Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Toxicon ; 249: 108055, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39097104

ABSTRACT

A useful approach to deepen our knowledge about the origin and evolution of venom systems in Reptilia has been exploring the vast biodiversity of this clade of vertebrates in search of orally produced proteins with toxic actions, as well as their corresponding delivery systems. The occurrence of toxins in anguimorph lizards has been demonstrated experimentally or inferred from reports of the toxic effects of the oral secretions of taxa within the Varanidae and Helodermatidae families. In the present study, we have focused on two alligator lizards of the Anguidae family, the Mexican alligator lizard, Abronia graminea, and the red-lipped arboreal alligator lizard, A. lythrochila. In addition, the fine morphology of teeth of the latter species is described. The presence of a conserved set of proteins, including B-type natriuretic peptides, cysteine-rich secretory proteins, group III phospholipase A2, and kallikrein, in submandibular gland extracts was demonstrated for both Abronia species. These proteins belong to toxin families found in oral gland secretions of venomous reptile species. This finding, along with previous demonstration of toxin-producing taxa in both paleo- and neoanguimorpha clades, provides further support for the existence of a handful of conserved toxin families in oral secretions across the 100+ million years of Anguimorpha cladogenesis.

2.
Microsc Res Tech ; 87(9): 2241-2249, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38721845

ABSTRACT

At 22nd day of fetal development, the primordial anlage of mandibular gland was first noticed as a solid epithelial bud from oral epithelium. The terminal buds were arranged in the form of clusters with undifferentiated epithelial cells and terminated in a bulb like structure in 28-day-old fetus. The lumenization and branching of the main cord was noticed at 35th day. The primary septa, which divide the glandular mass into lobes was observed from 53rd day onwards which resulted in the formation of distinct lobulation at 58th day. At 61st day, the capsule formation was initiated by the aggregation of mesenchymal tissue. The terminal tubules differentiated to form the secretory end pieces and the tubular portion leads to the formation of intercalated and striated ducts at 98th day. Predominantly mucous types of acinar cells were seen from 108th day onwards. The number of lobules increased with steep increase in parenchyma from 128th day onwards. Micrometrical studies revealed that the mean diameter of acinar cells and all ducts was increased with the advancement of age and the significant differences were observed between groups. Localization of acidic and neutral mucopolysaccharides was observed in mucous cells and goblet cells. RESEARCH HIGHLIGHTS: The primordial anlage of mandibular salivary gland was seen at 22nd day. Lobulation of gland was appeared at 53rd day of development, however; it was completed at 58th day. At 98th day, the terminal tubules differentiated to form the secretory end pieces. The parenchyma of the gland showed predominantly mucous type of cells from 108th day onwards. Myoepithelial cells were first appeared as flattened basal cells initially around the developing acinar cells at 132nd day. Localization of acidic as well as neutral mucopolysaccharides was observed in mucous cells and goblet cells. Fine lipid droplets were observed in intralobular as well as interlobular connective tissue, however; phospholipids were observed in the cell membrane of secretory cells and ducts.


Subject(s)
Mandible , Salivary Glands , Animals , Salivary Glands/embryology , Salivary Glands/cytology , Mandible/embryology , Mandible/anatomy & histology , Sheep/embryology , Acinar Cells/cytology , Goblet Cells/cytology , Histocytochemistry , Epithelial Cells/cytology , Female
3.
Insects ; 15(3)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38535371

ABSTRACT

The mandibular gland in worker bees synthesizes and secretes the organic acids present in royal jelly, and its development directly affects yield and quality. Therefore, we aimed to analyze the differences in morphology and gene expression in the mandibular glands of Apis mellifera carnica worker bees of different ages (3, 6, 9, 12, and 16 d). We dissected their mandibular glands and performed morphological and transcriptomic analyses to investigate the development of the mandibular gland and the molecular regulatory mechanisms involved in royal jelly secretion. Microscopy revealed that mandibular gland development is likely completed in the early stages. There were no significant differences in the structural morphology or organelles involved in the secretion of royal jelly at different ages. Transcriptomics revealed a total of 1554 differentially expressed genes, which were mainly involved in fat metabolism, lipid transport, and energy metabolism. The extracellular matrix-receptor interaction pathway was significantly enriched and contributed to the royal jelly secretion process. These results elucidate the genetic basis of the role of the mandibular gland in royal jelly secretion in A. mellifera and provide a reference for the genetic improvement of bees with high royal jelly production in the future.

