Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters











Publication year range
1.
BMC Neurol ; 24(1): 364, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342171

ABSTRACT

Connectomics is a neuroscience paradigm focused on noninvasively mapping highly intricate and organized networks of neurons. The advent of neuroimaging has led to extensive mapping of the brain functional and structural connectome on a macroscale level through modalities such as functional and diffusion MRI. In parallel, the healthcare field has witnessed a surge in the application of machine learning and artificial intelligence for diagnostics, especially in imaging. While reviews covering machine learn ing and macroscale connectomics exist for specific disorders, none provide an overview that captures their evolving role, especially through the lens of clinical application and translation. The applications include understanding disorders, classification, identifying neuroimaging biomarkers, assessing severity, predicting outcomes and intervention response, identifying potential targets for brain stimulation, and evaluating the effects of stimulation intervention on the brain and connectome mapping in patients before neurosurgery. The covered studies span neurodegenerative, neurodevelopmental, neuropsychiatric, and neurological disorders. Along with applications, the review provides a brief of common ML methods to set context. Conjointly, limitations in ML studies within connectomics and strategies to mitigate them have been covered.


Subject(s)
Connectome , Machine Learning , Humans , Machine Learning/trends , Connectome/methods , Brain/diagnostic imaging , Translational Research, Biomedical/methods , Translational Research, Biomedical/trends , Neuroimaging/methods
2.
Beilstein J Nanotechnol ; 15: 694-703, 2024.
Article in English | MEDLINE | ID: mdl-38919165

ABSTRACT

Multifrequency atomic force microscopy (AFM) utilizes the multimode operation of cantilevers to achieve rapid high-resolution imaging and extract multiple properties. However, the higher-order modal response of traditional rectangular cantilever is weaker in air, which affects the sensitivity of multifrequency AFM detection. To address this issue, we previously proposed a bridge/cantilever coupled system model to enhance the higher-order modal response of the cantilever. This model is simpler and less costly than other enhancement methods, making it easier to be widely used. However, previous studies were limited to theoretical analysis and preliminary simulations regarding ideal conditions. In this paper, we undertake a more comprehensive investigation of the coupled system, taking into account the influence of probe and excitation surface sizes on the modal response. To facilitate the exploration of the effectiveness and optimal conditions for the coupled system in practical applications, a macroscale experimental platform is established. By conducting finite element analysis and experiments, we compare the performance of the coupled system with that of traditional cantilevers and quantify the enhancement in higher-order modal response. Also, the optimal conditions for the enhancement of macroscale cantilever modal response are explored. Additionally, we also supplement the characteristics of this model, including increasing the modal frequency of the original cantilever and generating additional resonance peaks, demonstrating the significant potential of the coupled system in various fields of AFM.

3.
Bioorg Chem ; 144: 107162, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38308999

ABSTRACT

Structural proteins have evolved over billions of years and offer outstanding mechanical properties, such as resilience, toughness and stiffness. Advances in modular protein engineering, polypeptide modification, and synthetic biology have led to the development of novel biomimetic structural proteins to perform in biomedical and military fields. However, the development of customized structural proteins and assemblies with superior performance remains a major challenge, due to the inherent limitations of biosynthesis, difficulty in mimicking the complexed macroscale assembly, etc. This review summarizes the approaches for the design and production of biomimetic structural proteins, and their chemical modifications for multiscale assembly. Furthermore, we discuss the function tailoring and current applications of biomimetic structural protein assemblies. A perspective of future research is to reveal how the mechanical properties are encoded in the sequences and conformations. This review, therefore, provides an important reference for the development of structural proteins-mimetics from replication of nature to even outperforming nature.


Subject(s)
Biomimetic Materials , Biomimetic Materials/chemistry , Proteins , Peptides/chemistry
4.
Polymers (Basel) ; 15(22)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38006090

ABSTRACT

The structural stability of silt foundations, particularly sensitive to moisture content, can be severely compromised by recurring wetting and drying processes. This not only threatens the foundational integrity but also raises grave concerns about the long-term safety of major civil engineering endeavors. Addressing this critical issue, our study delves into the transformative effects of reclaimed polyester fiber on subgrade silt exposed to such environmental stressors. Through rigorous wet-dry cycle tests on this enhanced soil, we evaluate shifts in shear strength across varying confining pressures. We also dissect the interplay between average pore diameter, particle distribution, and morphology in influencing the soil's microstructural responses to these cycles. A detailed analysis traces the structural damage timeline in the treated soil, elucidating the intertwined micro-macro dynamics driving strength reduction. Key discoveries indicate a notably non-linear trajectory of shear strength degradation, marked by distinct phases of rapid, subdued, and stabilized strength attrition. Alterations within the micropores induce a rise in both their count and size, ultimately diminishing the total volume proportion of the reinforced soil. Intriguingly, particle distribution is directly tied to the wet-dry cycle frequency, while the fractal dimension of soil particles consistently wanes. This research identifies cement hydrolysis and pore expansion as the dominant culprits behind the observed macroscopic strength degradation due to incessant wet-dry cycles. These revelations hold profound implications for risk management and infrastructural strategizing in areas dominated by silt foundations.

5.
Materials (Basel) ; 16(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37512418

ABSTRACT

This review paper provides a comprehensive overview of the phenomenon of superlubricity, its associated material characteristics, and its potential applications. Superlubricity, the state of near-zero friction between two surfaces, presents significant potential for enhancing the efficiency of mechanical systems, thus attracting significant attention in both academic and industrial realms. We explore the atomic/molecular structures that enable this characteristic and discuss notable superlubric materials, including graphite, diamond-like carbon, and advanced engineering composites. The review further elaborates on the methods of achieving superlubricity at both nanoscale and macroscale levels, highlighting the influence of environmental conditions. We also discuss superlubricity's applications, ranging from mechanical systems to energy conservation and biomedical applications. Despite the promising potential, the realization of superlubricity is laden with challenges. We address these technical difficulties, specifically those related to achieving and maintaining superlubricity, and the issues encountered in scaling up for industrial applications. The paper also underscores the sustainability concerns associated with superlubricity and proposes potential solutions. We conclude with a discussion of the possible future research directions and the impact of technological innovations in this field. This review thus provides a valuable resource for researchers and industry professionals engaged in the development and application of superlubric materials.

6.
Nano Lett ; 23(15): 6823-6830, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37486802

ABSTRACT

The high-flash heat generated by direct contact at asperity tips under high contact stress and shear significantly promotes the tribocatalytic reaction between a lubricating medium and a friction interface. Macroscale superlubricity can be achieved by using additives with good lubrication properties to promote the decomposition and transformation of a lubricating medium to form an ultralow shear interface during the friction process. This paper proposed a way to achieve self-adaptive oil-based macroscale superlubricity on different tribopairs, including steel-steel and steel-DLC (diamond-like carbon), which is based on the excellent lubricating performance of black phosphorus with active oxidation and the catalytic cleavage behavior of oil molecules on the surface of oBP. This work potentially expands the industrial application of superlubricity.

7.
Handb Exp Pharmacol ; 280: 213-235, 2023.
Article in English | MEDLINE | ID: mdl-36907970

ABSTRACT

Biomedical imaging is a powerful tool for medical diagnostics and personalized medicines. Examples of commonly used imaging modalities include Positron Emission Tomography (PET), Ultrasound (US), Single Photon Emission Computed Tomography (SPECT), and hybrid imaging. By combining these modalities, scientists can gain a comprehensive view and better understand physiology and pathology at the preclinical, clinical, and multiscale levels. This can aid in the accuracy of medical diagnoses and treatment decisions. Moreover, biomedical imaging allows for evaluating the metabolic, functional, and structural details of living tissues. This can be particularly useful for the early diagnosis of diseases such as cancer and for the application of personalized medicines. In the case of hybrid imaging, two or more modalities are combined to produce a high-resolution image with enhanced sensitivity and specificity. This can significantly improve the accuracy of diagnosis and offer more detailed treatment plans. In this book chapter, we showcase how continued advancements in biomedical imaging technology can potentially revolutionize medical diagnostics and personalized medicine.


