Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cells ; 13(1)2024 01 01.
Article in English | MEDLINE | ID: mdl-38201297

ABSTRACT

MRGPRX2, the human member of the MAS-related G-protein-coupled receptors (GPCRs), mediates the immunoglobulin E (IgE)-independent responses of a subset of mast cells (MCs) that are associated with itch, pain, neurogenic inflammation, and pseudoallergy to drugs. The mechanisms underlying the responses of MRGPRX2 to its multiple and diverse ligands are still not completely understood. Given the close association between GPCR location and function, and the key role played by Rab GTPases in controlling discrete steps along vesicular trafficking, we aimed to reveal the vesicular pathways that directly impact MRGPRX2-mediated exocytosis by identifying the Rabs that influence this process. For this purpose, we screened 43 Rabs for their functional and phenotypic impacts on MC degranulation in response to the synthetic MRGPRX2 ligand compound 48/80 (c48/80), which is often used as the gold standard of MRGPRX2 ligands, or to substance P (SP), an important trigger of neuroinflammatory MC responses. Results of this study highlight the important roles played by macropinocytosis and autophagy in controlling MRGPRX2-mediated exocytosis, demonstrating a close feedback control between the internalization and post-endocytic trafficking of MRGPRX2 and its triggered exocytosis.


Subject(s)
Bodily Secretions , Exocytosis , Humans , Autophagy , Immunoglobulin E , Inflammation , Secretory Vesicles , Nerve Tissue Proteins , Receptors, Neuropeptide , Receptors, G-Protein-Coupled
2.
Front Allergy ; 4: 1265049, 2023.
Article in English | MEDLINE | ID: mdl-37810200

ABSTRACT

CD4 T-helper cell type 2 (Th2) cells mediate host defense against extracellular parasites, like helminths. However, Th2 cells also play a pivotal role in the onset and progression of allergic inflammatory diseases such as atopic dermatitis, allergic rhinitis, asthma, and food allergy. This happens when allergens, which are otherwise harmless foreign proteins, are mistakenly identified as "pathogenic." Consequently, the encounter with these allergens triggers the activation of specific Th2 cell responses, leading to the development of allergic reactions. Understanding the molecular basis of allergen sensing is vital for comprehending how Th2 cell responses are erroneously initiated in individuals with allergies. The presence of protease activity in allergens, such as house dust mites (HDM), pollen, fungi, or cockroaches, has been found to play a significant role in triggering robust Th2 cell responses. In this review, we aim to examine the significance of protease activity sensing in foreign proteins for the initiation of Th2 cell responses, highlighting how evolving a host protease sensor may contribute to detect invading helminth parasites, but conversely can also trigger unwanted reactions to protease allergens. In this context, we will explore the recognition receptors activated by proteolytic enzymes present in major allergens and their contribution to Th2-mediated allergic responses. Furthermore, we will discuss the coordinated efforts of sensory neurons and epithelial cells in detecting protease allergens, the subsequent activation of intermediary cells, including mast cells and type 2 innate lymphoid cells (ILC2s), and the ultimate integration of all signals by conventional dendritic cells (cDCs), leading to the induction of Th2 cell responses. On the other hand, the review highlights the role of monocytes in the context of protease allergen exposure and their interaction with cDCs to mitigate undesirable Th2 cell reactions. This review aims to provide insights into the innate functions and cell communications triggered by protease allergens, which can contribute to the initiation of detrimental Th2 cell responses, but also promote mechanisms to effectively suppress their development.

3.
Anat Rec (Hoboken) ; 306(5): 1131-1139, 2023 05.
Article in English | MEDLINE | ID: mdl-35694864

ABSTRACT

Over the past decade, the research field dealing with the role of a new family of Rhodopsin A-like G protein-coupled receptors, that is, the family of Mas-related G protein-coupled receptors (Mrgprs) has expanded enormously. A plethora of recent studies have provided evidence that Mrgprs are key players in itch and pain, as well as in the initiation and modulation of inflammatory/allergic responses in the skin. Over the years, it has become clear that this role is not limited to the skin, but extends to other mucosal surfaces such as the respiratory tract and the gastrointestinal (GI) tract. In the GI tract, Mrgprs have emerged as novel interoceptive sensory pathways linked to health and disease, and are in close functional association with the gut's immune system. This review aims to provide an update of our current knowledge on the expression, distribution and function of members of this Mrgpr family in intrinsic and extrinsic neuro-immune pathways related to the GI system.


