Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Cells ; 13(18)2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39329765

ABSTRACT

Spinal cord injury (SCI) triggers microglial/monocytes activation with distinct pro-inflammatory or inflammation-resolving phenotypes, which potentiate tissue damage or facilitate functional repair, respectively. The major integrin Mac-1 (CD11b/CD18), a heterodimer consisting of CD11b and CD18 chains, is expressed in multiple immune cells of the myeloid lineage. Here, we examined the effects of CD11b gene ablation in neuroinflammation and functional outcomes after SCI. qPCR analysis of C57BL/6 female mice showed upregulation of CD11b mRNA starting from 1 d after injury, which persisted up to 28 d. CD11b knockout (KO) mice and their wildtype littermates were subjected to moderate SCI. At 1 d post-injury, qPCR showed increased expression of genes involved with inflammation-resolving processes in CD11b KO mice. Flow cytometry analysis of CD45intLy6C-CX3CR1+ microglia, CD45hiLy6C+Ly6G- monocytes, and CD45hiLy6C+Ly6G+ neutrophils revealed significantly reduced cell counts as well as reactive oxygen species (ROS) production in CD11b KO mice at d3 post-injury. Further examination with NanoString and RNA-seq showed upregulation of pro-inflammatory genes, but downregulation of the ROS pathway. Importantly, CD11b KO mice exhibited significantly improved locomotor function, reduced cutaneous mechanical/thermal hypersensitivity, and limited tissue damage at 8 weeks post-injury. Collectively, our data suggest an important role for CD11b in regulating tissue inflammation and functional outcome following SCI.


Subject(s)
CD11b Antigen , Recovery of Function , Spinal Cord Injuries , Animals , Female , Mice , CD11b Antigen/metabolism , Disease Models, Animal , Inflammation/pathology , Macrophage-1 Antigen/metabolism , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Microglia/pathology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/genetics
2.
Res Sq ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38645238

ABSTRACT

Background: Spinal cord injury (SCI) causes long-term sensorimotor deficits and posttraumatic neuropathic pain, with no effective treatment. In part, this reflects an incomplete understanding of the complex secondary pathobiological mechanisms involved. SCI triggers microglial/macrophage activation with distinct pro-inflammatory or inflammation-resolving phenotypes, which potentiate tissue damage or facilitate functional repair, respectively. The major integrin Mac-1 (CD11b/CD18, αMß2 or CR3), a heterodimer consisting of αM (CD11b) and ß2 (CD18) chains, is generally regarded as a pro-inflammatory receptor in neurotrauma. Multiple immune cells of the myeloid lineage express CD11b, including microglia, macrophages, and neutrophils. In the present study, we examined the effects of CD11b gene ablation on posttraumatic neuroinflammation and functional outcomes after SCI. Methods: Young adult age-matched female CD11b knockout (KO) mice and their wildtype (WT) littermates were subjected to moderate thoracic spinal cord contusion. Neuroinflammation in the injured spinal cord was assessed with qPCR, flow cytometry, NanoString, and RNAseq. Neurological function was evaluated with the Basso Mouse Scale (BMS), gait analysis, thermal hyperesthesia, and mechanical allodynia. Lesion volume was evaluated by GFAP-DAB immunohistochemistry, followed by analysis with unbiased stereology. Results: qPCR analysis showed a rapid and persistent upregulation of CD11b mRNA starting from 1d after injury, which persisted up to 28 days. At 1d post-injury, increased expression levels of genes that regulate inflammation-resolving processes were observed in CD11b KO mice. Flow cytometry analysis of CD45intLy6C-CX3CR1+ microglia, CD45hiLy6C+Ly6G- monocytes, and CD45hiLy6C+Ly6G+ neutrophils revealed significantly reduced cell counts as well as reactive oxygen production in CD11b KO mice at d3 post-injury. Further examination of the injured spinal cord with NanoString Mouse Neuroinflammation Panel and RNAseq showed upregulated expression of pro-inflammatory genes, but downregulated expression of the reactive oxygen species pathway. Importantly, CD11b KO mice exhibited significantly improved locomotor function, reduced cutaneous mechanical/thermal hypersensitivity, and limited tissue damage at 8 weeks post-injury. Conclusion: Collectively, our data suggest an important role for CD11b in regulating tissue inflammation and functional outcome following SCI. Thus, the integrin CD11b represents a potential target that may lead to novel therapeutic strategies for SCI.

3.
Bio Protoc ; 10(13): e3663, 2020 Jul 05.
Article in English | MEDLINE | ID: mdl-33659333

ABSTRACT

Glomerulonephritis (GN) is a common pathological condition in chronic kidney diseases that often leads to end stage renal failure. Mac-1 (CD11b/CD18)-mediated neutrophil, macrophage, and dendritic cell glomerular infiltration leading to cellular dysfunction and destruction is an important disease mechanism. The cellular distribution and dynamics of the expression of Mac-1 ligands ICAM-1 and ICAM-2 in GN have not been well studied because of the difficulties in tissue staining and colocalizing glomerular cells with surface antigens. To improve the visualization of cell surface marker and antigen expression in kidney compartments, we have devised an even but mild fixation procedure employing p-formaldehyde-lysine-periodate (PLP) perfusion. A large panel of antibodies (Ab) against cell surface markers was used to identify kidney cell types and adhesion molecules. When confocal microscopy was used in visualizing glomerular adhesion molecule staining, the endothelial cells were found to specifically express CD31, and these cells express ICAM-2 constitutively. Though ICAM-1 was not expressed by glomerular endothelial cells in homeostasis, it was highly upregulated in mice with chronic GN and severe proteinuria. VCAM-1, a ligand for VLA-4 important in leukocyte migration, was not expressed in the glomerulus. The results highlight the importance of ICAM-1 in the infiltration of macrophages and dendritic cells in cGN. This report will provide a widely applicable procedure for yielding high quality confocal images and for the identification and quantitation of receptors and other cellular antigens expressed in different kidney compartments and cell types.

SELECTION OF CITATIONS
SEARCH DETAIL