Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42.733
Filter
1.
J Environ Sci (China) ; 150: 188-201, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306395

ABSTRACT

To improve the activity of Co/Al2O3 catalysts in selective catalytic oxidation of ammonia (NH3-SCO), valence state and size of active centers of Al2O3-supported Co catalysts were adjusted by conducting H2 reduction pretreatment. The NH3-SCO activity of the adjusted 2Co/Al2O3 catalyst was substantially improved, outperforming other catalysts with higher Co-loading. Fresh Co/Al2O3 catalysts exhibited multitemperature reduction processes, enabling the control of the valence state of the Co-active centers by adjusting the reduction temperature. Changes in the state of the Co-active centers also led to differences in redox capacity of the catalysts, resulting in different reaction mechanisms for NH3-SCO. However, in situ diffuse reflectance infrared Fourier transform spectra revealed that an excessive O2 activation capacity caused overoxidation of NH3 to NO and NO2. The NH3-SCO activity of the 2Co/Al2O3 catalyst with low redox capacity was successfully increased while controlling and optimizing the N2 selectivity by modulating the active centers via H2 pretreatment, which is a universal method used for enhancing the redox properties of catalysts. Thus, this method has great potential for application in the design of inexpensive and highly active catalysts.


Subject(s)
Aluminum Oxide , Ammonia , Cobalt , Oxidation-Reduction , Ammonia/chemistry , Catalysis , Aluminum Oxide/chemistry , Cobalt/chemistry , Models, Chemical , Air Pollutants/chemistry
2.
J Environ Sci (China) ; 150: 54-65, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306427

ABSTRACT

In this study, supported Pd catalysts were prepared and used as heterogeneous catalysts for the activation of peroxymonosulfate (PMS) which successfully degrade bisphenol F (BPF). Among the supported catalysts (i.e., Pd/SiO2, Pd/CeO2, Pd/TiO2 and Pd/Al2O3), Pd/TiO2 exhibited the highest catalytic activity due to the high isoelectric point and high Pd0 content. Pd/TiO2 prepared by the deposition method leads to high Pd dispersion, which are the key factors for efficient BPF degradation. The influencing factors were investigated during the reaction process and two possible degradation pathways were proposed. Density functional theory (DFT) calculations demonstrate that stronger BPF adsorption and BPF degradation with lower reaction barrier occurs on smaller Pd particles. The catalytic activities are strongly dependent on the structural features of the catalysts. Both experiments and theoretical calculations prove that the reaction is actuated by electron transfer rather than radicals.


Subject(s)
Benzhydryl Compounds , Palladium , Peroxides , Phenols , Palladium/chemistry , Phenols/chemistry , Catalysis , Benzhydryl Compounds/chemistry , Peroxides/chemistry , Models, Chemical , Water Pollutants, Chemical/chemistry , Adsorption
3.
Synth Syst Biotechnol ; 10(1): 102-109, 2025.
Article in English | MEDLINE | ID: mdl-39308748

ABSTRACT

A novel sub-class of S-adenosyl-l-methionine (SAM)-dependent methyltransferases catalyze atypical chemical transformations in the biosynthesis of anthracyclines. Exemplified by RdmB from Streptomyces purpurascens, it was found with 10-decarboxylative hydroxylation activity on anthracyclines. We herein investigated the catalytic activities of RdmB and discovered a previously unknown 4-O-methylation activity. The site-directed mutagenesis studies proved that the residue at position R307 and N260 are vital for the decarboxylative hydroxylation and 4-O-methylation, respectively, which define two distinct catalytic centers in RdmB. Furthermore, the multifunctionality of RdmB activity was found as cofactor-dependent and stepwise. Our findings expand the versatility and importance of methyltransferases and should aid studies to enrich the structural diversity and bioactivities of anthracyclines.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124943, 2025 Jan 05.
Article in English | MEDLINE | ID: mdl-39146629

ABSTRACT

The use of a conjugate N-containing ligand resulted in the decreasing of structural dimensions from 2D network of [Tb(2-pyia)(Ac)(H2O)] (CP1) to 1D chain [Tb(2-pyia)(Ac)(IDP)] (CP2) (2-H2pyia = 5-(pyridin-2-ylmethoxy) isophthalic acid and IDP=imidazo[4,5-f]-[1,10] phenanthroline). Both of them exhibit the characteristic luminescence of Tb ions and could have high fluorescence sensing properties for cefixime and fluridine. The different sensing properties for nitro explosives are manifested as CP1 for nitrobenzene and CP2 for 4-nitrophenol due to the difference in structure. Furthermore, CP2 exhibits the ratiometric fluorescence sensing for Fe3+ ion with a low detection limit of 0.405 µM. The fluorescence sensing mechanism of the two Tb complexes for different analytes was investigated using experimental methods and theoretical calculations. CP1 was used for the detection of Flu residues in the actual system and better results were obtained. The work shows the introduction of the chelated ligand might affect the structural and sensing performance changes of coordination polymers.

5.
J Ethnopharmacol ; 336: 118701, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39153519

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Mouthwashes based on medicinal plants have demonstrated benefits in controlling plaque and inflammation, acting positively on the oral hygiene of patients with gingivitis. In traditional medicine, Punica granatum L. has been used to treat oral diseases in countries in Europe, Asia, North America, and Africa. AIM OF THE STUDY: The present study aimed to conduct a comprehensive review on the dental applications of Punica granatum L. for the treatment of gingivitis, including ethnomedicinal uses, analysis of randomized clinical trials, antibacterial activity against Porphyromonas gingivalis, mechanisms of action of phytochemicals isolated from this plant, and preclinical toxicity. MATERIALS AND METHODS: The literature was retrieved from Google Scholar, PubMed®, SciELO, and ScienceDirect®, since the first report published on the topic in 2001 until March 2024. RESULTS: Several clinical trials have demonstrated that mouthwashes containing P. granatum have equal or better efficacy than chlorhexidine in treating patients with gingivitis, confirming the indications for use of this plant by traditional communities. However, reports on the in vitro antibacterial activity of extracts from the fruits of this plant have not shown clinical relevance against the pathogen P. gingivalis. The ellagitannin punicalagin isolated from P. granatum has shown potential against several strains of Gram-positive and Gram-negative bacteria, but, to date, this compound has not yet been tested against P. gingivalis. It is likely that the mechanisms of action of flavonoids, such as quercetin, are involved in the inhibition of the activities of the RgpA, RgpB, and Kgp proteases of P. gingivalis. CONCLUSIONS: In summary, natural products obtained from P. granatum do not present toxic side effects and can be considered as possible substitutes of commercial products recommended for the treatment of gingivitis and other oral diseases.


Subject(s)
Anti-Bacterial Agents , Gingivitis , Plant Extracts , Porphyromonas gingivalis , Randomized Controlled Trials as Topic , Humans , Gingivitis/drug therapy , Porphyromonas gingivalis/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Pomegranate/chemistry , Medicine, Traditional , Animals , Phytotherapy
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124990, 2025 Jan 05.
Article in English | MEDLINE | ID: mdl-39186874

ABSTRACT

Kaolin, a naturally occurring clay mineral renowned for its distinctive properties, holds significant importance across various industries. The integration of dimethyl sulfoxide (DMSO) into kaolin matrices, both in the presence and absence of water, has been extensively explored for its potential to enhance material characteristics. Addressing debates surrounding the proposed adsorption mechanism for the type I structure of DMSO, this study undertook a comprehensive physicochemical characterization of DMSO-kaolin complexes (DMSO-KCs) derived from untreated (UnK) and HCl-treated (HK) Egyptian ore, with a focus on elucidating the loading mechanism facilitated by water. Key insights gleaned from electrical conductivity, dielectric constant, and Fine Testing Technology - Fourier-transform infrared (FTT-FTIR) measurements, shedding light on the bonding nature of DMSO-KCs. FTT-FTIR analysis revealed two stages of water departure at 180 °C, with the final stage coinciding with the release of pyrolysis gases, confirming the catalytic degradation of DMSO. Through X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA), two distinct bonding types of DMSO molecules with kaolinite were identified: amorphous adsorbed (type I) and lattice-oriented intercalated (type II). Electrical characteristic evaluations within the temperature range of room temperature (RT) to 260 °C and frequency range of 42 Hz-1 MHz revealed that DMSO intercalation enhances the electrical properties of kaolin. Hydrated DMSO-KCs exhibited higher values of σac and ɛ' compared to non-hydrated samples. The activation energy (Ea) values for HCl-treated samples were smaller than those of untreated ones. Alternating current (AC) conductivity analysis indicated predominantly ionic behavior with frequency and temperature dependency in both HCl-treated and untreated kaolin. Our findings substantiate the adsorption mechanism of Type I DMSO, highlighting its amorphous nature, instability, and catalytic degradation over time, in contrast to the intercalated type II. This elucidation is pivotal for understanding the behavior of DMSO-KCs across diverse applications, including electronics, ceramics, and materialsscience.