Subject(s)
Neuroimmunomodulation , Receptors, G-Protein-Coupled , Humans , Pain , Pruritus , Gastrointestinal Tract
4.
Adv Exp Med Biol ; 1383: 259-269, 2022.
Article in English | MEDLINE | ID: mdl-36587165

ABSTRACT

Over the past 15 years, the research field on Mas-related G protein-coupled receptors (Mrgprs), a relatively new family of rhodopsin A-like G protein-coupled receptors, has expanded enormously, and a plethora of recent studies have provided evidence that several of these Mrgpr family members play an important role in the underlying mechanisms of itch and pain, as well as in the initiation and modulation of inflammatory/allergic responses. Initial studies mainly focused on the skin, but more recently also visceral organs such as the respiratory and gastrointestinal (GI) tracts emerged as sites for Mrgpr involvement. It has become clear that the gastrointestinal tract and its innervation in close association with the immune system represent a novel expression site for Mrgprs where they contribute to the interoceptive mechanisms maintaining homeostasis and might constitute promising targets in chronic abdominal pain disorders. In this short review, we provide an update of our current knowledge on the expression, distribution, and function of members of this Mrgpr family in intrinsic and extrinsic neuro-immune pathways related to the gastrointestinal tract, their mediatory role(s) in gut neuro-immune signaling, and their involvement in visceral afferent (nociceptive) pathways.


Subject(s)
Receptors, G-Protein-Coupled , Signal Transduction , Humans , Receptors, G-Protein-Coupled/metabolism , Pruritus , Pain , Skin/metabolism
5.
Int J Mol Sci ; 23(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36077340

ABSTRACT

Chronic itch is one of the most prominent clinical characteristics of diverse systematic diseases. It is a devastating sensation in pathological diseases. Despite its importance, there are no FDA-labelled drugs specifically geared toward chronic itch. The associated complex pathogenesis and diverse causes escalate chronic itch to being one of the top challenges in healthcare. Humanized antibodies against IL-13, IL-4, and IL-31 proved effective in treatment of itch-associated atopic dermatitis but remain to be validated in chronic itch. There are still no satisfactory anti-itch therapeutics available toward itch-related neuropeptides including GRP, BNP, SST, CGRP, and SP. The newly identified potential itch targets including OSM, NMB, glutamate, periostin, and Serpin E1 have opened new avenues for therapeutic development. Proof-of-principle studies have been successfully performed on antagonists against these proteins and their receptors in itch treatment in animal models. Their translational interventions in humans need to be evaluated. It is of great importance to summarize and compare the newly emerging knowledge on chronic itch and its pathways to promote the development of novel anti-itch therapeutics. The goal of this review is to analyze the different physiologies and pathophysiologies of itch mediators, whilst assessing their suitability as new targets and discussing future therapeutic development.


Subject(s)
Dermatitis, Atopic , Neuropeptides , Animals , Dermatitis, Atopic/pathology , Humans , Neuropeptides/metabolism , Pruritus/drug therapy , Pruritus/etiology , Pruritus/metabolism
6.
Int J Mol Sci ; 22(9)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922606

ABSTRACT

Recent research on mast cell biology has turned its focus on MRGPRX2, a new member of the Mas-related G protein-coupled subfamily of receptors (Mrgprs), originally described in nociceptive neurons of the dorsal root ganglia. MRGPRX2, a member of this group, is present not only in neurons but also in mast cells (MCs), specifically, and potentially in other cells of the immune system, such as basophils and eosinophils. As emerging new functions for this receptor are studied, a variety of both natural and pharmacologic ligands are being uncovered, linked to the ability to induce receptor-mediated MC activation and degranulation. The diversity of these ligands, characterized in their human, mice, or rat homologues, seems to match that of the receptor's interactions. Natural ligands include host defense peptides, basic molecules, and key neuropeptides such as substance P and vasointestinal peptide (known for their role in the transmission of pain and itch) as well as eosinophil granule-derived proteins. Exogenous ligands include MC secretagogues such as compound 48/80 and mastoparan, a component of bee wasp venom, and several peptidergic drugs, among which are members of the quinolone family, neuromuscular blocking agents, morphine, and vancomycin. These discoveries shed light on its capacity as a multifaceted participant in naturally occurring responses within immunity and neural stimulus perception, as in responses at the center of immune pathology. In host defense, the mice Mrgprb2 has been proven to aid mast cells in the detection of peptidic molecules from bacteria and in the release of peptides with antimicrobial activities and other immune mediators. There are several potential actions described for it in tissue homeostasis and repair. In the realm of pathologic response, there is evidence to suggest that this receptor is also involved in chronic inflammation. Furthermore, MRGPRX2 has been linked to the pathophysiology of non-IgE-mediated immediate hypersensitivity drug reactions. Different studies have shown its possible role in other allergic diseases as well, such as asthma, atopic dermatitis, contact dermatitis, and chronic spontaneous urticaria. In this review, we sought to cover its function in physiologic processes and responses, as well as in allergic and nonallergic immune disease.