4.
J Chem Ecol ; 50(5-6): 214-221, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38396141

ABSTRACT

The bee louse Braula spp. had until recently a distribution coincident with its host the honey bee. The adult fly usually attaches to a worker honey bee and steals food from its mouth. However, not all worker bees carry Braula spp. and the mechanism used by Braula spp. to select hosts is not well understood. Using choice remounting bioassays and chemical analyses, we determined host selection and the cues used by B. coeca, a species associated with the African honey bee Apis mellifera scutellata. Braula coeca successfully remounted bees from which they were initially removed and preferred their mandibular gland pheromones (MDG) over those of bees not carrying them. The bee lice did not show any preference for the cuticular hydrocarbons of both types of workers. Chemical analyses of the MDG extracts, revealed quantitative differences between the two categories of workers, with workers carrying B. coeca having more of the queen substance (9-oxo-2(E)-decenoic acid) and worker substance (10-hydroxy-2(E)-decenoic). Braula coeca showed a dose response to the queen substance, indicating its ability to use host derived kairomones as cues that allowed it to benefit from trophallactic dominance by individuals that have a higher probability of being fed by other workers.


Subject(s)
Pheromones , Animals , Bees/parasitology , Bees/physiology , Pheromones/metabolism , Pheromones/chemistry , Diptera/physiology , Hydrocarbons/metabolism , Hydrocarbons/chemistry , Host-Parasite Interactions , Behavior, Animal/drug effects , Fatty Acids, Monounsaturated/metabolism
5.
Int J Mol Sci ; 24(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37686166

ABSTRACT

This study aimed to assess the impact of oleic acid (OA) supplementation on the biosynthesis of 10-hydroxy-2-decenoic acid (10-HDA) in Apis mellifera ligustica. In experiment 1, varying concentrations of OA (2%, 4%, 6% and 8%) were added to an artificial diet for newly emerged bees reared in cages. Analysis of 10-HDA content and gene expression in the mandibular gland (MG) revealed that the 8% OA treatment had the greatest impact on promoting the synthesis of 10-HDA. Subsequent investigations utilized RNA-seq and lipidomics to characterize the molecular signature in the MG after feeding the 8% OA diet. Phosphatidylcholine (PC) and triacylglycerol (TAG) were found to be the predominant lipids in the MG of worker bees. A total of 154 TAGs were identified, with TAG (18:1-18:1-18:1) exhibiting the highest abundance, which increased by 1.5 times. The major TAG species contained palmitic acid (16:0) and oleic acid (18:1) in their structure, which was associated with fatty acid composition of diet. The increase in abundance of main TAGs may be attributed to the upregulation of glycerol-3-phosphate acyltransferase (Gpat) and glycerol kinase (GK) gene expression at the transcriptional level. The upregulation of differentially expressed genes (DEGs) related to carbohydrate metabolism may contribute to meeting the heightened metabolic demands of the MGs in worker bees. Royal jelly (RJ) samples from bee colonies fed with the 8% OA diet exhibited higher 10-HDA level than RJ collected from bee colonies fed with the artificial diet. These results indicate that 8% OA addition in the diet enhanced biosynthesis of 10-HDA in the mandibular gland, which was accompanied by significant and highly species-selective remodeling of TAGs.


Subject(s)
Fatty Acids, Monounsaturated , Oleic Acid , Bees , Animals , Glycerol-3-Phosphate O-Acyltransferase , Lecithins , Triglycerides
6.
Open Vet J ; 13(7): 819-825, 2023 07.
Article in English | MEDLINE | ID: mdl-37614734

ABSTRACT

Background: Various salivary gland diseases diagnosed on computed tomography (CT) in dogs have been reported. However, no study described the size and CT attenuation value of normal salivary glands in dogs. Aim: This retrospective analytical study aimed to evaluate the size and attenuation value of the mandibular and zygomatic salivary glands on CT in dogs without cervical or head lesions. Methods: The maximum cross-sectional area (MCSA) was measured in 96 dogs and attenuation value on non-contrast and postcontrast images were measured in 90 dogs. Dogs were divided into three groups based on body weight: group 1, ≤ 5.0 kg; group 2, 5.1-10.0 kg; and group 3, 10.1-15.0 kg. Results: There were significant differences in MCSA for both glands among the three groups. There was no difference in MCSA between the left and right sides in both salivary glands. The MCSA for both salivary glands positively correlated with body weight (p < 0.001). There was a significant difference in the MCSA of the zygomatic gland between males and females (p = 0.02), but there was no significant difference in the mandibular gland. There was a significant difference in the attenuation value between the mandibular and zygomatic glands in non-contrast studies (p < 0.001), but there was no significant difference in postcontrast studies. Conclusion: This study established the reference for the size and attenuation value of the mandibular and zygomatic glands in dogs and provided background data for future CT evaluation of dogs with salivary gland diseases.


Subject(s)
Neck , Tomography, X-Ray Computed , Female , Male , Animals , Dogs , Retrospective Studies , Body Weight , Tomography, X-Ray Computed/veterinary
7.
J Vet Med Sci ; 85(10): 1110-1115, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37648457

ABSTRACT

A 131-day-old male Japanese Black calf presented with a swollen right cheek from birth. Imaging examination revealed a cyst under the right buccal area and debris-containing fluid inside the cyst, and puncture aspiration revealed a mildly cloudy fluid containing hair and tissue fragments. Histological examination of the excised cyst revealed stratified squamous epithelium with skin appendages in the cyst wall, which was diagnosed as a dermoid cyst. In addition, some submandibular gland tissue was found within the cyst wall. After removal of the cyst, there was swelling in the same area, which resolved with steroid administration. Surgical treatment of buccal dermoid cysts should be performed with caution to avoid damage to adjacent salivary gland tissue.


Subject(s)
Cattle Diseases , Dermoid Cyst , Male , Cattle , Animals , Dermoid Cyst/surgery , Dermoid Cyst/veterinary , Dermoid Cyst/pathology , Mandible/surgery , Mandible/pathology , Epithelium , Cattle Diseases/surgery
8.
Animals (Basel) ; 13(10)2023 May 18.
Article in English | MEDLINE | ID: mdl-37238113

ABSTRACT

In terrestrial mammals, the parotid and mandibular glands secrete different types of saliva into the oral cavity. Both glands were obtained from two female lowland tapirs (Tapirus terrestris) and one female aardvark (Orycteropus afer) from the Wroclaw Zoological Garden (Poland) and examined by light microscopy (hematoxylin and eosin, mucicarmine, periodic acid-Schiff, Alcian blue pH 1.0, Alcian blue pH 2.5, Alcian blue pH 2.5/PAS, and Hale's dialysed iron). Both the parotid glands observed in the lowland tapir and aardvark were compound alveolar serous secretory units, and in both species, the secretion was composed of neutral and acidic mucopolysaccharides (sialo and sulfated mucins). However, in both the lowland tapir and aardvark, a histological examination found the stroma of the mandibular gland was divided into very large lobes by poorly marked connective tissue. While many interlobar and striated ducts were found in the aardvark, very few were found in the lowland tapir. The mandibular gland was a branched tubular (mucous secretion) type in the lowland tapir, but it was a branched tubuloalveolar (mucous-serous) type in the aardvark. In all tested glands, the secretion was composed of neutral mucopolysaccharides, acid-sulfated mucosubstances, and sialomucins.

9.
Toxicon ; 225: 107050, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36736630

ABSTRACT

Based on its phylogenetic relationship to monitor lizards (Varanidae), Gila monsters (Heloderma spp.), and the earless monitor Lanthanotus borneesis, the Chinese crocodile lizard, Shinisaurus crocodilurus, has been assigned to the Toxicofera clade, which comprises venomous reptiles. However, no data about composition and biological activities of its oral secretion have been reported. In the present study, a proteomic analysis of the mandibular gland of S. crocodilurus and, for comparison, of the herbivorous Solomon Island skink Corucia zebrata, was performed. Scanning electron microscopy (SEM) of the teeth from S. crocodilurus revealed a sharp ridge on the anterior surface, but no grooves, whereas those of C. zebrata possess a flattened crown with a pointed cusp. Proteomic analysis of their gland extracts provided no evidence of venom-derived peptides or proteins, strongly supporting the non-venomous character of these lizards. Data are available via ProteomeXchange with identifier PXD039424.


Subject(s)
Alligators and Crocodiles , Lizards , Animals , Alligators and Crocodiles/metabolism , Lizards/metabolism , Phylogeny , Proteomics , Venoms/chemistry
10.
Animals (Basel) ; 12(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36077892

ABSTRACT

The ingestion of hydrolysable tannins as a potential nutrient to reduce boar odor in entire males results in the significant enlargement of parotid glands (parotidomegaly). The objective of this study was to characterize the effects of different levels of hydrolysable tannins in the diet of fattening boars (n = 24) on salivary gland morphology and proline-rich protein (PRP) expression at the histological level. Four treatment groups of pigs (n = 6 per group) were fed either a control (T0) or experimental diet, where the T0 diet was supplemented with 1% (T1), 2% (T2), or 3% (T3) of the hydrolysable tannin-rich extract Farmatan®. After slaughter, the parotid and mandibular glands of the experimental pigs were harvested and dissected for staining using Goldner's Trichrome method, and immunohistochemical studies with antibodies against PRPs. Morphometric analysis was performed on microtome sections of both salivary glands, to measure the acinar area, the lobular area, the area of the secretory ductal cells, and the sizes of glandular cells and their nuclei. Histological assessment revealed that significant parotidomegaly was only present in the T3 group, based on the presence of larger glandular lobules, acinar areas, and their higher nucleus to cytoplasm ratio. The immunohistochemical method, supported by color intensity measurements, indicated significant increases in basic PRPs (PRB2) in the T3 and acidic PRPs (PRH1/2) in the T1 groups. Tannin supplementation did not affect the histo-morphological properties of the mandibular gland. This study confirms that pigs can adapt to a tannin-rich diet by making structural changes in their parotid salivary gland, indicating its higher functional activity.

11.
Dev Biol ; 479: 23-36, 2021 11.
Article in English | MEDLINE | ID: mdl-34332994

ABSTRACT

The mandibular gland is an important exocrine gland of worker bees, which mainly secretes fatty acids and pheromones. Lipids have important roles in energy storage, membrane structure stabilization, and signaling. However, molecular underpinnings of mandibular gland development and lipid remodeling at the different physiological stages of worker bees is still lacking. In this study, we used scanning and transmission electron microscopy to reveal the morphological changes in secretory cells, and liquid chromatography-mass spectrometry and RNA-seq to investigate the lipidome and gene transcripts during development. The morphology of secretory cells was flat in newly emerged workers, becoming vacuolated and turgid when they were activated in nurse bees and foragers. Transport vesicles became denser from newly emerged bees to 21-day worker bees. Concentrations of 10-HDA reached a maximum within 15d workers and changes in genes expression were consistent with 10-HDA content. Non-targeted lipidomics analysis of newly emerged, 6d, and 15d worker bees revealed that PC and TAG were the main lipids in mandibular gland, and lipids dramatically altered across developmental stages. TAG 54:4 was increased most strongly at 6d and 15d worker bees, meanwhile, the abundances of TAG 54:1 and TAG 54:2 were decreased sharply. Further, transcriptomics analysis showed that differentially expressed genes were significantly enriched in key nutrient metabolic pathways, particularly lipid metabolism, in 6d and 15d bees. This multi-omic perspective provides a unique resource and deeper insight into bee mandibular gland development and baseline data for further study of the mandibular gland in worker bees.


Subject(s)
Bees/embryology , Exocrine Glands/embryology , Mandible/embryology , Animals , Bees/metabolism , Behavior, Animal/physiology , Exocrine Glands/metabolism , Gene Expression Profiling/methods , Insect Proteins/genetics , Lipid Metabolism/genetics , Lipidomics/methods , Mandible/metabolism , Metabolic Networks and Pathways , Organogenesis , Proteome/metabolism , Proteomics/methods , Transcriptome/genetics
12.
Vet Pathol ; 58(6): 1107-1118, 2021 11.
Article in English | MEDLINE | ID: mdl-34269115

ABSTRACT

The productivity and survival of honey bee (Apis mellifera) colonies depend on queen bee health. Colony-level neonicotinoid exposure has negative effects on reproductive fitness of honey bee queens. However, it is unclear if the observed effects are a direct outcome of neonicotinoid toxicity or result from suboptimal care of developing queens by exposed workers. The aim of this study was to evaluate larval survival, reproductive fitness, and histopathology of honey bee queens exposed to incremental doses (0, 5, 50 ng) of the neonicotinoid thiamethoxam (THI) applied directly to individual late larvae (7 days post-oviposition) of queens. The 5 ng dose represents a calculated high environmental level of exposure for honey bee queen larvae. Morphometric evaluation revealed that the total area of mandibular gland epithelium in queens exposed to 5 and 50 ng THI was reduced by 14% (P = .12) and 25% (P = .001), respectively. Decreased mandibular gland size may alter pheromone production, which could in part explain previously observed negative effects of THI on the reproductive fitness of queens. We also found that late larval exposure to THI reduced larval and pupal survival and decreased sperm viability in mated queens. These changes may interfere with queen development and reproductive longevity.


Subject(s)
Genetic Fitness , Animals , Bees , Female , Larva , Neonicotinoids/toxicity , Thiamethoxam
13.
Toxicon ; 189: 73-78, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33245962

ABSTRACT

Based on its mandibular gland secretion, the earless monitor lizard, Lanthanotus borneensis, has been considered a venomous animal like other members of the Toxicofera group, including Heloderma. In the present study, the gland structure and teeth of L. borneensis were examined by micro-tomography (µCT) and scanning electron microscopy (SEM), respectively, and proteomic analysis of the gland extract was performed. The mandibular gland consists of six compartments with separate ducts. The pleurodont teeth of the lower and upper jaw are not grooved but possess a sharp ridge on the anterior surface. Proteomic analysis of the gland extract confirmed previous studies that kallikrein enzymes are the major biologically active components. In view of the lizard's biology, its mandibular gland secretion is obviously not needed for prey capture or defence. It seems not justified the labelling of L. borneensis as a venomous animal. However, definitively answering this question requires toxinological studies on natural prey.


Subject(s)
Lizards , Venoms , Animals , Kallikreins , Proteomics , Tooth
14.
Animals (Basel) ; 10(5)2020 May 24.
Article in English | MEDLINE | ID: mdl-32456363

ABSTRACT

A study was performed on the mandibular gland obtained from growing pigs enrolled in a wide research project aiming to test the effects of different feed physical forms on animal health, production and welfare. We used 48 pigs fed for four weeks with different dietary treatments based on different grinding intensities and compactions of the same diet, namely coarsely ground meal (CM), finely ground pelleted (FP) and coarsely ground pelleted (CP) diets. Samples were analyzed by conventional histochemistry to identify the glycohistochemical profile and by immunohistochemistry to localize aquaporin 5, apelin and apelin receptor. Statistical elaborations were performed using the Stats R-package, version 3.5.3. Pig mandibular gland adenomere increased both the quantity and acidity of produced glycoconjugates from CM to FP and CP diets. This probably calls forth higher watery saliva, thus promoting a better feed softening facilitating the amalgamation of the bolus. Mandibular gland increased aquaporin 5 positivity in the CP diet, supporting the hypothesis of an augmented demand for water. Based on apelin/receptor localization, it was hypothesized that in pig mandibular gland the apelinergic system likely performs an endocrine control on the demilunes activity and a paracrine control on ducts, facilitating the production of a more fluid saliva.

15.
Mol Cell Biochem ; 463(1-2): 1-11, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31531757

ABSTRACT

We reported previously that the rat submandibular gland is able to release nanovesicles capable to hydrolyse millimolar concentrations of ATP, ADP and AMP in vitro. Here, we show that rat saliva also contains nanovesicles with the ability to hydrolyse ATP. Our aim was to identify and characterize vesicular nucleotidases by using kinetic, immunological and in silico approaches. Nucleotidase activity in the absence or presence of specific inhibitors allowed us to assume the participation of NTPDase1, -2 and -3, together with ecto-5'-nucleotidase, confirmed using specific antibodies. At neutral pH, initial ATPase activity would be mostly due to NTPDase2, which was thereafter inactivated, leaving NTPDase1 and NTPDase3 to hydrolyse ATP and ADP with an efficacy ATPase/ADPase around 2. Ecto-5'nucleotidase would be mainly responsible for AMP hydrolysis and adenosine accumulation. We proposed a kinetic model for NTPDase2 as a tool to isolate and analyse the turnover of this enzyme in the presence of different ATP concentrations, including those expected in extracellular media. Our study characterizes the ectonucleotidases carried by extracellular vesicles which contribute to modulate ATP and adenosine concentrations in the oral cavity, essential players in purinergic signalling.


Subject(s)
5'-Nucleotidase/metabolism , Extracellular Vesicles/metabolism , Mouth/metabolism , Pyrophosphatases/metabolism , Saliva/enzymology , Salivary Proteins and Peptides/metabolism , Signal Transduction , Adenosine/metabolism , Adenosine Triphosphate/metabolism , Animals , Rats , Rats, Wistar
16.
Molecules ; 24(19)2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31554296

ABSTRACT

Forty-five volatile organic compounds (VOCs) were identified or annotated in the mandibular gland reservoir content (MGRC) of the Southeast Asian ant Colobopsis explodens Laciny and Zettel, 2018 (Hymenoptera: Formicidae), using headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography mass spectrometry (GC-MS) and liquid extraction combined with GC-MS. In extension of previous reports on VOCs of C. explodens, members of different compound classes, such as alkanes, aliphatic and aromatic carboxylic acids, and phenolics, were detected. The ketone 2-heptanone and the biochemically related phenolics benzene-1,3,5-triol (phloroglucinol, PG), 1-(2,4,6-trihydroxyphenyl)ethanone (monoacetylphloroglucinol, MAPG), 5,7-dihydroxy-2-methylchromen-4-one (noreugenin), and 1-(3-Acetyl-2,4,6-trihydroxyphenyl)ethanone (2,4-diacetylphloroglucinol, DAPG) dominated the GC-MS chromatograms. The identities of the main phenolics MAPG and noreugenin were further verified by liquid chromatography-high resolution-tandem mass spectrometry (LC-HRMS/MS). A comparative study of MGRC samples originating from three distinct field expeditions revealed differences in the VOC profiles, but the presence and relative abundances of the dominating constituents were largely consistent in all samples. Our study considerably extends the knowledge about the number and type of VOCs occurring in the MGRC of C. explodens. Based on the type of the detected compounds, we propose that the likely irritant and antibiotic phenolic constituents play a role in defense against arthropod opponents or in protection against microbial pathogens.


Subject(s)
Ants/chemistry , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/isolation & purification , Animals , Chromatography, Liquid , Gas Chromatography-Mass Spectrometry , Metabolomics/methods , Molecular Structure , Solid Phase Microextraction
17.
Vet Pathol ; 56(4): 636-641, 2019 07.
Article in English | MEDLINE | ID: mdl-30857499

ABSTRACT

Deformed wing virus (DWV) is a single-stranded RNA virus of honey bees (Apis mellifera L.) transmitted by the parasitic mite Varroa destructor. Although DWV represents a major threat to honey bee health worldwide, the pathological basis of DWV infection is not well documented. The objective of this study was to investigate clinicopathological and histological aspects of natural DWV infection in honey bee workers. Emergence of worker honey bees was observed in 5 colonies that were clinically affected with DWV and the newly emerged bees were collected for histopathology. DWV-affected bees were 2 times slower to emerge and had 30% higher mortality compared to clinically normal bees. Hypopharyngeal glands in bees with DWV were hypoplastic, with fewer intracytoplasmic secretory vesicles; cells affected by apoptosis were observed more frequently. Mandibular glands were hypoplastic and were lined by cuboidal epithelium in severely affected bees compared to tall columnar epithelium in nonaffected bees. The DWV load was on average 1.7 × 106 times higher (P < .001) in the severely affected workers compared to aged-matched sister honey bee workers that were not affected by deformed wing disease based on gross examination. Thus, DWV infection is associated with prolonged emergence, increased mortality during emergence, and hypoplasia of hypopharyngeal and mandibular glands in newly emerged worker honey bees in addition to previously reported deformed wing abnormalities.


Subject(s)
Arachnid Vectors/virology , Bees/virology , RNA Viruses/physiology , Varroidae/virology , Animals , Bees/parasitology , Female , RNA Viruses/genetics , Wings, Animal/pathology , Wings, Animal/virology
18.
J Chem Ecol ; 44(7-8): 650-657, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29876722