7.
J Ethnopharmacol ; 336: 118720, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39197802

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Jinye Baidu granules (JYBD) have been used to treat acute respiratory tract infections and demonstrated clinical efficacy for the treatment of emerging or epidemic respiratory viruses such as SARS-CoV-2 and influenza virus. AIM OF THE STUDY: This study is to investigate the antiviral effect of JYBD against influenza A viruses (IAV) in vitro and in vivo and elucidate its underlying mechanism. MATERIALS AND METHODS: Ultra-high-performance liquid chromatography connected with Orbitrap mass spectrometer (UHPLC-Orbitrap MS) was employed to describe the chemical profile of JYBD. The potential pathways and targets involved in JYBD against IAV infection were predicted by network pharmacology. The efficacy and mechanism of JYBD were validated through both in vivo and in vitro experiments. Moreover, combination therapy with JYBD and the classic anti-influenza drugs was also investigated. RESULTS: A total of 126 compounds were identified by UHPLC-Orbitrap MS, of which 9 compounds were unambiguously confirmed with reference standards. JYBD could significantly inhibit the replication of multiple strains of IAV, especially oseltamivir-resistant strains. The results of qRT-PCR and WB demonstrated that JYBD could inhibit the excessive induction of pro-inflammatory cytokines induced by IAV infection and regulate inflammatory response through inhibiting JAK/STAT, NF-κB and MAPK pathways. Moreover, both JYBD monotherapy or in combination with oseltamivir could alleviate IAV-induced severe lung injury in mice. CONCLUSIONS: JYBD could inhibit IAV replication and mitigate virus-induced excessive inflammatory response. Combinations of JYBD and neuraminidase inhibitors conferred synergistic suppression of IAV both in vitro and in vivo. It might provide a scientific basis for clinical applications of JYBD against influenza virus infected diseases.


Subject(s)
Antiviral Agents , Drugs, Chinese Herbal , Influenza A virus , Network Pharmacology , Orthomyxoviridae Infections , Antiviral Agents/pharmacology , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Influenza A virus/drug effects , Dogs , Mice , Humans , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology , Madin Darby Canine Kidney Cells , Virus Replication/drug effects , A549 Cells , Mice, Inbred BALB C , Male , Female , Chromatography, High Pressure Liquid
8.
Food Chem ; 462: 140991, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39208721

ABSTRACT

Shewanella baltica is a specific spoilage organism of golden pomfret. This study aims to explore the antibacterial mechanism of slightly acidic electrolysed water (SAEW) against S. baltica (strains ABa4, ABe2 and BBe1) in golden pomfret broths by metabolomics, proteomics and bioinformatics analyses. S. baltica was decreased by at least 3.94 log CFU/mL after SAEW treatment, and strain ABa4 had the highest resistance. Under SAEW stress, amino acids and organic acids in S. baltica decreased, and nucleotide related compounds degraded. Furthermore, 100 differentially expressed proteins (DEPs) were identified. Most DEPs of strains ABe2 and BBe1 were down-regulated, while some DEPs of strain ABa4 were up-regulated, especially those oxidative stress related proteins. These results suggest that the modes of SAEW against S. baltica can be traced to the inhibition of amino acid, carbon, nucleotide and sulphur metabolisms, and the loss of functional proteins for temperature regulation, translation, motility and protein folding.


Subject(s)
Bacterial Proteins , Shewanella , Shewanella/metabolism , Shewanella/chemistry , Shewanella/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Water/metabolism , Water/chemistry , Electrolysis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/chemistry , Hydrogen-Ion Concentration , Vigna/chemistry , Vigna/microbiology , Vigna/metabolism
9.
Biomaterials ; 312: 122712, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39098305

ABSTRACT

Immunosuppressive tumor microenvironment (ITM) severely limited the efficacy of immunotherapy against triple-negative breast cancer (TNBC). Herein, Apt-LPR, a light-activatable photodynamic therapy (PDT)/RNAi immune synergy-enhancer was constructed by co-loading miR-34a and photosensitizers in cationic liposomes (in phase III clinical trial). Interestingly, the introduction of tumor-specific aptamers creates a special "Liposome-Aptamer-Target" interface, where the aptamers are initially in a "lying down" state but transform to "standing up" after target binding. The interfacing mechanism was elaborately revealed by computational and practical experiments. This unique interface endowed Apt-LPR with neutralized surface potential of cationic liposomes to reduce non-specific cytotoxicity, enhanced DNase resistance to protect aptamers, and preserved target-binding ability for selective drug delivery. Upon near-infrared irradiation, the generated reactive oxygen species would oxidize unsaturated phospholipids to destabilize both liposomes and lysosomes, realizing stepwise lysosomal escape of miR-34a for tumor cell apoptosis and downregulation of PD-L1 to suppress immune escape. Together, tumor-associated antigens released from PDT-damaged mitochondria and endoplasmic reticulum could activate the suppressive immune cells to establish an "immune hot" milieu. The collaborative immune-enhancing strategy effectively aroused systemic antitumor immunity and inhibited primary and distal tumor progression as well as lung metastasis in 4T1 xenografted mouse models. The photo-controlled drug release and specific tumor-targeting capabilities of Apt-LPR were also visualized in MDA-MB-231 xenografted zebrafish models. Therefore, this photoswitchable PDT/RNAi immune stimulator offered a powerful approach to reprogramming ITM and reinforcing cancer immunotherapy efficacy.


Subject(s)
Liposomes , MicroRNAs , Photochemotherapy , Photosensitizing Agents , Triple Negative Breast Neoplasms , Tumor Microenvironment , Animals , Humans , Liposomes/chemistry , MicroRNAs/genetics , MicroRNAs/metabolism , Photochemotherapy/methods , Tumor Microenvironment/drug effects , Cell Line, Tumor , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Female , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/pathology , Mice , Aptamers, Nucleotide/chemistry , Delayed-Action Preparations/chemistry , RNA Interference , Zebrafish
10.
J Environ Sci (China) ; 148: 336-349, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095169

ABSTRACT

Catalytic destruction is an ascendant technology for the abatement of volatile organic compounds (VOCs) originating from solvent-based industrial processes. The varied composition tends to influence each VOC's catalytic behavior in the reaction mixture. We investigated the catalytic destruction of multi-component VOCs including dichloromethane (DCM) and ethyl acetate (EA), as representatives from pharmaceutical waste gases, over co-supported HxPO4-RuOx/CeO2 catalyst. A mutual inhibitory effect relating to concentrations because of competitive adsorption was verified in the binary VOCs oxidation and EA posed a more negative effect on DCM oxidation owing to EA's superior adsorption capacity. Preferential adsorption of EA on acidic sites (HxPO4/CeO2) promoted DCM activation on basic sites (O2-) and the dominating EA oxidation blocked DCM's access to oxidation centers (RuOx/CeO2), resulting in boosted monochloromethane yield and increased chlorine deposition for DCM oxidation. The impaired redox ability of Ru species owing to chlorine deposition in turn jeopardized deep oxidation of EA and its by-products, leading to increased gaseous by-products such as acetic acid originating from EA pyrolysis. Notably, DCM at low concentration slightly promoted EA conversion at low temperatures with or without water, consistent with the enhanced EA adsorption in co-adsorption analyses. This was mainly due to that DCM impeded the shielding effect of hydrolysate deposition from rapid EA hydrolysis depending on the decreased acidity. Moreover, water benefited EA hydrolysis but decreased CO2 selectivity while the generated water derived from EA was likely to affect DCM transformation. This work may provide theoretical guidance for the promotion of applied catalysts toward industrial applications.


Subject(s)
Acetates , Cerium , Methylene Chloride , Acetates/chemistry , Catalysis , Methylene Chloride/chemistry , Cerium/chemistry , Volatile Organic Compounds/chemistry , Adsorption , Oxidation-Reduction , Ruthenium/chemistry
11.
J Environ Sci (China) ; 148: 451-467, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095179

ABSTRACT

After the ultralow emission transformation of coal-fired power plants, cement production became China's leading industrial emission source of nitrogen oxides. Flue gas dust contents at the outlet of cement kiln preheaters were as high as 80-100 g/m3, and the calcium oxide content in the dust exceeded 60%. Commercial V2O5(-WO3)/TiO2 catalysts suitable for coal-fired flue gas suffer from alkaline earth metal Ca poisoning of cement kiln flue gas. Recent studies have also identified the poisoning of cement kiln selective catalytic reaction (SCR) catalysts by the heavy metals lead and thallium. Investigation of the poisoning process is the primary basis for analyzing the catalytic lifetime. This review summarizes and analyzes the SCR catalytic mechanism and chronicles the research progress concerning this poisoning mechanism. Based on the catalytic and toxification mechanisms, it can be inferred that improving the anti-poisoning performance of a catalyst enhances its acidity, surface redox performance-active catalytic sites, and shell layer protection. The data provide support in guiding engineering practice and reducing operating costs of SCR plants. Finally, future research directions for SCR denitrification catalysts in the cement industry are discussed. This study provides critical support for the development and optimization of poisoning-resistant SCR denitrification catalysts.


Subject(s)
Construction Materials , Catalysis , Air Pollutants/chemistry , Power Plants , China
12.
J Environ Sci (China) ; 148: 489-501, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095183

ABSTRACT

The chemistry of sulfur cycle contributes significantly to the atmospheric nucleation process, which is the first step of new particle formation (NPF). In the present study, cycloaddition reaction mechanism of sulfur trioxide (SO3) to hydrogen sulfide (H2S) which is a typical air pollutant and toxic gas detrimental to the environment were comprehensively investigate through theoretical calculations and Atmospheric Cluster Dynamic Code simulations. Gas-phase stability and nucleation potential of the product thiosulfuric acid (H2S2O3, TSA) were further analyzed to evaluate its atmospheric impact. Without any catalysts, the H2S + SO3 reaction is infeasible with a barrier of 24.2 kcal/mol. Atmospheric nucleation precursors formic acid (FA), sulfuric acid (SA), and water (H2O) could effectively lower the reaction barriers as catalysts, even to a barrierless reaction with the efficiency of cis-SA > trans-FA > trans-SA > H2O. Subsequently, the gas-phase stability of TSA was investigated. A hydrolysis reaction barrier of up to 61.4 kcal/mol alone with an endothermic isomerization reaction barrier of 5.1 kcal/mol under the catalytic effect of SA demonstrates the sufficient stability of TSA. Furthermore, topological and kinetic analysis were conducted to determine the nucleation potential of TSA. Atmospheric clusters formed by TSA and atmospheric nucleation precursors (SA, ammonia NH3, and dimethylamine DMA) were thermodynamically stable. Moreover, the gradually decreasing evaporation coefficients for TSA-base clusters, particularly for TSA-DMA, suggests that TSA may participate in NPF where the concentration of base molecules are relatively higher. The present new reaction mechanism may contributes to a better understanding of atmospheric sulfur cycle and NPF.