Subject(s)
Precision Medicine , Tomography, Emission-Computed, Single-Photon , Humans , Tomography, Emission-Computed, Single-Photon/methods , Positron-Emission Tomography/methods , Multimodal Imaging/methods , Sensitivity and Specificity
8.
Int J Pharm ; 635: 122713, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36764414

ABSTRACT

Nano-sized materials have been widely explored in the biomedicine field, especially due to their ability to encapsulate drugs intended to be delivered to cancer cells. However, systemically administered nanomaterials face several barriers that can hinder their tumor-homing capacity. In this way, researchers are now focusing their efforts in developing technologies that can deliver the nanoparticles directly into the tumor tissue. Particularly, hydrogels assembled using Thiol-Maleimide Michael type additions are emerging for this purpose due to their capacity to incorporate high nanoparticles' doses in a compact 3D structure as well as good chemical selectivity, biocompatibility, and straightforward preparation. Nevertheless, such hydrogels have been mostly prepared using synthetic polymers, which is not ideal due to their poor biodegradability. In this work, a novel natural polymer-based Thiol-Maleimide hydrogel was produced for application in breast cancer chemo-photothermal therapy. To obtain natural polymers compatible with this crosslinking chemistry, Hyaluronic acid was endowed with Thiol groups and deacetylated Chitosan was grafted with Maleimide groups. Parallelly, Doxorubicin loaded Dopamine-reduced graphene oxide (DOX/DOPA-rGO) was prepared for attaining Near Infrared (NIR) light responsive chemo-photothermal nanoagents. By simply mixing Hyaluronic Acid-Thiol, deacetylated Chitosan-Maleimide and DOX/DOPA-rGO, Thiol-Maleimide crosslinked hydrogels incorporating this nanomaterial could be assembled (DOX/DOPA-rGO@TMgel). When breast cancer cells were incubated with DOPA-rGO@TMgel and exposed to NIR light (photothermal therapy), their viability was reduced to about 59 %. On the other hand, DOX/DOPA-rGO@TMgel (chemotherapy) reduced cancer cells' viability to 50 %. In stark contrast, the combined action of DOX/DOPA-rGO@TMgel and NIR light decreased breast cancer cells' viability to just 21 %, highlighting its chemo-photothermal potential.


Subject(s)
Breast Neoplasms , Chitosan , Graphite , Hyperthermia, Induced , Nanostructures , Humans , Female , Graphite/chemistry , Photothermal Therapy , Hydrogels/chemistry , Sulfhydryl Compounds , Hyaluronic Acid/chemistry , Doxorubicin , Breast Neoplasms/drug therapy , Polymers/chemistry , Maleimides , Dihydroxyphenylalanine , Phototherapy , Cell Line, Tumor
9.
Adv Mater ; 35(9): e2206416, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36527732

ABSTRACT

Manufacturing of low-density-high-strength carbon foams can benefit the construction, transportation, and packaging industries. One successful route to lightweight and mechanically strong carbon foams involves pyrolysis of polymeric architectures, which is inevitably accompanied by drastic volumetric shrinkage (usually >98%). As such, a challenge of these materials lies in maintaining bulk dimensions of building struts that span orders of magnitude difference in length scale from centimeters to nanometers. This work demonstrates fabrication of macroscale low-density-high-strength carbon foams that feature exceptional dimensional stability through pyrolysis of robust template-coating pairs. The template serves as the architectural blueprint and contains strength-imparting properties (e.g., high node density and small strut dimensions); it is composed of a low char-yielding porous polystyrene backbone with a high carbonization-onset temperature. The coating serves to imprint and transcribe the template architecture into pyrolytic carbon; it is composed of a high char-yielding conjugated polymer with a relatively low carbonization-onset temperature. The designed carbonization mismatch enables structural inheritance, while the decomposition mismatch affords hollow struts, minimizing density. The carbons synthesized through this new framework exhibit remarkable dimensional stability (≈80% dimension retention; ≈50% volume retention) and some of the highest specific strengths (≈0.13 GPa g-1 cm3 ) among reported carbon foams derived from porous polymer templates.

10.
China Occupational Medicine ; (6): 200-204, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-996549

ABSTRACT

Objective: To analyze the existing problems in the construction of pneumoconiosis rehabilitation station in Beijing under the framework of ecosystem theory, and put forward countermeasures. Methods: A total of four managers directly involved in the construction of three pneumoconiosis rehabilitation stations in Beijing and 12 rehabilitation doctors working in rehabilitation stations were selected as the interviewees using the judgment sampling method. Based on the perspective of ecosystem theory, an interview outline was designed to conduct a semi-structured interview with the interview subjects. In combination with literature data, the current situation, existing problems and solutions of pneumoconiosis rehabilitation station construction were analyzed. Results: There were still deficiencies in the construction of pneumoconiosis rehabilitation stations in Beijing. At the microscale level, pneumoconiosis patients could not make full use of family resources for active and effective pulmonary rehabilitation treatment, and family members lack of effective rehabilitation guidance and assistance for patients. At the medium-scale level, the resources of primary rehabilitation institutions were insufficient, the medical support for pneumoconiosis rehabilitation was insufficient, and the pneumoconiosis rehabilitation stations lacked a unified information management and technology platform. At the macroscale level, it has not established clear and specific requirements for the construction management and evaluation of pneumoconiosis rehabilitation stations, and there was social discrimination and prejudice against pneumoconiosis patients. Conclusion: It is necessary to improve the recognition of rehabilitation in primary medical and health institutions, strengthen education on the awareness of the disease and rehabilitation skills guidance for patients and their families, strengthen the responsibilities of technical support institutions in rehabilitation stations, promote the construction of primary rehabilitation stations and personnel training, make full use of information technology, promote information exchange and knowledge sharing, and ensure the quality of rehabilitation of pneumoconiosis.

11.
Front Plant Sci ; 13: 990441, 2022.
Article in English | MEDLINE | ID: mdl-36035720

ABSTRACT

Plant functional traits are a representation of plant resource utilization strategies. Plants with higher specific leaf area (SLA) and lower leaf dry matter content (LDMC) exhibit faster investment-return resource utilization strategies. However, the distribution patterns and driving factors of plant resource utilization strategies at the macroscale are rarely studied. We investigated the relative importance of climatic and soil factors in shaping plant resource utilization strategies at different life forms in forests using data collected from 926 plots across 163 forests in China. SLA and LDMC of plants at different life forms (i.e., trees, shrubs, and herbs) differ significantly. Resource utilization strategies show significant geographical differences, with vegetation in the western arid regions adopting a slower investment-return survival strategy and vegetation in warmer and wetter areas adopting a faster investment-return survival strategy. SLA decreases significantly with increased temperature and reduced rainfall, and vegetation growing in these conditions exhibits conservative resource utilization. Mean annual precipitation (MAP) is a key climatic factor that controls the resource utilization strategies of plants at the macroscale. Plants use resources more conservatively as soil pH increases. The influence of climate and soil factors is coupled to determine the resource utilization strategies of plants occupying different life forms at the macroscale, but the relative contribution of each varies across life forms. Our findings provide a theoretical framework for understanding the potential impact of increasing global temperatures on plant resource utilization.

12.
Bioact Mater ; 17: 300-319, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35386452

ABSTRACT

Though increasing understanding and remarkable clinical successes have been made, enormous challenges remain to be solved in the field of cancer immunotherapy. In this context, biomaterial-based immunomodulatory strategies are being developed to boost antitumor immunity. For the local immunotherapy, macroscale biomaterial scaffolds with 3D network structures show great superiority in the following aspects: facilitating the encapsulation, localized delivery, and controlled release of immunotherapeutic agents and even immunocytes for more efficient immunomodulation. The concentrating immunomodulation in situ could minimize systemic toxicities, but still exert abscopal effects to harness the power of overall anticancer immune response for eradicating malignancy. To promote such promising immunotherapies, the design requirements of macroscale 3D scaffolds should comprehensively consider their physicochemical and biological properties, such as porosity, stiffness, surface modification, cargo release kinetics, biocompatibility, biodegradability, and delivery modes. To date, increasing studies have focused on the relationships between these parameters and the biosystems which will guide/assist the 3D biomaterial scaffolds to achieve the desired immunotherapeutic outcomes. In this review, by highlighting some recent achievements, we summarized the latest advances in the development of various 3D scaffolds as niches for cancer immunotherapy. We also discussed opportunities, challenges, current trends, and future perspectives in 3D macroscale biomaterial scaffold-assisted local treatment strategies. More importantly, this review put more efforts to illustrate how the 3D biomaterial systems affect to modulate antitumor immune activities, where we discussed how significant the roles and behaviours of 3D macroscale scaffolds towards in situ cancer immunotherapy in order to direct the design of 3D immunotherapeutic.

13.
Adv Sci (Weinh) ; 9(13): e2103815, 2022 05.
Article in English | MEDLINE | ID: mdl-35266647

ABSTRACT

Robust superlubricity (RSL), defined by concurrent superlow friction and wear, holds great promise for reducing material and energy loss in vast industrial and technological operations. Despite recent advances, challenges remain in finding materials that exhibit RSL on macrolength and time scales and possess vigorous electrical conduction ability. Here, the discovery of RSL is reported on hydrated NbB2 films that exhibit vanishingly small coefficient of friction (0.001-0.006) and superlow wear rate (≈10-17 m3 N-1 m-1 ) on large length scales reaching millimeter range and prolonged time scales lasting through extensive loading durations. Moreover, the measured low resistivity (≈10-6 Ω m) of the synthesized NbB2 film indicates ample capability for electrical conduction, extending macroscale RSL to hitherto largely untapped metallic materials. Pertinent microscopic mechanisms are elucidated by deciphering the intricate load-driven chemical reactions that generate and sustain the observed superlubricating state and assessing the strong stress responses under diverse strains that produce the superior durability.


Subject(s)
Friction
14.
Environ Sci Pollut Res Int ; 29(30): 45903-45918, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35150420

ABSTRACT

Land use regression (LUR) models have been extensively used to predict air pollution exposure in epidemiological and environmental studies. The lack of dense routine monitoring networks in big cities places increased emphasis on the need for LUR models to be developed using purpose-designed neighborhood-scale monitoring data. However, the unsatisfactory model transferability limits these neighborhood LUR models to be then applied to other intra-urban areas in predicting air pollution exposure. In this study, we tackled this issue by proposing a method to develop transferable neighborhood NO2 LUR models with comparable predictive power based on only micro-scale predictor variables for modeling intra-urban ambient air pollution exposure. Taking Auckland metropolis, New Zealand, as a case study, the proposed method was applied to three neighborhoods (urban, central business district, and dominion road) and compared with the corresponding counterpart models developed using pools of (a) only macro-scale predictor variables and (b) a mixture of both micro- and macro-scale predictor variables (traditional method). The results showed that the models using only macro-scale variables achieved the lowest accuracy (R2: 0.388-0.484) and had the worst direct (R2: 0.0001-0.349) and indirect transferability (R2: 0.07-0.352). Those models using the traditional method had the highest model fitting R2 (0.629-0.966) with lower cross-validation R2 (0.495-0.941) and slightly better direct transferability (R2: 0.0003-0.386) but suffered poor model interpretability when indirectly transferred to new locations. Our proposed models had comparable model fitting R2 (0.601-0.966) and the best cross-validation R2 (0.514-0.941). They also had the strongest direct transferability (R2: 0.006-0.590) and moderate-to-good indirect transferability (R2: 0.072-0.850) with much better model interpretability. This study advances our knowledge of developing transferable LUR models for the very first time from the perspective of the scale of the predictor variables used in the model development and will significantly benefit the wider application of LUR approaches in epidemiological and environmental studies.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Cities , Environmental Monitoring/methods , Models, Theoretical , Nitrogen Dioxide/analysis , Particulate Matter/analysis
15.
Adv Mater ; 34(18): e2104952, 2022 May.
Article in English | MEDLINE | ID: mdl-35181945

ABSTRACT

Since discovered in 2007, conjugated microporous polymers (CMPs) have been developed for numerous applications including gas adsorption, sensing, organic and photoredox catalysis, energy storage, etc. While featuring abundant micropores, the structural rigidity derived from CMPs' stable π-conjugated skeleton leads to insolubility and thus poor processability, which severely limits their applicability, e.g., in CMP-based devices. Hence, the development of CMPs whose structure can not only be controlled on the micro- but also on the macroscale have attracted tremendous interest. In conventional synthesis procedures, CMPs are obtained as powders, but in recent years various bottom-up synthesis strategies have been developed, which yield CMPs as thin films on substrates or as hybrid materials, allowing to span length scales from individual conjugated monomers to micro-/macrostructures. This review surveys recent advances on the construction of CMPs into macroscale structures, including membranes, films, aerogels, sponges, and other architectures. The focus is to describe the underlying fabrication techniques and the implications which follow from the macroscale morphologies, involving new chemistry and physics in such materials for applications like molecular separation/filtration/adsorption, energy storage and conversion, photothermal transformation, sensing, or catalysis.

16.
J Theor Biol ; 534: 110947, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34717933

ABSTRACT

The rate of drug delivery to cells and the subsequent rate of drug metabolism are dependent on the cell membrane permeability to the drug. In some cases, tissue may be composed of different types of cells that exhibit order of magnitude differences in their membrane permeabilities. This paper presents a brief review of the components of the tissue scale three-compartment pharmacokinetic model of drug delivery to single-cell-type populations. The existing model is extended to consider tissue composed of two different cell types. A case study is presented of infusion mediated delivery of doxorubicin to a tumor that is composed of a drug reactive cell type and of a drug resistive cell type. The membrane permeabilities of the two cell types differ by an order of magnitude. A parametric investigation of the population composition is conducted and it is shown that the drug metabolism of the low permeability cells are negatively influenced by the fraction of the tissue composed of the permeable drug reactive cells. This is because when the population is composed mostly of drug permeable cells, the extracellular space is rapidly depleted of the drug. This has two compounding effects: (i) locally there is simply less drug available to the neighboring drug resistant cells, and (ii) the depletion of the drug from the extracellular space near the vessel-tissue interface leaves less drug to be transported to both cell types farther away from the vessel.


Subject(s)
Drug Delivery Systems , Neoplasms , Biological Transport , Cell Membrane Permeability , Doxorubicin/pharmacokinetics , Humans
17.
J Hazard Mater ; 426: 127785, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34801309