ABSTRACT

Cuticular hydrocarbons (CHCs) function as recognition compounds with the best evidence coming from social insects such as ants and honey bees. The major exocrine gland involved in hydrocarbon storage in ants is the post-pharyngeal gland (PPG) in the head. It is still not clearly understood where CHCs are stored in the honey bee. The aim of this study was to investigate the hydrocarbons and esters found in five major worker honey bee (Apis mellifera) exocrine glands, at three different developmental stages (newly emerged, nurse, and forager) using a high temperature GC analysis. We found the hypopharyngeal gland contained no hydrocarbons nor esters, and the thoracic salivary and mandibular glands only contained trace amounts of n-alkanes. However, the cephalic salivary gland (CSG) contained the greatest number and highest quantity of hydrocarbons relative to the five other glands with many of the hydrocarbons also found in the Dufour's gland, but at much lower levels. We discovered a series of oleic acid wax esters that lay beyond the detection of standard GC columns. As a bee's activities changed, as it ages, the types of compounds detected in the CSG also changed. For example, newly emerged bees have predominately C19-C23n-alkanes, alkenes and methyl-branched compounds, whereas the nurses' CSG had predominately C31:1 and C33:1 alkene isomers, which are replaced by a series of oleic acid wax esters in foragers. These changes in the CSG were mirrored by corresponding changes in the adults' CHCs profile. This indicates that the CSG may have a parallel function to the PPG found in ants acting as a major storage gland of CHCs. As the CSG duct opens into the buccal cavity the hydrocarbons can be worked into the comb wax and could help explain the role of comb wax in nestmate recognition experiments.


Subject(s)
Behavior, Animal/physiology , Hydrocarbons/chemistry , Salivary Glands/chemistry , Alkanes/analysis , Alkanes/chemistry , Alkenes/analysis , Alkenes/chemistry , Animals , Bees , Chemical Fractionation , Chromatography, Gas , Hydrocarbons/analysis , Hydrocarbons/isolation & purification , Isomerism , Salivary Glands/metabolism , Social Behavior
19.
J Exp Biol ; 221(Pt 13)2018 07 10.
Article in English | MEDLINE | ID: mdl-29776997

ABSTRACT

One of the responses that honey bee workers can make in the event of queen loss is to develop into false queens. False queens are workers that exhibit both behavioural and physiological traits similar to those of a true queen. However, the presence of more than one false queen in a colony distorts the established hierarchies. As transformation into a false queen occurs after emergence as an adult, we tested the effect of worker mobile pheromone carriers (PCs) treated with exogenously supplied pheromones on their nestmates. The PCs carried either synthetic mandibular gland pheromones or pheromones extracted from Apis melliferacapensis parasitic workers. Only the PCs attracted retinues of workers, increased pheromone production and activated their ovaries, becoming false queens. Pheromones from A. m.capensis workers were more effective than extracts of commercially available synthetic queen pheromones in eliciting these effects. Using this simple mobile pheromone delivery system, we have shown that carrying amounts of exogenous pheromone can induce pheromone production in the carrier, resulting in the production of false queens within experimental groups. Possible implications of using this technique to modify and regulate worker reproduction in colonies are discussed.


Subject(s)
Bees/physiology , Pheromones/metabolism , Animals , Phenotype , Pheromones/administration & dosage , Population Dynamics , Reproduction
20.
J Insect Physiol ; 102: 42-49, 2017 10.
Article in English | MEDLINE | ID: mdl-28889990

ABSTRACT

Pheromonal control by the honey bee queen is achieved through the use of secretions from diverse glandular sources, but the use of pheromones from a variety of glandular sources by reproductively dominant workers, has not previously been explored. Using the social parasite, Apis mellifera capensis clonal worker we studied the diversity of glandular sources used for pheromonal control of reproductively subordinate A. m. scutellata workers. To determine whether pheromones from different glandular sources are used by reproductively active workers to achieve dominance and evaluate the degree of pheromonal competition between workers of the two sub-species, we housed groups of workers of the two sub-species together in cages and analysed mandibular and tergal gland secretions as well as, ovarian activation status of each worker after 21days. The results showed that A. m. capensis invasive clones used both mandibular and tergal gland secretions to achieve reproductive dominance and suppress ovarian activation in their A. m. scutellata host workers. The reproductively dominant workers (false queens) produced more queen-like pheromones and inhibited ovarian activation in subordinate A. m. scutellata workers. These results show that tergal gland pheromones working in synergy with pheromones from other glands allow individual workers (false queens) to establish reproductive dominance within these social groups and to act in a manner similar to that of queens. Thus suggesting that, the evolution of reproductively dominant individuals (queens or false queens) and subordinate individuals (workers) in social insects like the honey bee is the result of a complex interplay of pheromonal signals from different exocrine glands.


Subject(s)
Bees/physiology , Bees/parasitology , Host-Parasite Interactions , Pheromones/metabolism , Animals , Exocrine Glands/metabolism , Reproduction , Social Behavior , Social Dominance , South Africa
SELECTION OF CITATIONS
SEARCH DETAIL