Subject(s)
Asthma/pathology , Drug Hypersensitivity/pathology , Nerve Tissue Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/metabolism , Animals , Asthma/etiology , Asthma/metabolism , Drug Hypersensitivity/etiology , Drug Hypersensitivity/metabolism , Humans
7.
Cells ; 10(2)2021 02 12.
Article in English | MEDLINE | ID: mdl-33673037

ABSTRACT

The identification of the Mas-related G-protein-coupled receptors (Mrgpr) as targets of diverse stimuli of mast cells (MCs), including neuropeptides and pseudo-allergy causing drugs, has placed these receptors at a prime position in MC research. However, the species-dependent diversity of these receptors raises the need for an adequate model for investigating the human MRGPRX2 receptor. RBL-2H3 cells, stably transfected with MRGPRX2 (RBL-MRGPRX2), are increasingly used for this purpose. Therefore, we investigated whether ectopically expressed MRGPRX2, in rat MCs, recapitulates its authentic signaling. To this purpose, we performed a broad comparative study of the responses of human LAD-2 MCs that express MRGPRX2 endogenously, and RBL-MRGPRX2 cells to compound 48/80, substance P and vancomycin, three proto-type ligands of MRGPRX2. We demonstrate that both models share similar dose-response relationships, kinetics and sensitivities to a wide range of signaling targeting drugs. Therefore, our results indicate that ectopically expressed MRGPRX2 preserves the signaling pathways employed to evoke human MC degranulation, which we show to rely on ERK1/2 MAP kinases, phospholipase C (PLC) and autophagy-related signaling. Importantly, we also show that the underlying mechanisms of MRGPRX2-triggered MC degranulation in either LAD-2 or RBL-MRGPRX2 cells are different from those elicited by its rodent orthologs.


Subject(s)
Cell Degranulation/physiology , Mast Cells/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/metabolism , Animals , Cell Line , Mice , Nerve Tissue Proteins/metabolism , Neuropeptides/metabolism
8.
Neurosci Lett ; 749: 135724, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33600909

ABSTRACT

Interplay between physiological systems in the body plays a prominent role in health and disease. At the cellular level, such interplay is orchestrated through the binding of specific ligands to their receptors expressed on cell surface. G protein-coupled receptors (GPCR) are seven-transmembrane domain receptors that initiate various cellular responses and regulate homeostasis. In this review, we focus on particular GPCRs named Mas-related G protein-coupled receptors (Mrgprs) mainly expressed by sensory neurons and specialized immune cells. We describe the different subfamilies of Mrgprs and their specific ligands, as well as recent advances in the field that illustrate the role played by these receptors in neuro-immune biological processes, including itch, pain and inflammation in diverse organs.


Subject(s)
Neuroimmunomodulation/physiology , Pain/metabolism , Receptors, G-Protein-Coupled/metabolism , Sensory Receptor Cells/metabolism , Animals , GTP-Binding Proteins/metabolism , Ganglia, Spinal/metabolism , Humans
10.
Neurogastroenterol Motil ; 31(8): e13623, 2019 08.
Article in English | MEDLINE | ID: mdl-31119828

