJECTIVE: Intradental sensory receptors trigger painful sensations and unperceived mechanosensitivity, but the receptor bases for those functions are only partly defined. We present new evidence here concerning complex endings of myelinated axons in rat molars. DESIGN: We sectioned mature rat jaws in sagittal and transverse planes to analyze neural immunoreactivity (IR) for parvalbumin, peripherin, neurofilament protein, neurotrophin receptors, synaptophysin, calcitonin gene-related peptide (CGRP), or mas-related g-protein-receptor-d (Mrgprd). RESULTS: We found two complex sensory systems in mature rat molar dentin that labeled with neurofilament protein-IR, plus either parvalbumin-IR or peripherin-IR. The parvalbumin-IR system made extensively branched, beaded endings focused into dentin throughout each pulp horn. The peripherin-IR system primarily made unbeaded, fork-shaped dentinal endings scattered throughout crown including cervical regions. Both of these systems differed from neuropeptide CGRP-IR. In molar pulp we found peripherin- and parvalbumin-IR layered endings, either near special horizontal plexus arrays or in small coiled endings near tangled plexus, each with specific foci for specific pulp horns. Parvalbumin-IR nerve fibers had Aß axons (5-7µm diameter), while peripherin-IR axons were thinner Aδ size (2-5µm). Mechano-nociceptive Mrgprd-IR was only found in peripherin-IR axons. CONCLUSIONS: Complex somatosensory receptors in rat molars include two types of dentinal endings that both differ from CGRP-IR endings, and at least two newly defined types of pulpal endings. The PV-IR neurons with their widely branched, synaptophysin-rich, intradentinal beaded endings are good candidates for endodontic non-nociceptive, low threshold, unperceived mechanoreceptors. The complex molar dentinal and pulpal sensory systems were not found in rat incisors.


Subject(s)
Dentin/innervation , Mechanoreceptors/physiology , Molar/innervation , Nociceptors/physiology , Animals , Axons , Biomarkers/analysis , Calcitonin Gene-Related Peptide/analysis , Immunohistochemistry , Male , Nerve Tissue Proteins/analysis , Neurofilament Proteins/analysis , Parvalbumins/analysis , Peripherins/analysis , Rats , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled/analysis , Synaptophysin/analysis
17.
Brain ; 137(Pt 4): 1039-50, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24549959

ABSTRACT

Itch is a common symptom of diseases of the skin but can also accompany diseases of other tissues including the nervous system. Acute itch from chemicals experimentally applied to the skin is initiated and maintained by action potential activity in a subset of nociceptive neurons. But whether these pruriceptive neurons are active or might become intrinsically more excitable under the pathological conditions that produce persistent itch and nociceptive sensations in humans is largely unexplored. Recently, two distinct types of cutaneous nociceptive dorsal root ganglion neurons were identified as responding to pruritic chemicals and playing a role in itch sensation. One expressed the mas-related G-coupled protein receptor MRGPRA3 and the other MRGPRD (MRGPRA3+ and MRGPRD+ neurons, respectively). Here we tested whether these two distinct pruriceptive nociceptors exhibited an enhanced excitability after the development of contact hypersensitivity, an animal model of allergic contact dermatitis, a common pruritic disorder in humans. The characteristics of increased excitability of pruriceptive neurons during this disorder may also pertain to the same types of neurons active in other pruritic diseases or pathologies that affect the nervous system and other tissues or organs. We found that challenging the skin of the calf of the hind paw or the cheek of previously sensitized mice with the hapten, squaric acid dibutyl ester, produced symptoms of contact hypersensitivity including an increase in skin thickness and site-directed spontaneous pain-like (licking or wiping) and itch-like (biting or scratching) behaviours. Ablation of MRGPRA3+ neurons led to a significant reduction in spontaneous scratching of the hapten-challenged nape of the neck of previously sensitized mice. In vivo, electrophysiological recordings revealed that MRGPRA3+ and MRGPRD+ neurons innervating the hapten-challenged skin exhibited a greater incidence of spontaneous activity and/or abnormal after-discharges in response to mechanical and heat stimuli applied to their receptive fields compared with neurons from the vehicle-treated control animals. Whole-cell recordings in vitro showed that both MRGPRA3+ and MRGPRD+ neurons from hapten-challenged mice displayed a significantly more depolarized resting membrane potential, decreased rheobase, and greater number of action potentials at twice rheobase compared with neurons from vehicle controls. These signs of neuronal hyperexcitability were associated with a significant increase in the peak amplitude of tetrodotoxin-sensitive and resistant sodium currents. Thus, the hyperexcitability of MRGPRA3+ and MRGPRD+ neurons, brought about in part by enhanced sodium currents, may contribute to the spontaneous itch- and pain-related behaviours accompanying contact hypersensitivity and/or other inflammatory diseases in humans.


Subject(s)
Dermatitis, Contact/metabolism , Neurons/metabolism , Nociceptors/physiology , Pruritus/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Dermatitis, Contact/physiopathology , Disease Models, Animal , Ganglia, Spinal/metabolism , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pain/metabolism , Patch-Clamp Techniques , Pruritus/etiology , Skin/innervation
18.
Neuroscience ; 250: 263-74, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-23867767

ABSTRACT

Previous behavioral studies have revealed that CaV3.2 T-type calcium channels support peripheral nociceptive transmission and electrophysiological studies have established the presence of T-currents in putative nociceptive sensory neurons of dorsal root ganglion (DRG). To date, however, the localization pattern of this key nociceptive channel in the soma and peripheral axons of these cells has not been demonstrated due to lack of isoform-selective anti-CaV3.2 antibodies. In the present study a new polyclonal CaV3.2 antibody is used to localize CaV3.2 expression in rodent DRG neurons using different staining techniques including confocal and electron microscopy (EM). Confocal microscopy of both acutely dissociated cells and short-term cultures demonstrated strong immunofluorescence of anti-CaV3.2 antibody that was largely confined to smaller diameter DRG neurons where it co-localized with established immuno-markers of unmyelinated nociceptors, such as, CGRP, IB4 and peripherin. In contrast, a smaller proportion of these CaV3.2-labeled DRG cells also co-expressed neurofilament 200 (NF200), a marker of myelinated sensory neurons. In the rat sciatic nerve preparation, confocal microscopy demonstrated anti-CaV3.2 immunofluorescence which was co-localized with both peripherin and NF200. Further, EM revealed immuno-gold labeling of CaV3.2 preferentially in association with unmyelinated sensory fibers from mouse sciatic nerve. Finally, we demonstrated the expression of CaV3.2 channels in peripheral nerve endings of mouse hindpaw skin as shown by co-localization with Mrgpd-GFP-positive fibers. The CaV3.2 expression within the soma and peripheral axons of nociceptive sensory neurons further demonstrates the importance of this channel in peripheral pain transmission.


Subject(s)
Axons/metabolism , Calcium Channels, T-Type/biosynthesis , Ganglia, Spinal/metabolism , Neurons/metabolism , Animals , Antibodies , Calcium Channels, T-Type/genetics , Calcium Channels, T-Type/immunology , Cells, Cultured , Humans , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron , Nerve Fibers/drug effects , Nerve Fibers/metabolism , Nerve Fibers/physiology , Nerve Fibers/ultrastructure , Nociceptors/drug effects , Nociceptors/physiology , Rats , Rats, Sprague-Dawley , Sciatic Nerve/cytology , Sciatic Nerve/metabolism , Skin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL