Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Neurooncol Adv ; 6(1): vdae069, 2024.
Article in English | MEDLINE | ID: mdl-39022644

ABSTRACT

Background: Homozygous deletion of the tumor suppression genes cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) is a strong adverse prognostic factor in IDH-mutant gliomas, particularly astrocytoma. However, the impact of hemizygous deletion of CDKN2A/B is unknown. Furthermore, the influence of CDKN2A/B status in IDH-mutant and 1p/19q-codeleted oligodendroglioma remains controversial. We examined the impact of CDKN2A/B status classification, including hemizygous deletions, on the prognosis of IDH-mutant gliomas. Methods: We enrolled 101 adults with IDH-mutant glioma between December 2002 and November 2021. CDKN2A/B deletion was evaluated with multiplex ligation-dependent probe amplification (MLPA). Immunohistochemical analysis of p16/MTAP and promoter methylation analysis with methylation-specific MLPA was performed for cases with CDKN2A/B deletion. Kaplan - Meier plots and Cox proportion hazards model analyses were performed to evaluate the impact on overall (OS) and progression-free survival. Results: Of 101 cases, 12 and 4 were classified as hemizygous and homozygous deletion, respectively. Immunohistochemistry revealed p16-negative and MTAP retention in cases with hemizygous deletion, whereas homozygous deletions had p16-negative and MTAP loss. In astrocytoma, OS was shorter in the order of homozygous deletion, hemizygous deletion, and copy-neutral groups (median OS: 38.5, 59.5, and 93.1 months, respectively). Multivariate analysis revealed hazard ratios of 9.30 (P = .0191) and 2.44 (P = .0943) for homozygous and hemizygous deletions, respectively. Conclusions: CDKN2A/B hemizygous deletions exerted a negative impact on OS in astrocytoma. Immunohistochemistry of p16/MTAP can be utilized to validate hemizygous or homozygous deletions in combination with conventional molecular diagnosis.

2.
Article in English | MEDLINE | ID: mdl-39042515

ABSTRACT

Pleomorphic xanthoastrocytomas (PXAs) harbor CDKN2A homozygous deletion in >90% of cases, resulting in loss of p16 expression by immunohistochemistry. Considering the proximity of MTAP to CDKN2A and their frequent concurrent deletions, loss of MTAP expression may be a surrogate for CDKN2A homozygous deletion. We evaluated p16 and MTAP expression in 38 patient PXAs (CNS WHO grade 2: n = 23, 60.5%; grade 3: n = 15, 39.5%) with available chromosomal microarray data to determine whether MTAP can be utilized independently or in combination with p16 to predict CDKN2A status. CDKN2A, CDKN2B, and MTAP homozygous deletion were present in 37 (97.4%), 36 (94.7%), and 25 (65.8%) cases, respectively. Expression of p16 was lost in 35 (92.1%) cases, equivocal in one (2.6%), and failed in 2 (5.3%), while MTAP expression was lost in 27 (71.1%) cases, retained in 10 (26.3%), and equivocal in one (2.6%). This yielded a sensitivity of 94.6% for p16 and 73.0% for MTAP in detecting CDKN2A homozygous deletion through immunohistochemistry. MTAP expression was lost in the 2 cases with failed p16 staining (combined sensitivity of 100%). Our findings demonstrate that combined p16 and MTAP immunostains correctly detect CDKN2A homozygous deletion in PXA, while MTAP expression alone shows reduced sensitivity.

3.
Pathol Res Pract ; 259: 155350, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781764

ABSTRACT

Fluoroedenite-induced pleural mesothelioma (FE-induced-PM) is a rare and small subset of PM that shares with its asbestos-induced counterpart the same aggressive biological behavior and poor prognosis, but that differs from it from a pathogenetic point of view as it is associated with exposure to fluoroedenite, a carcinogenic agent that shows similarities with tremolite amphibolic asbestos fibers. Although it has been demonstrated that asbestos-induced PMs frequently harbor CDKN2A homozygous deletion and that the immunohistochemical loss of MTAP may represent a cheap and reliable surrogate marker for this molecular alteration, little is known about the molecular landscape and the reliability of MTAP immunohistochemistry in this peculiar subset of PM. The study herein presented investigated the prevalence of CDKN2A homozygous deletion and its concordance with MTAP immunohistochemical status on a cohort of 10 cases of FE-induced-PM from patients with environmental exposure to FE fibers, who were residents in the small town of Biancavilla (Sicily, Italy) or nearby areas. CDKN2A homozygous deletions were found in 3 out of 10 cases (30%) and all these cases showed concomitant cytoplasmic loss of MTAP with a concordance rate of 100%. Despite the relatively low number of cases included in our series, MTAP immunohistochemistry seemed to represent a reliable immunohistochemical surrogate marker of CDKNA homozygous deletion even in this subset of PMs.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p16 , Immunohistochemistry , Mesothelioma , Pleural Neoplasms , Aged , Female , Humans , Male , Middle Aged , Asbestos, Amphibole , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Gene Deletion , Homozygote , Mesothelioma/genetics , Mesothelioma/pathology , Mesothelioma/chemically induced , Mesothelioma/metabolism , Mesothelioma, Malignant/pathology , Mesothelioma, Malignant/genetics , Pleural Neoplasms/genetics , Pleural Neoplasms/pathology , Pleural Neoplasms/chemically induced , Pleural Neoplasms/metabolism , Purine-Nucleoside Phosphorylase/genetics
4.
Pathology ; 56(5): 662-670, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38789301

ABSTRACT

The nomenclature and diagnostic criteria of well-differentiated papillary mesothelial tumour (WDPMT) have been changed in the 2021 World Health Organization (WHO) classification of thoracic tumours, and a new entity, mesothelioma in situ (MIS), introduced. Histologically these two entities may be similar. However, MIS is regarded as a precursor to invasive mesothelioma and requires demonstration of loss of BAP1 and/or MTAP/CDKN2A for diagnosis, whereas performance of these ancillary tests is desirable but not essential for a diagnosis of WDPMT, in which the significance of BAP1 and/or MTAP/CDKN2A loss is not well understood or well defined. Against this backdrop, we undertook an investigation of 21 cases of WDPMT, identified from our case files and diagnosed according to 2021 WHO criteria, to explore the relationship between histology and BAP1 and MTAP/CDKN2A expression with clinical features including asbestos exposure, focality of tumours and clinical outcome. There were 18 women and three men, with ages ranging from 23-77 years (median 62 years), in which six had a history of asbestos exposure, two had no exposure, and in 13 exposure history was unavailable. Of 20 peritoneal tumours and one pleural tumour, 13 were detected incidentally at the time of surgery for unrelated conditions and eight peritoneal tumours were multifocal at the time of diagnosis. BAP1 immunohistochemistry (IHC) was performed in all 21 tumours, with nine tumours showing BAP1 expression loss. MTAP/CDKN2A testing was performed in 14 tumours, comprising MTAP IHC in 12 and CDKN2A fluorescence in situ hybridisation (FISH) in two, with three tumours showing MTAP/CDKN2A expression loss. Two tumours with MTAP/CDKN2A loss also showed BAP1 expression loss. Four patients progressed to invasive mesothelioma, including one male with a pleural tumour and asbestos exposure, and three females with multifocal peritoneal tumours, two with asbestos exposure and one without exposure. BAP1 expression loss was seen in all tumours from the four patients who progressed to invasive mesothelioma, whilst two of these tumours showed retained MTAP IHC and two were not tested. There was one patient with a tumour with MTAP loss and retained BAP1 who died from unrelated causes 5 months after diagnosis. Eight patients received WDPMT-specific treatment in addition to the initial excision. Survival for all patients ranged from 4-218 months, with one patient dying of mesothelioma at 49 months. Based on our results in this series of 21 patients with WDPMT diagnosed according to 2021 WHO criteria, we propose that WDPMT with BAP1 expression loss may best be regarded as papillary MIS and that a history of asbestos exposure and the presence of multifocal tumours in patients diagnosed with WDPMT should prompt ancillary testing with BAP1 IHC. Further we propose that BAP1 IHC should be essential in the diagnosis of WDPMT, with the diagnosis restricted to those tumours which show retained BAP1 expression. However more studies in larger cohorts of patients are needed to explore the relationship between BAP1 expression and MTAP loss in WDPMT, which will help to define this entity and separate it more clearly from MIS and invasive mesothelioma.


Subject(s)
Biomarkers, Tumor , Cyclin-Dependent Kinase Inhibitor p16 , Mesothelioma , Tumor Suppressor Proteins , Ubiquitin Thiolesterase , Humans , Ubiquitin Thiolesterase/metabolism , Tumor Suppressor Proteins/metabolism , Male , Female , Middle Aged , Aged , Adult , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Mesothelioma/pathology , Mesothelioma/metabolism , Mesothelioma/diagnosis , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/analysis , Purine-Nucleoside Phosphorylase/metabolism , Young Adult , Mesothelioma, Malignant/pathology , Mesothelioma, Malignant/diagnosis , Mesothelioma, Malignant/metabolism , Neoplasms, Mesothelial/pathology , Neoplasms, Mesothelial/metabolism , Neoplasms, Mesothelial/diagnosis , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/diagnosis , Pleural Neoplasms/pathology , Pleural Neoplasms/metabolism , Pleural Neoplasms/diagnosis , Immunohistochemistry
5.
Mod Pathol ; 37(6): 100495, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641323

ABSTRACT

Homozygous deletion of the chromosomal region 9p21.3 is common in urothelial carcinoma (UC) and leads to loss of several genes, including CDKN2A and MTAP, resulting in loss of MTAP protein expression. Here, we aimed to explore the diagnostic potential of MTAP immunohistochemistry (IHC) as a surrogate marker for homozygous 9p21.3 deletion (9p21 homozygous deletion [HD]) in UC. MTAP status was determined by IHC on 27 UC tissue specimens with known 9p21.3 status as defined by fluorescence in situ hybridization in matched cytological specimens, by IHC and fluorescence in situ hybridization on a tissue microarray (TMA) containing 359 UC at different stages, and by IHC on 729 consecutive UC from routine practice. Moreover, we analyzed a longitudinal series of matched specimens from 38 patients with MTAP-negative recurrent UC. MTAP loss by IHC was found in all 17 patients with 9p21 HD and in 2/8 cases without 9p21 HD. In the TMA, MTAP loss was more common in metastases (53%) than in muscle-invasive (33%) and non-muscle-invasive UC (29%) (P = .03). In the consecutive series, 164/729 (22%) cases showed loss of MTAP expression. In 41 of these 164 cases (25%), loss of MTAP expression was heterogenous. We also discovered loss of MTAP expression in flat urothelium adjacent to MTAP-negative low-grade UC, suggesting true flat low-grade neoplasia that could not be diagnosed by morphology alone. Longitudinal analysis of recurrences showed persistent negative MTAP status over time in 37/38 (97%) patients. MTAP IHC can serve as a surrogate marker for 9p21 HD in UC and as a diagnostic tool to differentiate reactive urothelium from urothelial neoplasia. It also provides a unique opportunity to study clinicopathological associations and the heterogeneity of 9p21 HD across the whole spectrum of UC manifestations.


Subject(s)
Biomarkers, Tumor , Chromosomes, Human, Pair 9 , Immunohistochemistry , In Situ Hybridization, Fluorescence , Purine-Nucleoside Phosphorylase , Urinary Bladder Neoplasms , Humans , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Chromosomes, Human, Pair 9/genetics , Female , Male , Middle Aged , Aged , Purine-Nucleoside Phosphorylase/analysis , Purine-Nucleoside Phosphorylase/genetics , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Chromosome Deletion , Carcinoma, Transitional Cell/genetics , Carcinoma, Transitional Cell/pathology , Carcinoma, Transitional Cell/metabolism , Adult , Tissue Array Analysis , Aged, 80 and over , Homozygote
6.
J Neurooncol ; 168(2): 355-365, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38557927

ABSTRACT

PURPOSE: The proximate localization of MTAP, which encodes methylthioadenosine phosphorylase, and CDKN2A/B on Chromosome 9q21 has allowed the loss of MTAP expression as a surrogate for homozygous deletion of CDKN2A/B. This study aimed to determine whether MTAP status correlates with clinical outcomes and 11C-methionine uptake in astrocytomas with IDH mutations. METHODS: We conducted immunohistochemistry for MTAP in 30 patients with astrocytoma, IDH-mutant who underwent 11C-methionine positron emission tomography scans prior to surgical resection. The tumor-to-normal (T/N) ratio of 11C-methionine uptake was calculated using the mean standardized uptake value (SUV) for tumor and normal brain tissues. Cox regression analysis was used for multivariate survival analysis. RESULTS: Among IDH-mutant astrocytomas, 26.7% (8/30) exhibited the loss of cytoplasmic MTAP expression, whereas 73.3% (22/30) tumors retained MTAP expression. The median progression-free survival (PFS) was significantly shorter in patients with MTAP loss than those with MTAP retention (1.88 years vs. 6.80 years, p = 0.003). The median overall survival (OS) was also shorter in patients with MTAP loss than in MTAP-retaining counterparts (5.23 years vs. 10.69 years, p = 0.019). Multivariate analysis identified MTAP status (hazard ratio (HR), 0.081) and extent of resection (HR, 0.104) as independent prognostic factors for PFS. Astrocytomas lacking cytoplasmic MTAP expression showed a significantly higher median T/N ratio for 11C-methionine uptake than tumors retaining MTAP (2.12 vs. 1.65, p = 0.012). CONCLUSION: Our study revealed that the loss of MTAP expression correlates with poor prognosis and an elevated T/N ratio of 11C-methionine uptake in astrocytoma, IDH-mutant.


Subject(s)
Astrocytoma , Brain Neoplasms , Isocitrate Dehydrogenase , Methionine , Mutation , Purine-Nucleoside Phosphorylase , Humans , Purine-Nucleoside Phosphorylase/metabolism , Purine-Nucleoside Phosphorylase/genetics , Astrocytoma/genetics , Astrocytoma/metabolism , Astrocytoma/diagnostic imaging , Astrocytoma/pathology , Astrocytoma/mortality , Female , Male , Methionine/metabolism , Middle Aged , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Brain Neoplasms/mortality , Prognosis , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Adult , Aged , Positron-Emission Tomography , Carbon Radioisotopes , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Young Adult
7.
Pathologie (Heidelb) ; 45(5): 309-315, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38568257

ABSTRACT

This paper reviews some basic and some new concepts in the diagnosis of mesothelioma. The term "malignant mesothelioma" is no longer recommended; rather, any tumor labeled "mesothelioma" is presumed to be malignant. Clinical and radiologic information is very useful in the diagnosis of mesothelioma; in particular, nodular pleural thickening on CT is usually a marker of malignancy. The literature on markers that separate mesotheliomas from metastatic carcinomas has become very complex and frequently misleading, with many recommended markers actually demonstrating poor specificity. However, newer data show that a combination of HEG1 (clone SKM9-2) and claudin­4 staining provides extremely high accuracy in separating epithelioid mesotheliomas from non-small-cell lung carcinomas with just two immunostains. This combination works at other sites as well, but caution should be used when high-grade serous carcinoma is in the differential, because all "mesothelioma" markers can also stain high-grade serous carcinomas. There are, unfortunately, no sensitive or specific markers for sarcomatoid mesotheliomas. A variety of immunohistochemical and fluorescence in situ hybridization (FISH) markers are useful in separating benign from malignant mesothelial proliferations; immunohistochemal staining for BAP1, MTAP (or CDKN2A FISH), and NF2/Merlin (or NF2 FISH) will enable the diagnosis of most mesotheliomas. Mesothelioma in situ is now recognized as either a single layer of bland cuboidal mesothelial cells that have lost BAP1, and sometimes MTAP, on immunohistochemical staining, or a process that is morphologically identical to a well-differentiated papillary mesothelial tumor that has lost BAP1/MTAP. Mesothelioma in situ probably always progresses to invasive mesothelioma, but this process is often quite slow.