ABSTRACT

BACKGROUND: Visceral hypersensitivity, an important cause of abdominal pain in disorders such as IBD and IBS, presents with a poorly understood pathophysiology and limited treatment options. Several members of the Mas-related G protein-coupled receptor family (Mrgprs) have become promising targets in pain research. The potential link between the murine Mrgpr C11 (Mrgprc11) and gut nociception is currently uninvestigated. Therefore, we explored the expression and functional role of Mrgprc11 in the gut nociceptive innervation. METHODS: Mrgprc11 expression was evaluated in DRG neurons innervating the mouse colon using in situ hybridization and immunohistochemistry. Visceromotor responses to colorectal distension (CRD) assessed the effect of the Mrgprc11 agonist, BAM(8-22), on colonic pain sensitivity in healthy mice. Moreover, we determined pERK1/2-immunoreactivity in the thoracolumbar spinal cord after noxious CRD. Finally, from a translational point of view, we looked for expression of the human counterpart of Mrgprc11, MRGPRX1, in human thoracolumbar DRGs. KEY RESULTS: In situ hybridization and immunohistochemistry revealed Mrgprc11 expression in colonic DRG neurons. Intracolonic administration of BAM(8-22) significantly increased colonic pain sensitivity in an Mrgprc11-dependent manner, and led to a significantly increased degree of neuronal activation in the splanchnic spinal cord upon noxious stimulation. Furthermore, MRGPRX1 expression was also detected in human thoracolumbar DRG neurons. CONCLUSIONS & INFERENCES: Our findings established a novel function for Mrgprc11 in the gut nociceptive innervation and propose the receptor as a new player in visceral hypersensitivity. Given the presence of MRGPRX1 in human DRG neurons, our study warrants future research on its therapeutic potential in abdominal pain disorders.


Subject(s)
Colon/innervation , Hyperalgesia/metabolism , Neurons, Afferent/metabolism , Nociception/physiology , Receptors, G-Protein-Coupled/metabolism , Animals , Ganglia, Spinal/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged
11.
J Allergy Clin Immunol ; 140(2): 447-453.e3, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28219706

ABSTRACT

BACKGROUND: Substance P (SP) is linked to itch and inflammation through activation of receptors on mast cells and sensory neurons. There is increasing evidence that SP functions through Mas-related G protein-coupled receptors (Mrgprs) in addition to its conventional receptor, neurokinin-1. OBJECTIVE: Because Mrgprs mediate some aspects of inflammation that had been considered mediated by neurokinin-1 receptor (NK-1R), we sought to determine whether itch induced by SP can also be mediated by Mrgprs. METHODS: Genetic and pharmacologic approaches were used to evaluate the contribution of Mrgprs to SP-induced scratching behavior and activation of cultured dorsal root ganglion neurons from mice. RESULTS: SP-induced scratching behavior and activation of cultured dorsal root ganglion neurons was dependent on Mrgprs rather than NK-1R. CONCLUSION: We deduce that SP activates MrgprA1 on sensory neurons rather than NK-1R to induce itch.


Subject(s)
Ganglia, Spinal/cytology , Pruritus/genetics , Receptors, G-Protein-Coupled/genetics , Adolescent , Adult , Aged , Animals , Capsaicin/pharmacology , Cells, Cultured , Female , Humans , Male , Mice, Transgenic , Middle Aged , Pruritus/chemically induced , Receptors, Neurokinin-1/genetics , Sensory Receptor Cells/drug effects , Substance P , Young Adult
12.
Adv Exp Med Biol ; 904: 87-103, 2016.
Article in English | MEDLINE | ID: mdl-26900065

ABSTRACT

The founding member of the Mas-related G-protein-coupled receptor (Mrgpr) family was discovered in 1986. Since then, many more members of this receptor family have been identified in multiple species, and their physiologic functions have been investigated widely. Because they are expressed exclusively in small-diameter primary sensory neurons, the roles of Mrgpr proteins in pain and itch have been best studied. This review will focus specifically on the current knowledge of their roles in pathological pain and the potential development of new pharmacotherapies targeted at some Mrgprs for the treatment of chronic pain. We will also discuss the limitations and future scope of this receptor family in pain treatment.


Subject(s)
Analgesics/pharmacology , Nociception/physiology , Pain Management/methods , Pain/physiopathology , Proto-Oncogene Proteins/physiology , Receptors, G-Protein-Coupled/physiology , Analgesics/therapeutic use , Animals , Ganglia, Spinal/physiology , Humans , Multigene Family , Nociception/drug effects , Organ Specificity , Pain/psychology , Primates , Proto-Oncogene Mas , Proto-Oncogene Proteins/classification , Proto-Oncogene Proteins/drug effects , Receptors, G-Protein-Coupled/classification , Receptors, G-Protein-Coupled/drug effects , Rodentia , Sensory Receptor Cells/physiology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL