Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.225
Filter
1.
Perit Dial Int ; : 8968608241260024, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39091083

ABSTRACT

BACKGROUND: Variation in residual volume between peritoneal dialysis dwells creates uncertainty in ultrafiltration determination, dialysis efficiency, and poses a risk of overfill if the residual volume is large. Measuring the dilution of a marker molecule during fluid fill offers a convenient approach, however, estimation accuracy depends on the choice of dilution marker. We here evaluate the feasibility of creatinine and urea as dilution markers compared to albumin-based residual volumes and three-pore model estimations. METHOD: This clinical, retrospective analysis comprises 56 residual volume estimations from 20 individuals, based on the dilution of pre-fill dialysate creatinine, urea and albumin concentrations during the dialysis fluid fill phase. Outcomes were compared individually. Bias induced by ultrafiltration, marker molecule mass-transfer and influence of fluid glucose contents was quantified using the three-pore model. Linear regression established conversion factors enabling conversion between the various marker molecules. RESULTS: Creatinine-based calculations overestimated residual volumes by 115 mL (IQR 89-149) in 1.5% dwells and 252 mL (IQR 179-313) in 4.25% glucose dwells. In hypertonic dwells, ultrafiltration was 52 mL (IQR 38-66), while intraperitoneal creatinine mass increased by 67% during fluid fill, being the leading cause of overestimation. Albumin-based volumes conformed strongly with three-pore model estimates. Correction factors effectively enabled marker molecule interchangeability. CONCLUSIONS: Mass-transfer of low molecular weight marker molecules is associated with residual volume overestimation. However, by applying correction factors, creatinine and urea dilution can still provide reasonable estimates, particularly when the purpose is to exclude the presence of a very large residual volume.

2.
Chembiochem ; : e202400345, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087277

ABSTRACT

Converting fatty acids into specialty chemicals is sustainable but hindered by the low efficiency and thermal instability of current oleic acid hydratases, along with mass transfer limitations in emulsion reactions. This study introduces an optimized continuous flow micro-reactor (CFMR) that efficiently transforms oleic acid at low (15 g·L-1) and high (50 g·L-1) concentrations, improving reaction efficiency and overcoming key conversion barriers. The first CFMR model showed reaction speeds surpassing traditional batch stirred tank reactors (BSTR). Optimizations were performed on three key components: liquid storage, mixer, and reaction section of the CFMR, with each round's best conditions carried into the next. This achieved a space-time yield of 597 g·L-1·d-1 at a 15 g·L-1 oleic acid load. To further enhance the yield, we optimized the emulsifier system to solve incomplete emulsification and developed a two-component feed microreactor (TCFMR) that addressed substrate and product inhibition at high loads, reaching a 91% conversion of 50 g·L-1 oleic acid in 30 minutes, with a space-time yield of 2312 g·L-1·d-1. These advancements represent significant progress in utilizing fatty acids and advancing sustainable chemical synthesis.

3.
Sci Rep ; 14(1): 16245, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009602

ABSTRACT

Chemical bioreactions play a significant role in many of the microfluidic devices, and their applications in biomedical science have seen substantial growth. Given that effective mixing is vital for initiating biochemical reactions in many applications, micromixers have become increasingly prevalent for high-throughput assays. In this research, a numerical study using the finite element method was conducted to examine the fluid flow and mass transfer characteristics in novel micromixers featuring an array of pillars. The study utilized two-dimensional geometries. The impact of pillar configuration on mixing performance was evaluated using concentration distribution and mixing index as key metrics. The study explores the effects of pillar array design on mixing performance and pressure drop, drawing from principles such as contraction-expansion and split-recombine. Two configurations of pillar arrays, slanted and arrowhead, are introduced, each undergoing investigation regarding parameters such as pillar diameter, gap size between pillar groups, distance between pillars, and vertical shift in pillar groups. Subsequently, optimal micromixers are identified, exhibiting mixing efficiency exceeding 99.7% at moderate Reynolds number (Re = 1), a level typically challenging for micromixers to attain high mixing efficiency. Notably, the pressure drop remains low at 1102 Pa. Furthermore, the variations in mixing index over time and across different positions along the channel are examined. Both configurations demonstrate short mixing lengths and times. At a distance of 4300 µm from the inlet, the slanted and arrowhead configurations yielded mixing indices of 97.2% and 98.9%, respectively. The micromixers could provide a mixing index of 99.5% at the channel's end within 8 s. Additionally, both configurations exceeded 90% mixing indices by the 3 s. The combination of rapid mixing, low pressure drop, and short mixing length positions the novel micromixers as highly promising for microfluidic applications.