Subject(s)
Biomarkers, Tumor , Immunohistochemistry , Mesothelioma , Humans , Mesothelioma/pathology , Mesothelioma/diagnosis , Mesothelioma/metabolism , Biomarkers, Tumor/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Lung Neoplasms/metabolism , Mesothelioma, Malignant/pathology , Mesothelioma, Malignant/diagnosis , Mesothelioma, Malignant/metabolism , Pleural Neoplasms/pathology , Pleural Neoplasms/diagnosis , Pleural Neoplasms/metabolism , Diagnosis, Differential , In Situ Hybridization, Fluorescence
8.
Oncologist ; 29(6): 493-503, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38330461

ABSTRACT

BACKGROUND: One of the most common sporadic homozygous deletions in cancers is 9p21 loss, which includes the genes methylthioadenosine phosphorylase (MTAP), CDKN2A, and CDKN2B, and has been correlated with worsened outcomes and immunotherapy resistance. MTAP-loss is a developing drug target through synthetic lethality with MAT2A and PMRT5 inhibitors. The purpose of this study is to investigate the prevalence and genomic landscape of MTAP-loss in advanced gastrointestinal (GI) tumors and investigate its role as a prognostic biomarker. MATERIALS AND METHODS: We performed next-generation sequencing and comparative genomic and clinical analysis on an extensive cohort of 64 860 tumors comprising 5 GI cancers. We compared the clinical outcomes of patients with GI cancer harboring MTAP-loss and MTAP-intact tumors in a retrospective study. RESULTS: The prevalence of MTAP-loss in GI cancers is 8.30%. MTAP-loss was most prevalent in pancreatic ductal adenocarcinoma (PDAC) at 21.7% and least in colorectal carcinoma (CRC) at 1.1%. MTAP-loss tumors were more prevalent in East Asian patients with PDAC (4.4% vs 3.2%, P = .005) or intrahepatic cholangiocarcinoma (IHCC; 6.4% vs 4.3%, P = .036). Significant differences in the prevalence of potentially targetable genomic alterations (ATM, BRAF, BRCA2, ERBB2, IDH1, PIK3CA, and PTEN) were observed in MTAP-loss tumors and varied according to tumor type. MTAP-loss PDAC, IHCC, and CRC had a lower prevalence of microsatellite instability or elevated tumor mutational burden. Positive PD-L1 tumor cell expression was less frequent among MTAP-loss versus MTAP-intact IHCC tumors (23.2% vs 31.2%, P = .017). CONCLUSION: In GI cancers, MTAP-loss occurs as part of 9p21 loss and has an overall prevalence of 8%. MTAP-loss occurs in 22% of PDAC, 15% of IHCC, 8.7% of gastroesophageal adenocarcinoma, 2.4% of hepatocellular carcinoma, and 1.1% of CRC and is not mutually exclusive with other targetable mutations.


Subject(s)
Gastrointestinal Neoplasms , Purine-Nucleoside Phosphorylase , Humans , Purine-Nucleoside Phosphorylase/genetics , Male , Female , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/pathology , Middle Aged , Aged , Retrospective Studies , Biomarkers, Tumor/genetics , Adult , Prognosis , Genomics/methods
9.
Bioorg Med Chem ; 100: 117633, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38342078

ABSTRACT

The methionine adenosyltransferase MAT2A catalyzes the synthesis ofthe methyl donor S-adenosylmethionine (SAM) and thereby regulates critical aspects of metabolism and transcription. Aberrant MAT2A function can lead to metabolic and transcriptional reprogramming of cancer cells, and MAT2A has been shown to promote survival of MTAP-deficient tumors, a genetic alteration that occurs in âˆ¼ 13 % of all tumors. Thus, MAT2A holds great promise as a novel anticancer target. Here, we report a novel series of MAT2A inhibitors generated by a fragment growing approach from AZ-28, a low-molecular weight MAT2A inhibitor with promising pre-clinical properties. X-ray co-crystal structure revealed that compound 7 fully occupies the allosteric pocket of MAT2A as a single molecule mimicking MAT2B. By introducing additional backbone interactions and rigidifying the requisite linker extensions, we generated compound 8, which exhibited single digit nanomolar enzymatic and sub-micromolar cellular inhibitory potency for MAT2A.


Subject(s)
Methionine Adenosyltransferase , Neoplasms , Humans , Allosteric Site , Methionine Adenosyltransferase/antagonists & inhibitors , Methionine Adenosyltransferase/metabolism , Mutation , S-Adenosylmethionine/metabolism
10.
Anticancer Res ; 44(3): 981-991, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38423659

ABSTRACT

BACKGROUND/AIM: Methionine metabolism contributes to supplying sulfur-containing amino acids, controlling the methyl group transfer reaction, and producing polyamines in cancer cells. Polyamines play important roles in various cellular functions. Methylthioadenosine phosphorylase (MTAP), the key enzyme of the methionine salvage pathway, is reported to be deficient in 15-62% of cases of hematological malignancies. MTAP-deficient cancer cells accumulate polyamines, resulting in enhanced cell proliferation. The aim of this study was to investigate the combined effects of the polyamine synthesis inhibitor SAM486A and the anticancer antimetabolite cytarabine in MTAP-deficient leukemic cells in vitro. MATERIALS AND METHODS: The leukemia cell line U937 and the subline, U937/MTAP(-), in which MTAP was knocked down by shRNA, were used. The experiments were performed in media supplemented with 20% methionine (low methionine), which was the minimum concentration for maintaining cellular viability. RESULTS: The knockdown efficiency test confirmed a 70% suppression of the expression of the MTAP gene in U937/MTAP(-) cells. Even in the media with low methionine, the intracellular methionine concentration was not reduced in U937/MTAP(-) cells, suggesting that the minimum supply of methionine was sufficient to maintain intracellular levels of methionine. Both U937/MTAP(+) and U937/MTAP(-) cells were comparably sensitive to anticancer drugs (cytarabine, methotrexate, clofarabine and 6-thioguanine). The combination of SAM486A and cytarabine was demonstrated to have synergistic cytotoxicity in U937/MTAP(-) cells with regard to cell growth inhibition and apoptosis induction, but not in U937/MTAP(+) cells. Mechanistically, SAM486A altered the intracellular polyamine concentrations and reduced the antiapoptotic proteins. CONCLUSION: Methionine metabolism and polyamine synthesis can be attractive therapeutic targets in leukemia.


Subject(s)
Amidines , Antineoplastic Agents , Indans , Leukemia , Humans , Cytarabine/pharmacology , Purine-Nucleoside Phosphorylase/genetics , Purine-Nucleoside Phosphorylase/metabolism , Polyamines , Methionine/pharmacology , Methionine/metabolism , Leukemia/drug therapy
11.
Mod Pathol ; 37(3): 100420, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38185249

ABSTRACT

9p21 deletions involving MTAP/CDKN2A genes are detected in diffuse pleural mesotheliomas (DPM) but are absent in benign mesothelial proliferations. Loss of MTAP expression by immunohistochemistry (IHC) is well accepted as a surrogate for 9p21 deletion to support a diagnosis of DPM. Accurate interpretation can be critical in the diagnosis of DPM, but variations in antibody performance may impact interpretation. The objectives of this study were to compare the performance of MTAP monoclonal antibodies (mAbs) EPR6893 and 1813 and to compare MTAP expression by IHC with 9p21 copy number status in DPM. Cytoplasmic expression of MTAP IHC with mAbs EPR6893 (ab126770; Abcam) and 1813 (NBP2-75730, Novus Biologicals) was evaluated in 56 DPM (47 epithelioid, 7 biphasic, and 2 sarcomatoid) profiled by targeted next-generation sequencing. 9p21 Copy number status was assessed by Fraction and Allele-Specific Copy Number Estimates from Tumor Sequencing (FACETS) analysis and also by CDKN2A fluorescence in situ hybridization in discrepant cases when material was available. MTAP mAb 1813 showed stronger immunoreactivity, more specific staining, and no equivocal interpretations compared to mAb EPR6893 which showed equivocal staining in 19 (34%) of cases due to weak or heterogenous immunoreactivity, lack of definitive internal positive control, and/or nonspecific background staining. MTAP expression with mAb 1813 showed near perfect agreement with 9p21 copy number by combined FACETS/fluorescence in situ hybridization calls (κ = 0.85; 95% CI, 0.71-0.99; P < .001). MTAP IHC with mAb 1813 was 96% sensitive, 86% specific, and 93% accurate for 9p21 homozygous deletion. The findings of this study suggest that interpretation of MTAP IHC is improved with mAb 1813 because mAb EPR6893 was often limited by equivocal interpretations. We show that MTAP IHC and molecular assays are complementary in detecting 9p21 homozygous deletion. MTAP IHC may be particularly useful for low tumor purity samples and in low-resource settings.


Subject(s)
Mesothelioma, Malignant , Mesothelioma , Pleural Neoplasms , Humans , Biomarkers, Tumor/analysis , Cyclin-Dependent Kinase Inhibitor p16/genetics , High-Throughput Nucleotide Sequencing , Homozygote , Immunohistochemistry , In Situ Hybridization, Fluorescence , Mesothelioma/diagnosis , Mesothelioma/genetics , Mesothelioma/pathology , Mesothelioma, Malignant/genetics , Pleural Neoplasms/diagnosis , Pleural Neoplasms/genetics , Pleural Neoplasms/pathology , Sequence Deletion , Ubiquitin Thiolesterase/genetics
12.
Neurooncol Adv ; 6(1): vdae002, 2024.
Article in English | MEDLINE | ID: mdl-38288091

ABSTRACT

Background: The World Health Organization 2021 classification introduces molecular grading criteria for anaplastic meningiomas, including TERT promoter (TERTp) mutations and CDKN2A/B homozygous deletion. Additional adverse prognostic factors include H3K27me3 and BAP1 loss. The aim of this study was to explore whether these molecular alterations stratified clinical outcomes in a single-center cohort of grade 3 meningiomas. Additionally, we examined whether p16 and MTAP immunohistochemistry can predict CDKN2A/B status. Methods: Clinical and histopathological information was obtained from the electronic medical records of grade 3 meningiomas resected at a tertiary center between 2007 and 2020. Molecular testing for TERTp mutations and CDKN2A/B copy-number status, methylation profiling, and immunohistochemistry for H3K27me3, BAP1, p16, and methylthioadenosine phosphorylase (MTAP) were performed. Predictors of survival were identified by Cox regression. Results: Eight of 15 cases demonstrated elevated mitotic index (≥20 mitoses per 10 consecutive high-power fields), 1 tumor exhibited BAP1 loss, 4 harbored TERTp mutations, and 3 demonstrated CDKN2A/B homozygous deletion. Meningiomas with TERTp mutations and/or CDKN2A/B homozygous deletion showed significantly reduced survival compared to anaplastic meningiomas with elevated mitotic index alone. Immunohistochemical loss of p16 and MTAP demonstrated high sensitivity (67% and 100%, respectively) and specificity (100% and 100%, respectively) for predicting CDKN2A/B status. Conclusions: Molecular alterations of grade 3 meningiomas stratify clinical outcomes more so than histologic features alone. Immunohistochemical loss of p16 and MTAP show promise in predicting CDKN2A/B status.