Subject(s)
Air Pollutants , Hydrogen Sulfide , Models, Chemical , Hydrogen Sulfide/chemistry , Air Pollutants/chemistry , Cycloaddition Reaction , Atmosphere/chemistry , Sulfur Oxides/chemistry , Kinetics , Sulfur/chemistry
13.
J Environ Sci (China) ; 149: 149-163, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181630

ABSTRACT

Developing heterojunction photocatalyst with well-matched interfaces and multiple charge transfer paths is vital to boost carrier separation efficiency for photocatalytic antibiotics removal, but still remains a great challenge. In present work, a new strategy of chloride anion intercalation in Bi2O3 via one-pot hydrothermal process is proposed. The as-prepared Ta-BiOCl/Bi24O31Cl10 (TBB) heterojunctions are featured with Ta-Bi24O31Cl10 and Ta-BiOCl lined shoulder-by-shouleder via semi-coherent interfaces. In this TBB heterojunctions, the well-matched semi-coherent interfaces and shoulder-by-shoulder structures provide fast electron transfer and multiple transfer paths, respectively, leading to enhanced visible light response and improved photogenerated charge separation. Meanwhile, a type-II heterojunction for photocharge separation has been obtained, in which photogenerated electrons are drove from the CB (conduction band) of Ta-Bi24O31Cl10 to the both of bilateral empty CB of Ta-BiOCl and gathered on the CB of Ta-BiOCl, while the photogenerated holes are left on the VB (valence band) of Ta-Bi24O31Cl10, effectively hindering the recombination of photogenerated electron-hole pairs. Furthermore, the separated electrons can effectively activate dissolved oxygen for the generation of reactive oxygen species (·O2-). Such TBB heterojunctions exhibit remarkably superior photocatalytic degradation activity for tetracycline hydrochloride (TCH) solution to Bi2O3, Ta-BiOCl and Ta-Bi24O31Cl10. This work not only proposes a Ta-BiOCl/Bi24O31Cl10 shoulder-by-shoulder micro-ribbon architectures with semi-coherent interfaces and successive type-II heterojunction for highly efficient photocatalytic activity, but offers a new insight into the design of highly efficient heterojunction through phase-structure synergistic transformation strategy.


Subject(s)
Anti-Bacterial Agents , Bismuth , Water Pollutants, Chemical , Bismuth/chemistry , Anti-Bacterial Agents/chemistry , Water Pollutants, Chemical/chemistry , Catalysis , Photochemical Processes
14.
J Environ Sci (China) ; 149: 21-34, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181636

ABSTRACT

During the water treatment process, chlorination and ultraviolet (UV) sterilization can modify microplastics (MPs) and alter their physicochemical properties, causing various changes between MPs and other pollutants. In this study, the impact of chlorination and UV modification on the physicochemical properties of polystyrene (PS) and polyvinyl chloride (PVC) were investigated, and the adsorption behavior of pefloxacin (PEF) before and after modification was examined. The effect of pH, ionic strength, dissolved organic matter, heavy metal ions and other water environmental conditions on adsorption behavior was revealed. The results showed that PS had a higher adsorption capacity of PEF than PVC, and the modification increased the presence of O-containing functional groups in the MPs, thereby enhancing the adsorption capacity of both materials. Chlorination had a more significant impact on the physicochemical properties of MPs compared to UV irradiation within the same time period, leading to better adsorption performance of chlorination. The optimal pH for adsorption was found to be 6, and NaCl, sodium alginate and Cu2+ would inhibit adsorption to varying degrees, among which the inhibition caused by pH was the strongest. Chlorination and UV modification would weaken the inhibitory effect of environmental factors on the adsorption of PEF by MPs. The main mechanisms of adsorption involved electrostatic interaction and hydrogen bonding. The study clarified the effects of modification on the physicochemical properties of MPs, providing reference for subsequent biotoxicity analysis and environmental protection studies.