4.
Water Res ; 262: 122101, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39032329

ABSTRACT

Fluorinated pharmaceuticals pollution has become an ever-increasing environmental concern due to its negative impacts. Photoelectrocatalytic (PEC) degradation system is a desirable approach to tackle the pollution problems. However, photogenerated charge separation and interfacial mass transfer are the main bottlenecks for improving the PEC degradation performance. Herein, we report a TiO2 photoanode with tuned (101)/(110) facets in situ grown on a Ti mesh substrate for PEC degradation of fluorinated pharmaceuticals. The exposure of (101) facets facilitates efficient photogenerated charge separation and the desorption of generated •OH radical. Besides, the three-dimensional (3D) architecture of photoanode promotes macroscopic mass transfer. This system performed complete defluorination of 5-fluorouracil and more than 75 % total organic carbon (TOC) removal efficiency. The apparent reaction rate constant of high (101) facet-exposed TiO2 grown on Ti mesh is up to 6.96 h-1, 6‒fold faster than that of photoanode with low (101) facet-exposed TiO2 grown on Ti foil. It is demonstrated that a large-sized PEC system of 1200 cm2 can degrade 100 L of synthetic fluorinated pharmaceutical wastewater with more than 80 % elimination efficiency. This work showcases the facet and substrate modulated strategy of fabricating high-performed photoanode for PEC wastewater purification.

5.
Environ Technol ; : 1-13, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972296

ABSTRACT

ABSTRACTThe release of supersaturated total dissolved gas (STDG) from dams has been linked to the development of gas bubble disease, which can ultimately result in the death of fish. In order to minimize the impact of STDG on aquatic ecology, the effect of aeration on mass transfer at the air-liquid interface is taken into account. This paper selects four commonly used aerators to carry out indoor aeration tower experiments under different aeration conditions (aeration aperture, aeration water depth, and aeration volume), exploring aerators that can efficiently promote STDG release. The results indicated that the diaphragm aerator was found to have the greatest effect on STDG release, followed by corundum and spin mix aerator. In contrast, a pinhole aerator was found to have the least beneficial impact on STDG release. The increase in the release coefficient for the diaphragm aerator in comparison to the pinhole aerator is 32%. A prediction model for the aeration system was developed based on the mass transfer mechanism at the gas-liquid interface. The parameters in the model were determined using experimental data, which effectively improved the model's prediction accuracy. The findings of this study may serve as a reference point for the selection of the most suitable aerator in the actual engineering of STDG mitigation by aeration technology.

6.
Chemosphere ; 363: 142816, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986787

ABSTRACT

3-chloro-4-fluoraniline (FCA) is an important intermediate for the synthesis of antibiotics, herbicides and insecticides, and has significant environmental health hazards. Catalytic hydrogenation technology is widely used in pretreatment of halogenated organics due to its simple process and excellent performance. However, compared with the research of high activity hydrogenation catalyst, the research of efficient utilization of hydrogen source under mild conditions is not sufficient. In this work, micro-nano H2 bubbles are produced in situ by electrolytic water and active metal replacement, and their apparent properties are studied. The result show that the H2 bubbles have a size distribution in the range of 150-900 nm, which can rapidly reduce the REDOX potential of the water and maintain it in a hydrogen-rich state for a long time. Under the action of Pd/C catalyst, atomic hydrogen (H•) produced by dissociative adsorption can sequentially hydrogenate FCA to aniline. The H• utilization ratios of the above two hydrogen supply pathways reach 6.20% and 4.94% respectively, and H2 consumption is reduced by tens of times (≥50 → ≈1.0 mL/min). The research provides technical support for the efficient removal of halogenated refractory pollutants in water and the development of hydrogen economy.

7.
Int J Biol Macromol ; : 133946, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39029825

ABSTRACT

The incorporation of active compounds into polymeric matrices using traditional methods has several drawbacks mainly due to the high volatility and thermal sensitivity of these substances. A solution to this problem could be the incorporation of bioactive compounds forming inclusion complexes as a strategy to improve the chemical stability, bioactivity and achieve controlled release. In this work, ß-cyclodextrin/carvacrol inclusion complex was prepared by spray drying to be incorporated into poly(lactic acid) (PLA) and Mater-Bi® films by supercritical CO2 impregnation. The impregnation process was carried out at pressures of 10, 15 and 20 MPa and at 40 °C. Both polymers showed the highest amount of incorporated inclusion complex at 15 MPa, where the percentage of impregnation varied from 0.6 % to 7.1 % in Mater-Bi® and PLA, respectively. Release tests for PLA films impregnated with inclusion complex showed a slow release of the active compound, which did not reach equilibrium after 350 h under the experimental conditions. This prolonged release was not observed in Mater-Bi® due to the lower incorporation of the inclusion complex. The release rate was described herein by a comprehensive phenomenological model considering the decomplexation kinetics combined with the equilibrium and mass transfer expressions.

8.
Foods ; 13(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39063272

ABSTRACT

Tender coconut water has been very popular as a natural beverage rich in various electrolytes, amino acids, and vitamins, and hence a large amount of tender coconut kernel is left without efficient utilization. To explore the possibility of making infused tender coconut kernel, we investigated the effects of two osmosis methods, including solid-state osmotic dehydration and liquid-state osmotic dehydration, as well as two osmosis agents such as sorbitol and sucrose, on the mass transfer of coconut kernel under solid-state osmotic dehydration conditions. The results showed that under the conditions of solid-state osmosis using sucrose and liquid-state osmosis using sucrose solution, the water diffusion coefficients were 9.0396 h-1/2 and 2.9940 h-1/2, respectively, with corresponding water mass transfer coefficients of 0.3373 and 0.2452, and the equilibrium water loss rates of 49.04% and 17.31%, respectively, indicating that the mass transfer efficiency of solid-state osmotic dehydration of tender coconut kernel was significantly higher than that of liquid-state osmotic dehydration. Under solid osmosis conditions, the water loss rates using sucrose and sorbitol were 38.64% and 41.95%, respectively, with dry basis yield increments of 61.38% and 71.09%, respectively, demonstrating superior dehydration efficiency of sorbitol over sucrose under solid-state osmosis. This study can provide a reference for the theoretical study of the mass transfer of tender coconut kernel through osmotic dehydration, and also provide technical support for the development and utilization of tender coconut kernel.

9.
Micromachines (Basel) ; 15(7)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39064393

ABSTRACT

In this paper, we investigate the electro-osmotic flow (EOF) and mass transfer of a Newtonian fluid propelled by a pressure gradient and alternating current (AC) electric field in a parallel microchannel with sinusoidal roughness and modulated charged surfaces. The two-wall roughness is described by in-phase or out-of-phase sine functions with a small amplitude δ. By employing the method of perturbation expansion, the semi-analytical solutions of the Poisson-Boltzmann (P-B) equation based on the Debye-Hückel approximation and the modified Navier-Stokes (N-S) equation are obtained. The numerical solution of the concentration equation is obtained by the finite difference method. The effects of sinusoidal roughness, modulated charged surface, and the AC electric field on the potential field, velocity field, and concentration field are discussed. Under the influence of the modulated charged surface and sinusoidal roughness, vortices are generated. The velocity oscillates due to the effect of the AC electric field. The results indicate that solute diffusion becomes enhanced when the oscillation Reynolds number is below a specific critical value, and it slows down when the oscillation Reynolds number exceeds this critical value.

10.
Eng Life Sci ; 24(7): e2300243, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38975019

ABSTRACT

Shake flask cultivation, a cornerstone in bioprocess research encounters limitations in supplying sufficient oxygen and exchanging gases, restricting its accuracy in assessing microbial growth and metabolic activity. In this communication, we introduce an innovative gas supply apparatus that harnesses the rotational motion of a shaking incubator to facilitate continuous air delivery, effectively overcoming these limitations. We measured the mass transfer coefficient (kLa) and conducted batch cultures of Corynebacterium glutamicum H36LsGAD using various working volumes to assess its performance. Results demonstrated that the gas supply apparatus significantly outperforms conventional silicone stoppers regarding oxygen delivery, with kLa values of 2531.7 h-1 compared to 20.25 h-1 at 230 rpm. Moreover, in batch cultures, the gas supply apparatus enabled substantial improvements in microbial growth, maintaining exponential growth even at larger working volumes. Compared to the existing system, an increase in final cell mass by a factor of 3.4-fold was observed when utilizing 20% of the flask's volume, and a remarkable 9-fold increase was achieved when using 60%. Furthermore, the gas supply apparatus ensured consistent oxygen supply and efficient gas exchange within the flask, overcoming challenges associated with low working volumes. This approach offers a simple yet effective solution to enhance gas transfer in shake flask cultivation, bridging the gap between laboratory-scale experiments and industrial fermenters. Its broad applicability holds promise for advancing research in bioprocess optimization and scale-up endeavors.

11.
Sci Rep ; 14(1): 16529, 2024 07 17.
Article in English | MEDLINE | ID: mdl-39019921

ABSTRACT

Flue gas emissions are the waste gases produced during the combustion of fuel in industrial processes, which are released into the atmosphere. These identical processes also produce a significant amount of wastewater that is released into the environment. The current investigation aims to assess the viability of simultaneously mitigating flue gas emissions and remediating wastewater in a bubble column bioreactor utilizing bacterial consortia. A comparative study was done on different growth media prepared using wastewater. The highest biomass yield of 3.66 g L-1 was achieved with the highest removal efficiencies of 89.80, 77.30, and 80.77% for CO2, SO2, and NO, respectively. The study investigated pH, salinity, dissolved oxygen, and biochemical and chemical oxygen demand to assess their influence on the process. The nutrient balance validated the ability of bacteria to utilize compounds in flue gas and wastewater for biomass production. The Fourier Transform-Infrared Spectrometry (FT-IR) and Gas Chromatography-Mass Spectrometry (GC-MS) analyses detected commercial-use long-chain hydrocarbons, fatty alcohols, carboxylic acids, and esters in the biomass samples. The nuclear magnetic resonance (NMR) metabolomics detected the potential mechanism pathways followed by the bacteria for mitigation. The techno-economic assessment determined a feasible total capital investment of 245.74$ to operate the reactor for 288 h. The bioreactor's practicability was determined by mass transfer and thermodynamics assessment. Therefore, this study introduces a novel approach that utilizes bacteria and a bioreactor to mitigate flue gas and remediate wastewater.


Subject(s)
Biodegradation, Environmental , Biomass , Bioreactors , Wastewater , Wastewater/microbiology , Wastewater/chemistry , Bioreactors/microbiology , Bacteria/metabolism , Bacteria/growth & development , Gases/metabolism , Spectroscopy, Fourier Transform Infrared , Gas Chromatography-Mass Spectrometry
12.
Sci Rep ; 14(1): 16513, 2024 07 17.
Article in English | MEDLINE | ID: mdl-39019972

ABSTRACT

The study of diffusion in biological materials is crucial for fields like food science, engineering, and pharmaceuticals. Research that combines numerical and analytical methods is needed to better understand diffusive phenomena across various dimensions and under variable boundary conditions within food matrices. This study aims to bridge this gap by examining the diffusion of substances through biological materials analytically and numerically, calculating diffusivity and conducting surface analysis. The research proposes a process for sweetening Bing-type cherries (Prunus avium) using sucrose/xylitol solutions and a staining technique utilising erythrosine and red gardenia at varying concentrations (119, 238 and 357 ppm) and temperatures (40, 50 and 60 °C). Given the fruit's epidermis resistance, the effective diffusivities of skin were inferior to those in flesh. Temperature and concentration synergise in enhancing diffusion coefficients and dye penetration within the food matrix (357 ppm and 60 °C). Red gardenia displayed significant temperature-dependent variation (p = 0.001), whereas erythrosine dye remained stable by temperature changes (p > 0.05). Gardenia's effective diffusivities in cherry flesh and skin, at 357 ppm and 60 °C, 3.89E-08 and 6.61E-09 m2/s, respectively, significantly differed from those obtained at lower temperatures and concentrations. The results highlight the temperature-concentration impacts on mass transfer calculations for food colouring processes and preservation methodologies.


Subject(s)
Temperature , Diffusion , Fruit/chemistry , Fruit/metabolism , Erythrosine/chemistry , Sucrose/chemistry , Sucrose/metabolism
13.
Environ Technol ; : 1-9, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39002156

ABSTRACT

Wet scrubbing technology is an effective emission control technology for marine diesel engines. Nitric oxide (NO) is one of the main component of ship emissions, the sodium persulfate (Na2S2O8) can facilitate the NO mass transfer process to a rapid reaction. Falling film reactors are widely used in rapid gas-liquid reactions, however, the reaction characteristics of denitrification using Na2S2O8 solution in a falling film reactor are not clear, which were investigated in this paper. The factors of NO mass transfer flux were tested with the liquid-gas ratio of 15 L/m3. The effects of solution properties and temperatures on the reaction driving force were studied by calculating the chemical reaction equilibrium constants and Gibbs free energy changes. The results showed that the NO mass transfer flux increased with the increase of temperature, Na2S2O8 concentration, O2 concentration and NO concentration. NO mass transfer flux increased by 41.00% and then decreased by 2.12% as the pH value increased from 7 to 10 and then rising to 12. The Gibbs free energy changes of alkaline solutions were 114.22%-130.99% lower than those of acidic solution at 303-343 K, and the chemical reaction equilibrium constants were higher. Na2S2O8/seawater system has great application potential in marine exhaust gas purification.

14.
Environ Sci Technol ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39072735

ABSTRACT

Alcohols are promising fuels for direct alcohol fuel cells and are common scavengers to identify reactive oxygen species (ROS) in electro-Fenton (EF) systems. However, the side impacts of alcohols on oxygen reduction reactions and ROS generation are controversial due to the complex interactions between electrodes and alcohol-containing electrolytes. Herein, we employed synchrotron-Fourier-transform infrared spectroscopy and electron paramagnetic resonance technologies to directly observe the changes of chemical species and electrochemical properties on the electrode surface. Our studies suggested that alcohols exhibited different limiting degrees on proton (H+) mass transfer toward the catalytic surface, following an order of methanol < ethanol < isopropanol < tert-butyl alcohol (TBA). In addition, the formation of hydrophobic TBA clusters at high concentrations (>400 mM) resulted in a significant reduction in ionic conductivity and an elevation in charge transfer resistance, which impedes H+ mass transfer and raises the energy barrier for 2e- oxygen reduction reaction processes. Moreover, the organic radical •CH2(CH3)2CH2OH produced by the interaction of Fe3+ and •OH with the alcohol in the EF system serves as a crucial intermediate in facilitating H2O2 regeneration, which complicates the quenching effect of alcohols on •OH identification. Therefore, it is recommended that methanol should be used as the scavenger instead of TBA and the concentration should be less than 400 mM in EF systems.

15.
Article in English | MEDLINE | ID: mdl-39078706

ABSTRACT

The mass transport and ion conductivity in the catalyst layer are important for fuel cell performances. Here, we report an in situ-grown ultrathin catalyst layer (UTCL) to reduce the oxygen mass transport and a surface ionomer-coated gas diffusion layer method to reduce the ion conducting resistance. A significantly reduced catalyst layer thickness (ca. 1 µm) is achieved, and coupled with the ionomer introduction method, the ultrathin catalyst layer is in good contact with the membrane, resulting in high ion conductivity and high Pt utilization. This ultrathin catalyst layer is suitable for both proton exchange membrane fuel cells and anion exchange membrane fuel cells, giving peak power densities of 2.24 and 1.11 W cm-2, respectively, which represent an increase of more than 30% compared with the membrane electrode assembly (MEA) fabricated by using traditional Pt/C power catalysts. Electrochemical impedance spectra and limiting current tests demonstrate the reduced charge transfer, mass transfer, and ohmic resistances in the ultrathin catalyst layer membrane electrode assembly, resulting in the promoted fuel cell performances.

16.
Foods ; 13(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38890887

ABSTRACT

This study investigates the applicability of the Peleg model to the osmotic dehydration of various sweet potato variety samples in sugar beet molasses, addressing a notable gap in the existing literature. The osmotic dehydration was performed using an 80% sugar beet molasses solution at temperatures of 20 °C, 35 °C, and 50 °C for periods of 1, 3, and 5 h. The sample-to-solution ratio was 1:5. The objectives encompassed evaluating the Peleg equation's suitability for modeling mass transfer during osmotic dehydration and determining equilibrium water and solid contents at various temperatures. With its modified equation, the Peleg model accurately described water loss and solid gain dynamics during osmotic treatment, as evidenced by a high coefficient of determination value (r2) ranging from 0.990 to 1.000. Analysis of Peleg constants revealed temperature and concentration dependencies, aligning with previous observations. The Guggenheim, Anderson, and de Boer (GAB) model was employed to characterize sorption isotherms, yielding coefficients comparable to prior studies. Effective moisture diffusivity and activation energy calculations further elucidated the drying kinetics, with effective moisture diffusivity values ranging from 1.85 × 10-8 to 4.83 × 10-8 m2/s and activation energy between 7.096 and 16.652 kJ/mol. These findings contribute to understanding the complex kinetics of osmotic dehydration and provide insights into the modeling and optimization of dehydration processes for sweet potato samples, with implications for food processing and preservation methodologies.

17.
J Environ Sci (China) ; 145: 216-231, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38844321

ABSTRACT

Catalytic ozonation is an effective wastewater purification process. However, the low ozone mass transfer in packed bubble columns leads to low ozone utilization efficiency (OUE), poor organic degradation performance, and high energy consumption. Therefore, there is an urgent need to develop efficient supported catalysts that can enhance mass transfer and performance. However, the reaction mechanism of the support on ozone mass transfer remains unclear, which hinders the development of catalytic ozonation applications. In this study, lava rocks (LR)-supported catalysts, specifically CuMn2O4@LR and MnO2Co3O4@LR, were proposed for catalytic ozonation of IBP degradation due to their superior catalytic activity, stability, and high OUE. Addition of CuMn2O4@LR or MnO2Co3O4@LR increased IBP removal efficiency from 85% to 91% or 88%, and reduced energy consumption from 2.86 to 2.14 kWh/m3 or 2.60 kWh/m3, respectively. This improvement was attributed to LR-supported catalysts enhancing mass transfer and promoting O3 decomposition to generate •OH and •O2-, leading to IBP degradation. Furthermore, this study investigated the effects of ozone dose, supporter sizes, and catalyst components on ozone-liquid mass transfer. The results revealed that the size of the supporter influenced stacked porosity and consequently affected ozone mass transfer. Larger-sized LR (kLa= 0.172 min-1) exhibited better mass transfer compared to smaller-sized supports. Based on these findings, it was concluded that both CuMn2O4@LR and MnO2Co3O4@LR are potential catalysts for catalytic ozonation in residual IBP degradation of pharmaceutical wastewater, and LR showed good credibility as a catalyst supporter. Understanding the effects of supporters and active components on ozone mass transfer provides a fundamental principle for designing supported catalysts in catalytic ozonation applications.


Subject(s)
Ibuprofen , Ozone , Waste Disposal, Fluid , Water Pollutants, Chemical , Ozone/chemistry , Catalysis , Water Pollutants, Chemical/chemistry , Ibuprofen/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Purification/methods
18.
J Environ Manage ; 362: 121325, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38824895

ABSTRACT

Fluidized Bed Fenton (FBF) technology, a fusion of the Fenton method and fluidized bed reactor, has emerged as a superior alternative to conventional Fenton technology for treating organic industrial wastewater. This innovative approach has garnered significant attention from researchers in recent years. While earlier studies primarily focused on pollutant degradation in simulated wastewater and catalyst development, there has been a growing interest in examining the alterations in mass or heat transfer performance attributed to fluidized beds. This paper explores the factors that contribute to the effectiveness of Fluidized Bed Fenton technology in efficiently degrading various challenging organic pollutants, while also reducing iron sludge production and expanding the applicable pH range, through an analysis of reaction kinetics. Meanwhile, combined with the related work of fluid dynamics, the research related to mass and heat transfer inside the reactor of Fluidized Bed Fenton technology is summarized, and it is proposed that the use of computers to establish a suitable model of Fluidized Bed Fenton and solve it with the assistance of computational fluid dynamics (CFD) and other software will help to further explore the process of mass and heat transfer inside the fluidized bed, which will provide the basis for the future of the Fluidized Bed Fenton from the laboratory to the actual industrial application.


Subject(s)
Iron , Wastewater , Wastewater/chemistry , Iron/chemistry , Waste Disposal, Fluid/methods , Hydrogen Peroxide/chemistry , Hydrodynamics , Kinetics , Hot Temperature , Water Pollutants, Chemical/chemistry
19.
J Hazard Mater ; 476: 134979, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38905982

ABSTRACT

Spatially confined structure exhibits surprising physics and chemistry properties that significantly impact the thermodynamics and kinetics of oxidation reactions. Herein, porous carbons are rationally designed for tunable nanopore structures (micropores, 4.12 % ∼ 91.64 %) and diverse spatial confinement ability, as indicated by their differential enhancement performances in the Fenton oxidation. Porous carbons can alter the characteristics of the charge transport process for accelerating sustainable electron shuttle between hydrogen peroxide and iron species, and thus exhibit long-term performance (17 cycling tests). The positive spatial confinement for boosting Fenton oxidation (charge transport, mass transfer) occurs in nanochannels < 1 nm, while the diminished effect ranges of 1-1.5 nm, and the adverse effect ranges greater than 1.5 nm. The density functional theory calculation provides further support for certifying the promoted charge transport process and spatial confinement for hydroxyl radical inside the confined nanochannel structure (below 1 nm, especially) by the comparatively large electron cloud and the relatively negative adsorption energy, respectively. Coupling nanochannels with the Fenton oxidation greatly utilize hydrogen peroxide, due to spatial nanoconfinement and selective adsorption towards target contaminants. This strategy of deploying nanochannels in catalyst design can be applied for the elaborate construction of efficient nanostructured catalysts for environmental remediation.

20.
Chemosphere ; 362: 142540, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38851514

ABSTRACT

The rate of mass transfer of lower molecular weight hydrocarbons (naphtha) from bitumen drops in mature fine tailings of oil sand tailings ponds (OSTPs) may control their bioavailability and the associated rate of GHG production. Experiments were conducted using bitumen drops spiked with o-xylene and 1-methylnaphthalene to determine the mass transfer rate of these naphtha components from bitumen drops. The results were compared to simulations using a multi-component numerical model that accounted for transport in the drop and across the oil-water interface. The results demonstrate rate-limited mass transfer, with aqueous concentrations after 60 days of dissolution that were different than those in equilibrium with the initial drop composition (less for o-xylene and greater for 1-methylnaphthalene). The simulations suggest that mole fractions were unchanged at the center of the drop, resulting in concentration gradients out to the oil-water interface. Numerical simulations conducted using different drop sizes and bitumen viscosities also suggest the potential for persistent naphtha dissolution, where the time required to deplete 80% of the o-xylene and 1-methylnaphthalene mass from an oil drop was estimated to be on the order of months to years for mm-sized drops, and years to decades for cm-sized drops assuming instantaneous biodegradation in the aqueous phase surrounding the bitumen.

SELECTION OF CITATIONS
SEARCH DETAIL