ABSTRACT

Research on electrokinetics-permeable reactive barrier (EK-PRB) remediation to date has mainly focused on homogeneous soils or soils with micro-scale heterogeneities. The potential impact of macro-scale physical heterogeneities, such as stratified layers or lenses, on EK-PRB remediation has not received much attention. This study investigates the effect of a low permeability stratum on EK-PRB remediation of hexavalent chromium (Cr(VI)). Sandbox experiments were conducted to treat Cr(VI)-contaminated kaolinite/sand media, consisting of vertically-layered high permeability (HPZ) and low permeability zones (LPZ), where distance between LPZ and anode (DLA) was 3, 9, or 15 cm. Parameters including current, moisture content (MC), pH, and removal of Cr(VI) were evaluated. With 72 h of EK-PRB treatment, tests with larger DLA (15 cm) had greater Cr(VI) migration from contaminated area to modified-zeolite PRB. Cr(VI), Cr(III), and Cr(Total) removal and energy utilization efficiency followed the trend as: DLA-15 > DLA-9 > DLA-3. MC generally decreased from anode towards cathode and pH was alkaline in all the zones for DLA-3 and DLA-15. In DLA-9 (LPZ in the middle), MC increased and pH was alkaline in HPZs near cathode whereas HPZs near anode were very dry (MC < 1%) and acidic (pH < 5.5). Our results show that the location of LPZ relative to electrode locations has a significant influence on Cr(VI) removal efficiency and macro-scale physical heterogeneity is an important factor to be considered during EK-PRB remediation.

18.
Biomaterials ; 280: 121273, 2022 01.
Article in English | MEDLINE | ID: mdl-34933254

ABSTRACT

With rising global demand for food proteins and significant environmental impact associated with conventional animal agriculture, it is important to develop sustainable alternatives to supplement existing meat production. Since fat is an important contributor to meat flavor, recapitulating this component in meat alternatives such as plant based and cell cultured meats is important. Here, we discuss the topic of cell cultured or tissue engineered fat, growing adipocytes in vitro that could imbue meat alternatives with the complex flavor and aromas of animal meat. We outline potential paths for the large scale production of in vitro cultured fat, including adipogenic precursors during cell proliferation, methods to adipogenically differentiate cells at scale, as well as strategies for converting differentiated adipocytes into 3D cultured fat tissues. We showcase the maturation of knowledge and technology behind cell sourcing and scaled proliferation, while also highlighting that adipogenic differentiation and 3D adipose tissue formation at scale need further research. We also provide some potential solutions for achieving adipose cell differentiation and tissue formation at scale based on contemporary research and the state of the field.


Subject(s)
Adipocytes , Adipose Tissue , Adipogenesis , Animals , Cell Differentiation , Meat/analysis
19.
Materials (Basel) ; 14(24)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34947302

ABSTRACT

Hydroxypropyl methylcellulose (HPMC) and stearic acid (SA) are integrated to fabricate a double-layer thin film composite material with potential applications in sustainable packaging and coating materials. The effect of SA concentration on the moisture and wear resistance at the macroscale of the composite are studied. The amount of SA on the surface (>SA5H) is beneficial in increasing anti-wear behavior and reducing the friction coefficient by 25%. The petal-shaped crystals formed by SA are distributed on the surface of the double-layer film, increasing its hydrophobicity. When subjected to wear, the SA crystals on the surface of the double-layer film are fractured into debris-like abrasive particles, forming an optimal third-body of moderate shape and particle size, and imparting anti-wear and lubricating characteristics.

20.
J Math Biol ; 83(6-7): 75, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34878601

ABSTRACT

In certain discrete models of populations of biological cells, the mechanical forces between the cells are center based or vertex based on the microscopic level where each cell is individually represented. The cells are circular or spherical in a center based model and polygonal or polyhedral in a vertex based model. On a higher, macroscopic level, the time evolution of the density of the cells is described by partial differential equations (PDEs). We derive relations between the modelling on the micro and macro levels in one, two, and three dimensions by regarding the micro model as a discretization of a PDE for conservation of mass on the macro level. The forces in the micro model correspond on the macro level to a gradient of the pressure scaled by quantities depending on the cell geometry. The two levels of modelling are compared in numerical experiments in one and two dimensions.

SELECTION OF CITATIONS
SEARCH DETAIL