13.
J Biol Chem ; 300(1): 105492, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38000655

ABSTRACT

Homozygous 5'-methylthioadenosine phosphorylase (MTAP) deletions occur in approximately 15% of human cancers. Co-deletion of MTAP and methionine adenosyltransferase 2 alpha (MAT2a) induces a synthetic lethal phenotype involving protein arginine methyltransferase 5 (PRMT5) inhibition. MAT2a inhibitors are now in clinical trials for genotypic MTAP-/- cancers, however the MTAP-/- genotype represents fewer than 2% of human colorectal cancers (CRCs), limiting the utility of MAT2a inhibitors in these and other MTAP+/+ cancers. Methylthio-DADMe-immucillin-A (MTDIA) is a picomolar transition state analog inhibitor of MTAP that renders cells enzymatically MTAP-deficient to induce the MTAP-/- phenotype. Here, we demonstrate that MTDIA and MAT2a inhibitor AG-270 combination therapy mimics synthetic lethality in MTAP+/+ CRC cell lines with similar effects in mouse xenografts and without adverse histology on normal tissues. Combination treatment is synergistic with a 104-fold increase in drug potency for inhibition of CRC cell growth in culture. Combined MTDIA and AG-270 decreases S-adenosyl-L-methionine and increases 5'-methylthioadenosine in cells. The increased intracellular methylthioadenosine:S-adenosyl-L-methionine ratio inhibits PRMT5 activity, leading to cellular arrest and apoptotic cell death by causing MDM4 alternative splicing and p53 activation. Combination MTDIA and AG-270 treatment differs from direct inhibition of PRMT5 by GSK3326595 by avoiding toxicity caused by cell death in the normal gut epithelium induced by the PRMT5 inhibitor. The combination of MTAP and MAT2a inhibitors expands this synthetic lethal approach to include MTAP+/+ cancers, especially the remaining 98% of CRCs without the MTAP-/- genotype.


Subject(s)
Deoxyadenosines , Methionine Adenosyltransferase , Neoplasms , Protein-Arginine N-Methyltransferases , Purine-Nucleoside Phosphorylase , S-Adenosylmethionine , Animals , Humans , Mice , Cell Line, Tumor , Cell Proliferation/drug effects , Deoxyadenosines/antagonists & inhibitors , Deoxyadenosines/genetics , Deoxyadenosines/metabolism , Drug Synergism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Methionine Adenosyltransferase/antagonists & inhibitors , Methionine Adenosyltransferase/genetics , Methionine Adenosyltransferase/metabolism , Neoplasms/genetics , Neoplasms/physiopathology , Neoplasms/therapy , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Purine-Nucleoside Phosphorylase/genetics , Purine-Nucleoside Phosphorylase/metabolism , Pyrrolidines/pharmacology , Pyrrolidines/therapeutic use , S-Adenosylmethionine/metabolism
14.
Cancer Cytopathol ; 132(2): 87-95, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38054349

ABSTRACT

BACKGROUND: Accurate diagnosis of pancreatic lesions by endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) or fine-needle biopsy can be challenging. Although surrogate immunohistochemical markers for genetic alterations associated with pancreatic ductal adenocarcinoma (PDAC) have been identified, they have modest sensitivity. Biallelic loss of CDKN2A occurs in up to 46% of PDACs, and methylthioadenosine phosphorylase (MTAP) immunohistochemistry (IHC) has been identified as a reliable surrogate marker for this alteration. The current study evaluates the utility of MTAP IHC for the diagnosis of PDAC. METHODS: In total, 136 cases of EUS-FNA cell block or core biopsy targeting solid pancreatic masses were identified. MTAP IHC was performed and evaluated for complete loss of expression in neoplastic cells. These results were correlated with available clinical next-generation sequencing that was performed on a subset of cases. RESULTS: Complete loss of MTAP expression was identified in 23 of 80 (29%) PDACs. A subset of cases classified as suspicious (4 of 21) and atypical (4 of 22) showed MTAP loss. All morphologically indeterminate cases with MTAP loss were confirmed as PDAC on resection/additional sampling. No benign samples (n = 13) showed loss of MTAP. In samples that had available clinical next-generation sequencing data (n = 13), copy number loss of CDKN2A was detected in all cases that had loss of MTAP expression (n = 4). CONCLUSIONS: Loss of MTAP was identified in approximately 30% of PDAC small biopsy specimens. As loss of MTAP expression is not expected in nonneoplastic cells, and these findings suggest that MTAP IHC can support a diagnosis of PDAC in small biopsy samples.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Purine-Nucleoside Phosphorylase , Humans , Immunohistochemistry , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Endoscopic Ultrasound-Guided Fine Needle Aspiration/methods
15.
J Neuropathol Exp Neurol ; 83(2): 107-114, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38109891

ABSTRACT

According to the 2021 World Health Organization classification of brain tumors, astrocytomas containing a CDKN2A/B homozygous deletion (HD) are designated as grade 4 even when no microvascular proliferation and/or necrosis is present. In this study, we aimed to investigate the relationship between CDKN2A HD and loss of methylthioadenosine phosphorylase (MTAP) expression in adult-type IDH-mutant gliomas and to assess the sensitivity and specificity of MTAP immunohistochemistry (IHC) along with interobserver agreement as a surrogate biomarker for CDKN2A HD. Eighty-eight astrocytomas and 71 oligodendrogliomas cases that were diagnosed between 2014 and 2021 at Hacettepe University were selected and tissue microarrays were conducted to perform CDKN2A fluorescence in situ hybridization and MTAP IHC. Twenty-five (15.7%) cases harbored CDKN2A HD. MTAP loss was detected in 28 (15.7%) cases by the first observer and 27 (17%) cases by the second observer. The sensitivity and specificity of MTAP were calculated as 88% and 95.52%-96.27% for 2 observers. A very good/perfect agreement was noted between the observers (Cohen kappa coefficient = 0.938). Intratumoral heterogeneity was observed in 4 cases. MTAP IHC was found to be a reliable surrogate biomarker as a possible alternative to CDKN2A HD identification with a high sensitivity and specificity along with high interobserver agreement.


Subject(s)
Astrocytoma , Glioma , Purine-Nucleoside Phosphorylase , Adult , Humans , Immunohistochemistry , Homozygote , In Situ Hybridization, Fluorescence , Reproducibility of Results , Sequence Deletion , Glioma/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Astrocytoma/genetics
16.
Asian Pac J Cancer Prev ; 24(11): 3875-3882, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-38019246

ABSTRACT

BACKGROUND: Definite treatment for glioma is not exist, and with increased drug resistance, more effort should be paid to identify new prognostic biomarkers and molecular targets for therapy for glioma patients. AIM: The current study aimed to evaluate the immunohistochemical (IHC) expression of MTAP and A-Kinase Interacting Protein 1 (AKIP1) in astrocytoma and to investigate their association with the clinicopathological characters of these cases. METHODS: Totally 66 cases of astrocytoma patients involved in this study. Cases underwent tumor resection and tissue sections were stained with MTAP, AKIP1 and IDH1 by IHC and evaluated in different grades of astrocytoma and their association with survival and response to therapy was investigated. RESULTS: High AKIP1 expression was positively correlated with treatment resistance and progressive disease. Positive IDH and retained MTAP expressions had shown better treatment response rather than negative IDH and lost MTAP. High AKIP, negative IDH and loss of MTAP expressions were significantly associated with poor survival outcome. CONCLUSION: Irrespective to grade and IDH status, the loss of MTAP immunoreactivity and high AKIP1 expression are predictive factors in astrocytoma, and they may be used as a biomarker for guiding astrocytoma management and prognosis surveillance.


Subject(s)
Astrocytoma , Glioma , Humans , Prognosis , Astrocytoma/genetics , Nuclear Proteins , Adaptor Proteins, Signal Transducing , Isocitrate Dehydrogenase/genetics
17.
Diagn Pathol ; 18(1): 126, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38017544

ABSTRACT

BACKGROUND: Overlapping morphological features of mesothelial cells have been rendered it difficult to distinguish between reactive and malignant conditions. The development of methods based on detecting genomic abnormalities using immunohistochemistry and fluorescence in situ hybridization have contributed markedly to solving this problem. It is important to identify bland mesothelioma cells on cytological screening, perform efficient genomic-based testing, and diagnose mesothelioma, because the first clinical manifestation of pleural mesothelioma is pleural effusion, which is the first sample available for pathological diagnosis. However, certain diagnostic aspects remain challenging even for experts. CASE PRESENTATION: This report describes a case of a 72-year-old man with a history of asbestos exposure who presented with pleural effusion as the first symptom and was eventually diagnosed as mesothelioma. Mesothelioma was suspected owing to prominent cell-in-cell engulfment in mesothelial cells on the first cytological sample, and the diagnosis of mesothelioma in situ was confirmed by histology. Unexpectedly, sarcomatoid morphology of mesothelioma was found in the second pathology samples 9 months after the first pathological examination. Both the mesothelioma in situ and invasive lesion showed immunohistochemical loss of methylthioadenosine phosphorylase (MTAP) and homozygous deletion of cyclin dependent kinase inhibitor 2A (CDKN2A) on fluorescence in situ hybridization. The patient received medication therapy but died of disease progression 12 months after the diagnosis of the sarcomatoid morphology of mesothelioma. CONCLUSION: Our case suggests that cell-in-cell engulfment can be conspicuous in early-stage mesothelioma with inconspicuous nuclear atypia and few multinucleated cells. In addition, the presence of MTAP loss and CDKN2A homozygous deletion are suspected to be involved in early formation to invasive lesions and/or sarcomatoid morphology. We believe that it is important to consider genetic abnormalities when deciding on individual patient management. Furthermore, cases of mesothelioma, even those of an in situ lesion, with MTAP loss and/or CDKN2A deletion should be carefully followed up or subjected to early treatment.


Subject(s)
Lung Neoplasms , Mesothelioma, Malignant , Mesothelioma , Pleural Effusion , Pleural Neoplasms , Sarcoma , Male , Humans , Aged , In Situ Hybridization, Fluorescence , Homozygote , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Sequence Deletion , Mesothelioma/diagnosis , Mesothelioma/genetics , Mesothelioma/pathology , Pleural Neoplasms/diagnosis , Pleural Neoplasms/genetics , Pleural Neoplasms/pathology , Pleural Effusion/genetics , Sarcoma/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , Ubiquitin Thiolesterase/analysis , Ubiquitin Thiolesterase/genetics
18.
Cancers (Basel) ; 15(20)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37894345

ABSTRACT

CDKN2A deletion is a common alteration in pleural mesothelioma (PM) and frequently associated with co-deletion of MTAP. Since the standard detection method for CDKN2A deletion and FISH analysis is relatively expensive, we here investigated the suitability of inexpensive p16 and MTAP IHC by comparing concordance between IHC and OncoScan CNV arrays on samples from 52 PM patients. Concordance was determined using Cohen's kappa statistics. Loss of CDKN2A was associated with co-deletion of MTAP in 71% of cases. CDKN2A-MTAP copy-number normal cases were also IHC positive in 93% of cases for p16 and 100% for MTAP, while homozygous deletion of CDKN2A-MTAP was always associated with negative IHC for both proteins. In cases with heterozygous CDKN2A-MTAP loss, IHC expression of p16 and MTAP was negative in 100% and 71%, respectively. MTAP and p16 IHC showed high sensitivity (MTAP 86.5%, p16 100%) and specificity (MTAP 100%, p16 93.3%) for the detection of any gene loss. Loss of MTAP expression occurred exclusively in conjunction with loss of p16 labeling. Both p16 and MTAP IHC showed high concordance with Oncoscan CNV arrays (kappa = 0.952, p < 0.0001, and kappa = 0.787, p < 0.0001 respectively). We recommend combined MTAP and p16 immunohistochemistry to confirm the diagnosis of PM.