Subject(s)
Halogenation , Pefloxacin , Polystyrenes , Polyvinyl Chloride , Ultraviolet Rays , Water Pollutants, Chemical , Water Purification , Adsorption , Polyvinyl Chloride/chemistry , Water Pollutants, Chemical/chemistry , Polystyrenes/chemistry , Water Purification/methods , Pefloxacin/chemistry , Hydrogen-Ion Concentration
15.
J Environ Sci (China) ; 149: 476-487, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181660

ABSTRACT

Herein, three supported catalysts, CuO/Al2O3, CeO2/Al2O3, and CuO-CeO2/Al2O3, were synthesized by the convenient impregnation method to reveal the effect of CeO2 addition on catalytic performance and reaction mechanism for toluene oxidation. Compared with CuO/Al2O3, the T50 and T90 (the temperatures at 50% and 90% toluene conversion, respectively) of CuO-CeO2/Al2O3 were reduced by 33 and 39 °C, respectively. N2 adsorption-desorption experiment, XRD, SEM, EDS mapping, Raman, EPR, H2-TPR, O2-TPD, XPS, NH3-TPD, Toluene-TPD, and in-situ DRIFTS were conducted to characterize these catalysts. The excellent catalytic performance of CuO-CeO2/Al2O3 could be attributed to its strong copper-cerium interaction and high oxygen vacancies concentration. Moreover, in-situ DRIFTS proved that CuO-CeO2/Al2O3 promoted the conversion of toluene to benzoate and accelerated the deep degradation path of toluene. This work provided valuable insights into the development of efficient and economical catalysts for volatile organic compounds.


Subject(s)
Cerium , Copper , Oxidation-Reduction , Toluene , Toluene/chemistry , Catalysis , Copper/chemistry , Cerium/chemistry , Models, Chemical , Air Pollutants/chemistry
16.
J Environ Sci (China) ; 149: 242-253, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181639

ABSTRACT

Poly(butylene succinate-co-furandicarboxylate) (PBSF) and poly(butylene adipate-co-furandicarboxylate) (PBAF) are novel furandicarboxylic acid-based biodegradable copolyesters with great potential to replace fossil-derived terephthalic acid-based copolyesters such as poly(butylene succinate-co-terephthalate) (PBST) and poly(butylene adipate-co-terephthalate) (PBAT). In this study, quantum chemistry techniques after molecular dynamics simulations are employed to investigate the degradation mechanism of PBSF and PBAF catalyzed by Candida antarctica lipase B (CALB). Computational analysis indicates that the catalytic reaction follows a four-step mechanism resembling the ping-pong bibi mechanism, with the initial two steps being acylation reactions and the subsequent two being hydrolysis reactions. Notably, the first step of the hydrolysis is identified as the rate-determining step. Moreover, by introducing single-point mutations to expand the substrate entrance tunnel, the catalytic distance of the first acylation step decreases. Additionally, energy barrier of the rate-determining step is decreased in the PBSF system by site-directed mutations on key residues increasing hydrophobicity of the enzyme's active site. This study unprecedently show the substrate binding pocket and hydrophobicity of the enzyme's active site have the potential to be engineered to enhance the degradation of copolyesters catalyzed by CALB.


Subject(s)
Fungal Proteins , Lipase , Polyesters , Lipase/metabolism , Lipase/chemistry , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Polyesters/chemistry , Polyesters/metabolism , Biodegradation, Environmental , Molecular Dynamics Simulation , Hydrolysis , Models, Chemical
17.
Food Chem ; 462: 140995, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39213970

ABSTRACT

The storage and processing of Litopenaeus vannamei are often challenged by the freeze-thaw (F-T) cycle phenomenon. This study delved into the influence of pretreatment with l-arginine (Arg) and l-lysine (Lys) on the myofibrillar proteins oxidation and quality of shrimp subjected to F-T cycles. Arg and Lys pretreatment notably improved water-holding capacity (WHC), textural integrity as well as the myofibrillar structure of the shrimps. A lesser reduction in the amounts of immobile and bound water was found in the amino acid-treated groups, and the oxidation of lipids and proteins were both decelerated. Molecular simulation results indicated that Arg and Lys could form hydrogen and salt-bridge bonds with myosin, enhancing the stability of Litopenaeus vannamei. The study concludes that Arg and Lys are effective in alleviating the adverse effects of F-T cycles on the quality of Litopenaeus vannamei, and provides a new solution for the quality maintenance during storage and processing.


Subject(s)
Arginine , Lysine , Muscle Proteins , Oxidation-Reduction , Penaeidae , Animals , Penaeidae/chemistry , Arginine/chemistry , Lysine/chemistry , Muscle Proteins/chemistry , Freezing , Food Preservation/methods , Shellfish/analysis , Myofibrils/chemistry
18.
Ageing Res Rev ; : 102513, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39307316

ABSTRACT

Depending on the population studied, HIV-1-related neurocognitive impairment is estimated to impact up to half the population of people living with HIV (PLWH) despite the availability of combination antiretroviral therapy (cART). Various factors contribute to this neurocognitive impairment, which complicates our understanding of the molecular mechanisms involved. Biological aging has been implicated as one factor possibly impacting the development and progression of HIV-1-related neurocognitive impairment. This is increasingly important as the life expectancy of PLWH with virologic suppression on cART is currently projected to be similar to that of individuals not living with HIV. Based on our increasing understanding of the biological aging process on a cellular level, we aim to dissect possible interactions of aging- and HIV-1 infection-induced effects and their role in neurocognitive decline. Thus, we begin by providing a brief overview of the clinical aspects of HIV-1-related neurocognitive impairment and review the accumulating evidence implicating aging in its development (Part I). We then discuss potential interactions between aging-associated pathways and HIV-1-induced effects at the molecular level (Part II).

19.
Arch Microbiol ; 206(10): 411, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39311963

ABSTRACT

Antibiotic resistance has emerged as a global threat, rendering the existing conventional treatment strategies ineffective. In view of this, antimicrobial peptides (AMPs) have proven to be potent alternative therapeutic interventions with a wide range of applications in clinical health. AMPs are small peptides produced naturally as a part of the innate immune responses against a broad range of bacterial, fungal and viral pathogens. AMPs present a myriad of advantages over traditional antibiotics, including their ability to target multiple sites, reduced susceptibility to resistance development, and high efficacy at low doses. These peptides have demonstrated notable potential in inhibiting microbes resistant to traditional antibiotics, including the notorious ESKAPE pathogens, recognized as the primary culprits behind nosocomial infections. AMPs, with their multifaceted benefits, emerge as promising candidates in the ongoing efforts to combat the escalating challenges posed by antibiotic resistance. This in-depth review provides a detailed discussion on AMPs, encompassing their classification, mechanism of action, and diverse clinical applications. Focus has been laid on combating newly emerging drug-resistant organisms, emphasizing the significance of AMPs in mitigating this pressing challenge. The review also illuminates potential future strategies that may be implemented to improve AMP efficacy, such as structural modifications and using AMPs in combination with antibiotics and matrix-inhibiting compounds.


Subject(s)
Antimicrobial Peptides , Bacteria , Humans , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Bacteria/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Fungi/drug effects , Drug Resistance, Microbial , Drug Resistance, Bacterial , Antimicrobial Cationic Peptides/pharmacology , Animals , Bacterial Infections/drug therapy , Bacterial Infections/microbiology
20.
Environ Sci Pollut Res Int ; 31(42): 55046-55064, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39218844

ABSTRACT

China is currently in a new era of an urban transition to a low-carbon economy and digital economic development. Smart cities, as an advanced form of information-based urban development, may be the key to the urban transition to low-carbon emissions. This paper examined the effect of smart city construction (SCC) on urban low-carbon transitions and its transmission mechanisms in China from the dual perspectives of reducing urban total carbon emissions (TCE) and improving urban total-factor carbon emission efficiency (TFCEE). Utilizing a multi-period difference in differences (DID) method, this study was conducted based on panel data of 245 Chinese prefecture-level cities from 2003 to 2021. The results demonstrated that SCC both reduced TCE and enhanced TFCEE. The effects of SCC were stronger in cities with more stringent environmental regulations. SCC achieved the dual effect of reducing TCE and enhancing urban TFCEE by promoting green technological progress and a low-carbon transformation of city residents' lifestyles. Moreover, optimization of the industrial structure was also a transmission mechanism for SCC to improve TFCEE. These conclusions provide an empirical basis for the SCC to empower low-carbon transitions of cities and help countries in different regions to transform the extensive urban development mode and promote urban low-carbon economic development.


Subject(s)
Carbon , Cities , China , Economic Development
SELECTION OF CITATIONS
SEARCH DETAIL