19.
Front Oncol ; 13: 1264785, 2023.
Article in English | MEDLINE | ID: mdl-37795443

ABSTRACT

Approximately 15% of cancers exhibit loss of the chromosomal locus 9p21.3 - the genomic location of the tumour suppressor gene CDKN2A and the methionine salvage gene methylthioadenosine phosphorylase (MTAP). A loss of MTAP increases the pool of its substrate methylthioadenosine (MTA), which binds to and inhibits activity of protein arginine methyltransferase 5 (PRMT5). PRMT5 utilises the universal methyl donor S-adenosylmethionine (SAM) to methylate arginine residues of protein substrates and regulate their activity, notably histones to regulate transcription. Recently, targeting PRMT5, or MAT2A that impacts PRMT5 activity by producing SAM, has shown promise as a therapeutic strategy in oncology, generating synthetic lethality in MTAP-negative cancers. However, clinical development of PRMT5 and MAT2A inhibitors has been challenging and highlights the need for further understanding of the downstream mediators of drug effects. Here, we discuss the rationale and methods for targeting the MAT2A/PRMT5 axis for cancer therapy. We evaluate the current limitations in our understanding of the mechanism of MAT2A/PRMT5 inhibitors and identify the challenges that must be addressed to maximise the potential of these drugs. In addition, we review the current literature defining downstream effectors of PRMT5 activity that could determine sensitivity to MAT2A/PRMT5 inhibition and therefore present a rationale for novel combination therapies that may not rely on synthetic lethality with MTAP loss.

20.
Urol Oncol ; 41(12): 486.e15-486.e23, 2023 12.
Article in English | MEDLINE | ID: mdl-37821306

ABSTRACT

BACKGROUND: Advanced bladder squamous cell carcinoma (aBSCC) is an uncommon form of urinary bladder malignancy when compared with the much higher urothelial carcinoma incidence. We studied the genomic alteration (GA) landscape in a series of aBSCC based on the association with human papilloma virus (HPV) to determine if differences in GA would be observed between the positive and negative groups. METHODS: Using a hybrid capture-based FDA-approved CGP assay, a series of 171 aBSCC were sequenced to evaluate all classes of GA. Tumor mutational burden (TMB) was determined on up to 1.1 Mbp of sequenced DNA and microsatellite instability (MSI) was determined on up to 114 loci. Programmed cell death ligand -1 (PD-L1) expression was determined by IHC (Dako 22C3) with negative expression when PD-L1 was 0, lower expression of positivity set at 1 to 49%, and higher expression set at ≥50% expression. RESULTS: Overall, 11 (6.4%) of the aBSCC were found to harbor HPV sequences (10 HPV16 and 1 HPV 11). HPV+ status was identified slightly more often in women (NS) and in younger patients (P = 0.04); 2 female patients with aBSCC had a prior history of SCC including 1 anal SCC and 1 vaginal SCC. HPV+ aBSCC had fewer GA/tumor (P < 0.0001), more inactivating mutations in RB1 (P = 0.032), and fewer inactivating GA in CDKN2A (P < 0.0001), CDKN2B (P = 0.05), TERT promoter (P = 0.0004) and TP53 (P < 0.0001). GA in genes associated with urothelial carcinoma including FGFR2 and FGFR3 were similar in both HPV+ and HPV- aBSCC groups. MTAP loss (homozygous deletion) which has emerged as a biomarker for PRMT5 inhibitor-based clinical trials was not identified in any of the 11 HPV+ aBSCC cases, which was significantly lower than the 28% positive frequency of MTAP loss in the HPV- aBSCC group (P < 0.0001). MTOR and PIK3CA pathway GA were not significantly different in the 2 groups. Putative biomarkers associated with immunotherapy (IO) response, including MSI and TMB status, were also similar in the 2 groups. PD-L1 expression data was available for a subset of both HPV+ and HPV- cases and showed high frequencies of positive staining which was not different in the 2 groups. CONCLUSIONS: HPV+ aBSCC tends to occur more often in younger patients. As reported in other HPV-associated squamous cell carcinomas, HPV+ aBSCC demonstrates significantly reduced frequencies of inactivating mutations in cell cycle regulatory genes with similar GA in MTOR and PIK3CA pathways. The implication of HPV in the pathogenesis of bladder cancer remains unknown but warrants further exploration and clinical validation.


Subject(s)
Carcinoma, Squamous Cell , Carcinoma, Transitional Cell , Papillomavirus Infections , Urinary Bladder Neoplasms , Humans , Female , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/complications , Urinary Bladder/pathology , Carcinoma, Transitional Cell/genetics , Carcinoma, Transitional Cell/complications , Papillomavirus Infections/complications , Papillomavirus Infections/genetics , Papillomavirus Infections/epidemiology , B7-H1 Antigen/genetics , Homozygote , Sequence Deletion , Carcinoma, Squamous Cell/pathology , Genomics , Biomarkers, Tumor/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , TOR Serine-Threonine Kinases/genetics , Mutation , Protein-Arginine N-Methyltransferases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL