Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
World J Gastrointest Oncol ; 16(6): 2727-2741, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38994152

ABSTRACT

BACKGROUND: Previous studies have shown that the Shi-pi-xiao-ji (SPXJ) herbal decoction formula is effective in suppressing hepatocellular carcinoma (HCC), but the underlying mechanisms are not known. Therefore, this study investigated whether the antitumor effects of the SPXJ formula in treating HCC were mediated by acetyl-coA acetyltransferase 1 (ACAT1)-regulated cellular stiffness. Through a series of experiments, we concluded that SPXJ inhibits the progression of HCC by upregulating the expression level of ACAT1, lowering the level of cholesterol in the cell membrane, and altering the cellular stiffness, which provides a new idea for the research of traditional Chinese medicine against HCC. AIM: To investigate the anti-tumor effects of the SPXJ formula on the malignant progression of HCC. METHODS: HCC cells were cultured in vitro with SPXJ-containing serum prepared by injecting SPXJ formula into wild-type mice. The apoptotic rate and proliferative, invasive, and migratory abilities of control and SPXJ-treated HCC cells were compared. Atomic force microscopy was used to determine the cell surface morphology and the Young's modulus values of the control and SPXJ-treated HCC cells. Plasma membrane cholesterol levels in HCC cells were detected using the Amplex Red cholesterol detection kit. ACAT1 protein levels were estimated using western blotting. RESULTS: Compared with the vehicle group, SPXJ serum considerably reduced proliferation of HCC cells, increased stiffness and apoptosis of HCC cells, inhibited migration and invasion of HCC cells, decreased plasma membrane cholesterol levels, and upregulated ACAT1 protein levels. However, treatment of HCC cells with the water-soluble cholesterol promoted proliferation, migration, and invasion of HCC cells as well as decreased cell stiffness and plasma membrane cholesterol levels, but did not alter the apoptotic rate and ACAT1 protein expression levels compared with the vehicle control. CONCLUSION: SPXJ formula inhibited proliferation, invasion, and migration of HCC cells by decreasing plasma membrane cholesterol levels and altering cellular stiffness through upregulation of ACAT1 protein expression.

2.
Stem Cells Dev ; 33(11-12): 306-320, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38753688

ABSTRACT

Lower population of dopaminergic (DA) neurons is known to increase susceptibility to Parkinson's disease (PD), and our earlier study showed a lower yield of DA neurons in Leucine-Rich Repeat Kinase Isoleucine 1371 Valine (LRRK2-I1371V) mutation-carrying PD patient-derived induced Pluripotent Stem Cells (iPSCs). Although the role of Sonic Hedgehog (SHH) in DA neurogenesis of floor plate cells (FPCs) is known, the effect of LRRK2 mutations on SHH responsiveness of FPCs impacting DA neuronal yield has not been studied. We investigated SHH responsiveness of FPCs derived from LRRK2-I1371V PD patient iPSCs with regard to the expression of SHH receptors Patched1 (Ptch1) and Smoothened (Smo), in conjunction with nuclear Gli1 (glioma-associated oncogene 1) expression, intracellular Ca2+ rise, and cytosolic cyclic adenosine monophosphate (cAMP) levels upon SHH induction. In addition, we examined the mechanistic link with LRRK2-I1371V gain-of-function by assessing membrane fluidity and Rab8A and Rab10 phosphorylation in SH-SY5Y cells and healthy control (HC) FPCs overexpressing LRRK2-I1371V as well as FPCs. Although total expression of Ptch1 and Smo was comparable, receptor expression on cell surface was significantly lower in LRRK2-I1371V FPCs than in HC FPCs, with distinctly lower nuclear expression of the downstream transcription factor Gli1. HC-FPCs transfected with LRRK2-I1371V exhibited a similarly reduced cell surface expression of Ptch1 and Smo. Intracellular Ca2+ response was significantly lower with corresponding elevated cAMP levels in LRRK2-I1371V FPCs compared with HC FPCs upon SHH stimulation. The LRRK2-I1371V mutant FPCs and LRRK2-I1371V-transfected SH-SY5Y and HC FPCs too exhibited higher autophosphorylation of phospho LRRK2 (pLRRK2) serine1292 and serine935, as well as substrate phosphorylation of Rab8A and Rab10. Concurrent increase in membrane fluidity, accompanied by a decrease in membrane cholesterol, and lower expression of lipid raft marker caveolin 1 were also observed in them. These findings suggest that impaired SHH responsiveness of LRRK2-I1371V PD FPCs indeed leads to lower yield of DA neurons during ontogeny. Reduced cell surface expression of SHH receptors is influenced by alteration in membrane fluidity owing to the increased substrate phosphorylation of Rab8A and reduced membrane protein trafficking due to pRab10, both results of the LRRK2-I1371V mutation.


Subject(s)
Dopaminergic Neurons , Hedgehog Proteins , Induced Pluripotent Stem Cells , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , Patched-1 Receptor , Zinc Finger Protein GLI1 , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Dopaminergic Neurons/metabolism , Patched-1 Receptor/genetics , Patched-1 Receptor/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism , Smoothened Receptor/genetics , Smoothened Receptor/metabolism , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , Cyclic AMP/metabolism , Caveolin 1/genetics , Caveolin 1/metabolism , Mutation/genetics , Calcium/metabolism , Cell Differentiation/genetics , Signal Transduction/genetics
3.
J Cell Mol Med ; 28(3): e18110, 2024 02.
Article in English | MEDLINE | ID: mdl-38164042

ABSTRACT

BACKGROUND AND AIMS: The secretion of bile salts transported by the bile salt export pump (BSEP) is the primary driving force for the generation of bile flow; thus, it is closely related to the formation of cholesterol stones. Caveolin-1 (Cav-1), an essential player in cell signalling and endocytosis, is known to co-localize with cholesterol-rich membrane domains. This study illustrates the role of Cav-1 and BSEP in cholesterol stone formation. METHODS: Adult male C57BL/6 mice were used as an animal model. HepG2 cells were cultured under different cholesterol concentrations and BSEP, Cav-1, p-PKCα and Hax-1 expression levels were determined via Western blotting. Expression levels of BSEP and Cav-1 mRNA were detected using real-time PCR. Immunofluorescence and immunoprecipitation assays were performed to study BSEP and Hax-1 distribution. Finally, an ATPase activity assay was performed to detect BSEP transport activity under different cholesterol concentrations in cells. RESULTS: Under low-concentration stimulation with cholesterol, Cav-1 and BSEP protein and mRNA expression levels significantly increased, PKCα phosphorylation significantly decreased, BSEP binding capacity to Hax-1 weakened, and BSEP function increased. Under high-concentration stimulation with cholesterol, Cav-1 and BSEP protein and mRNA expression levels decreased, PKCα phosphorylation increased, BSEP binding capacity to Hax-1 rose, and BSEP function decreased. CONCLUSION: Cav-1 regulates the bile salt export pump on the canalicular membrane of hepatocytes via PKCα-associated signalling under cholesterol stimulation.


Subject(s)
Caveolin 1 , Protein Kinase C-alpha , Animals , Male , Mice , ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism , ATP-Binding Cassette Transporters/genetics , Bile Acids and Salts/metabolism , Caveolin 1/metabolism , Cholesterol/metabolism , Hepatocytes/metabolism , Mice, Inbred C57BL , Protein Kinase C-alpha/metabolism , RNA, Messenger/metabolism , Humans
4.
Libyan J Med ; 18(1): 2264568, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37804002

ABSTRACT

Aim: Cardiovascular diseases (CVDs) represent the major cause of morbidity and mortality worldwide including Libya, where they account for 43% of all deaths. Sphingolipids are involved in the pathology of numerous diseases including cardiovascular diseases and are proposed as potential biomarkers of cardiovascular health that could be more effective compared to traditional clinical biomarkers. The aim of this study was to determine the sphingolipid content in the erythrocyte membrane of Libyan migrant and Serbian resident women. In addition, to examine if sphingolipid levels could be used as a novel indicator of cardiovascular risk, we evaluated possible correlations with some well-established biomarkers of cardiovascular health.Materials and Methods: A total of 13 Libyan and 15 Serbian healthy women participated in the study. The high-performance version thin-layer chromatography (HPTLC) using the image analysis tool JustTLC was applied for quantification of erythrocytes' sphingolipids.Results: Lower mean values of erythrocytes' sphingolipids and cholesterol concentrations were found in the group of Libyan emigrants compared to Serbian resident women. Besides, in this group of apparently healthy women (n = 28), the sphingolipid content of erythrocytes was inversely related to the Omega-3 index (r =-0.492, p = 0.008) and directly linked to vitamin D status (r = 0.433, p = 0.021) and membrane cholesterol levels (r = 0.474, p = 0.011).Conclusion: The erythrocytes' sphingolipid levels should be measured/assessed as an additional biomarker of CV health, by applying a simple and routine method. Still, further investigation in a larger population-specific context is warranted.


Subject(s)
Cardiovascular Diseases , Sphingolipids , Humans , Female , Libya/epidemiology , Serbia/epidemiology , Erythrocytes , Biomarkers , Cholesterol
5.
Gut Microbes ; 15(2): 2256695, 2023 12.
Article in English | MEDLINE | ID: mdl-37749884

ABSTRACT

The intestinal pathogen Clostridioides difficile is the leading cause of antibiotic-associated diarrhea and pseudomembranous colitis in humans. The symptoms of C. difficile-associated diseases (CDADs) are directly associated with the pathogen's toxins TcdA and TcdB, which enter host cells and inactivate Rho and/or Ras GTPases by glucosylation. Membrane cholesterol is crucial during the intoxication process of TcdA and TcdB, and likely involved during pore formation of both toxins in endosomal membranes, a key step after cellular uptake for the translocation of the glucosyltransferase domain of both toxins from endosomes into the host cell cytosol. The licensed drug amiodarone, a multichannel blocker commonly used in the treatment of cardiac dysrhythmias, is also capable of inhibiting endosomal acidification and, as shown recently, cholesterol biosynthesis. Thus, we were keen to investigate in vitro with cultured cells and human intestinal organoids, whether amiodarone preincubation protects from TcdA and/or TcdB intoxication. Amiodarone conferred protection against both toxins independently and in combination as well as against toxin variants from the clinically relevant, epidemic C. difficile strain NAP1/027. Further mechanistic studies suggested that amiodarone's mode-of-inhibition involves also interference with the translocation pore of both toxins. Our study opens the possibility of repurposing the licensed drug amiodarone as a novel pan-variant antitoxin therapeutic in the context of CDADs.


Subject(s)
Amiodarone , Bacterial Toxins , Clostridioides difficile , Gastrointestinal Microbiome , Humans , Anti-Arrhythmia Agents/pharmacology , Amiodarone/pharmacology , Antibodies, Bacterial
6.
Vet Microbiol ; 278: 109668, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36709687

ABSTRACT

Classical swine fever virus (CSFV) is an enveloped positive-sense RNA virus belonging to the Flaviviridae family. The virus utilizes cellular lipids and manipulates host lipid metabolism to ensure its replication, especially during virus invasion and replication steps. Therefore, identification of the molecular lipid metabolism pathways that are suitable targets is critical for the development of anti-CSFV therapeutics. In this study, we screened the anti-CSFV activity of 12 compounds targeting synthesis of cholesterol and fatty acids, cholesterol esters, and cholesterol transport. We found that 25-hydroxycholesterol (25HC), a regulator of cholesterol metabolism and transport, has potent anti-CSFV activity. Mechanistically, we showed that 25HC inhibited CSFV proliferation by blocking the entry of virions into porcine alveolar macrophages (3D4/21) by decreasing cholesterol abundance in the plasma membrane through activation of acyl-CoA:cholesterol acyltransferase (ACAT). Finally, we revealed that cholesterol 25-hydroxylase (CH25H), a redox enzyme that mediates 25HC production, also restricted CSFV infection via both enzyme activity-dependent and -independent mechanisms. Collectively, our results shed light on the mechanisms by which 25HC inhibits CSFV entry into cells and suggests a potential new therapeutic method against CSFV infection.


Subject(s)
Classical Swine Fever Virus , Classical Swine Fever , Swine Diseases , Animals , Swine , Classical Swine Fever Virus/physiology , Macrophages, Alveolar , Virus Internalization , Cholesterol/metabolism , Cell Membrane , Virus Replication
7.
Membranes (Basel) ; 12(11)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36422126

ABSTRACT

Cell membrane lipid composition, especially cholesterol, affects many functions of embedded enzymes, transporters and receptors in red blood cells (RBC). High membrane cholesterol content affects the RBCs' main vital function, O2 and CO2 transport and delivery, with consequences on peripheral tissue physiology and pathology. A high degree of deformability of RBCs is required to accommodate the size of micro-vessels with diameters significantly lower than RBCs. The potential therapeutic role of high-density lipoproteins (HDL) in the removal of cholesterol and its activity regarding maintenance of an optimal concentration of RBC membrane cholesterol have not been well investigated. On the contrary, the focus for HDL research has mainly been on the clearance of cholesterol accumulated in atherosclerotic macrophages and plaques. Since all interventions aiming at decreasing cardiovascular diseases by increasing the plasma level of HDL cholesterol have failed so far in large outcome studies, we reviewed the potential role of HDL to remove excess membrane cholesterol from RBC, especially in sickle cell disease (SCD). Indeed, abundant literature supports a consistent decrease in cholesterol transported by all plasma lipoproteins in SCD, in addition to HDL, low- (LDL) and very low-density lipoproteins (VLDL). Unexpectedly, these decreases in plasma were associated with an increase in RBC membrane cholesterol. The concentration and activity of the main enzyme involved in the removal of cholesterol and generation of large HDL particles-lecithin cholesterol ester transferase (LCAT)-are also significantly decreased in SCD. These observations might partially explain the decrease in RBC deformability, diminished gas exchange and tendency of RBCs to aggregate in SCD. We showed that incubation of RBC from SCD patients with human HDL or the HDL-mimetic peptide Fx5A improves the impaired RBC deformability and decreases intracellular reactive oxygen species levels. We propose that the main physiological role of HDL is to regulate the cholesterol/phospholipid ratio (C/PL), which is fundamental to the transport of oxygen and its delivery to peripheral tissues.

8.
ACS Chem Neurosci ; 13(23): 3403-3415, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36351047

ABSTRACT

The interaction of lipids with G-protein-coupled receptors (GPCRs) has been shown to modulate and dictate several aspects of GPCR organization and function. Diverse lipid interaction sites have been identified from structural biology, bioinformatics, and molecular dynamics studies. For example, multiple cholesterol interaction sites have been identified in the serotonin1A receptor, along with distinct and overlapping sphingolipid interaction sites. How these lipids interact with each other and what is the resultant effect on the receptor is still not clear. In this work, we have analyzed lipid-lipid crosstalk at the receptor of the serotonin1A receptor embedded in a membrane bilayer that mimics the neuronal membrane composition by long coarse-grain simulations. Using a set of similarity coefficients, we classified lipids that bind at the receptor together as synergistic cobinding, and those that bind individually as competitive. Our results show that certain lipids interact with the serotonin1A receptor in synergy with each other. Not surprisingly, the ganglioside GM1 and cholesterol show a synergistic cobinding, along with the relatively uncommon GM1-phosphatidylethanolamine (PE) and cholesterol-PE synergy. In contrast, certain lipid pairs such as cholesterol and sphingomyelin appear to be in competition at several sites, despite their coexistence in lipid nanodomains. In addition, we observed intralipid competition between two lipid tails, with the receptor exhibiting increased interactions with the unsaturated lipid tails. We believe our work represents an important step in understanding the diversity of GPCR-lipid interactions and exploring synergistic cobinding and competition in natural membranes.


Subject(s)
G(M1) Ganglioside , Receptor, Serotonin, 5-HT1A , Serotonin , Computational Biology , Cholesterol
9.
Chem Pharm Bull (Tokyo) ; 70(8): 514-518, 2022.
Article in English | MEDLINE | ID: mdl-35908915

ABSTRACT

Membrane cholesterol is an essential and abundant component of eukaryotic cell membranes. The unique chemical structure of cholesterol significantly influences the physicochemical properties of phospholipid bilayers, such as hydrophobic thickness and lateral pressure profile. However, the mechanisms by which these alterations regulate the balance of protein-lipid interactions in lipid bilayer environments remain unclear. To experimentally assess basic and common driving forces for helix associations in membranes, the self-associations of a de novo designed simple transmembrane helix (AALALAA)3 and its derivative helices were examined. Single-pair fluorescence resonance energy transfer (sp-FRET) experiments were performed to monitor the thermodynamic and kinetic stabilities of helix associations in single liposomes. The addition of cholesterol exerted both stabilizing and destabilizing effects on these associations, up to a change in ΔGa of approx. 10 kJ mol-1, and these effects were dependent on the association topology, amino acid sequence, and number of helices. These results demonstrate that cholesterol in the membrane regulates the stability of transmembrane proteins in a protein context-dependent manner through physicochemical mechanisms.


Subject(s)
Cholesterol , Lipid Bilayers , Amino Acid Sequence , Cholesterol/chemistry , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers/chemistry , Thermodynamics
10.
Pharmacol Ther ; 240: 108237, 2022 12.
Article in English | MEDLINE | ID: mdl-35772589

ABSTRACT

Atherosclerotic plaques associated with acute coronary syndromes (ACS), i.e. culprit lesions, frequently feature a ruptured fibrous cap with thrombotic complications. On imaging, these plaques exhibit a low attenuation, lipid-rich, necrotic core containing cholesterol crystals and are inherently unstable. Indeed, cholesterol crystals are causally associated with plaque vulnerability in vivo; their formation results from spontaneous self-assembly of cholesterol molecules. Cholesterol homeostasis is a central determinant of the physicochemical conditions leading to crystal formation, which are favored by elevated membrane free cholesterol content in plaque endothelial cells, smooth muscle cells, monocyte-derived macrophages, and foam cells, and equally by lipid oxidation. Emerging evidence from imaging trials in patients with coronary heart disease has highlighted the impact of intervention involving the omega-3 fatty acid, eicosapentaenoic acid (EPA), on vulnerable, low attenuation atherosclerotic plaques. Thus, EPA decreased features associated with unstable plaque by increasing fibrous cap thickness in statin-treated patients, by reducing lipid volume and equally attenuating intraplaque inflammation. Importantly, atherosclerotic plaques rapidly incorporate EPA; indeed, a high content of EPA in plaque tissue is associated with decreased plaque inflammation and increased stability. These findings are entirely consistent with the major reduction seen in cardiovascular events in the REDUCE-IT trial, in which high dose EPA was administered as its esterified precursor, icosapent ethyl (IPE); moreover, clinical benefit was proportional to circulating EPA levels. Eicosapentaenoic acid is efficiently incorporated into phospholipids, where it modulates cholesterol-enriched domains in cell membranes through physicochemical lipid interactions and changes in rates of lipid oxidation. Indeed, biophysical analyses indicate that EPA exists in an extended conformation in membranes, thereby enhancing normal cholesterol distribution while reducing propagation of free radicals. Such effects mitigate cholesterol aggregation and crystal formation. In addition to its favorable effect on cholesterol domain structure, EPA/IPE exerts pleiotropic actions, including antithrombotic, antiplatelet, anti-inflammatory, and proresolving effects, whose plaque-stabilizing potential cannot be excluded. Docosahexaenoic acid is distinguished from EPA by a higher degree of unsaturation and longer carbon chain length; DHA is thus predisposed to changes in its conformation with ensuing increase in membrane lipid fluidity and promotion of cholesterol aggregation into discrete domains. Such distinct molecular effects between EPA and DHA are pronounced under conditions of high cellular cholesterol content and oxidative stress. This review will focus on the formation and role of cholesterol monohydrate crystals in destabilizing atherosclerotic plaques, and on the potential of EPA as a therapeutic agent to attenuate the formation of deleterious cholesterol membrane domains and of cholesterol crystals. Such a therapeutic approach may translate to enhanced plaque stability and ultimately to reduction in cardiovascular risk.


Subject(s)
Eicosapentaenoic Acid , Plaque, Atherosclerotic , Humans , Eicosapentaenoic Acid/adverse effects , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/chemically induced , Endothelial Cells/metabolism , Docosahexaenoic Acids/therapeutic use , Cholesterol , Inflammation/drug therapy
11.
Cells ; 10(12)2021 11 30.
Article in English | MEDLINE | ID: mdl-34943876

ABSTRACT

GP.Mur is a clinically important red blood cell (RBC) phenotype in Southeast Asia. The molecular entity of GP.Mur is glycophorin B-A-B hybrid protein that promotes band 3 expression and band 3-AQP1 interaction, and alters the organization of band 3 complexes with Rh/RhAG complexes. GP.Mur+ RBCs are more resistant to osmotic stress. To explore whether GP.Mur+ RBCs could be structurally more resilient, we compared deformability and osmotic fragility of fresh RBCs from 145 adults without major illness (47% GP.Mur). We also evaluated potential impacts of cellular and lipid factors on RBC deformability and osmotic resistivity. Contrary to our anticipation, these two physical properties were independent from each other based on multivariate regression analyses. GP.Mur+ RBCs were less deformable than non-GP.Mur RBCs. We also unexpectedly found 25% microcytosis in GP.Mur+ female subjects (10/40). Both microcytosis and membrane cholesterol reduced deformability, but the latter was only observed in non-GP.Mur and not GP.Mur+ normocytes. The osmotic fragility of erythrocytes was not affected by microcytosis; instead, larger mean corpuscular volume (MCV) increased the chances of hypotonic burst. From comparison with GP.Mur+ RBCs, higher band 3 expression strengthened the structure of RBC membrane and submembranous cytoskeletal networks and thereby reduced cell deformability; stronger band 3-AQP1 interaction additionally supported osmotic resistance. Thus, red cell deformability and osmotic resistivity involve distinct structural-functional roles of band 3.


Subject(s)
Anion Exchange Protein 1, Erythrocyte/metabolism , Erythrocyte Deformability , Erythrocytes/metabolism , Erythrocytes/pathology , Osmotic Fragility , Adult , Aquaporin 1/metabolism , Cholesterol/blood , Cholesterol/metabolism , Erythrocyte Count , Erythrocyte Membrane/metabolism , Humans , Models, Biological , Multivariate Analysis , Protein Binding , Regression Analysis
12.
Front Mol Neurosci ; 14: 746211, 2021.
Article in English | MEDLINE | ID: mdl-34744625

ABSTRACT

Maintaining a normal cholesterol balance is crucial for the functioning of a healthy brain. Dysregulation in cholesterol metabolism and homeostasis in the brain have been correlated to various neurological disorders. The majority of previous studies in primary cultures focus on the role of cholesterol balance in neuronal development after polarity has been established. Here we have investigated how transient alteration of membrane lipids, specifically cholesterol, affects neuronal development and polarity in developing hippocampal neurons prior to polarity establishment, soon after initiation of neurite outgrowth. We observed that temporary cholesterol perturbation affects axonal and dendritic development differentially in an opposing manner. Transient membrane cholesterol deficiency increased neuronal population with a single neurite, simultaneously generating a second population of neurons with supernumerary axons. Brief replenishment of cholesterol immediately after cholesterol sequestering rescued neuronal development defects and restored polarity. The results showed a small window of cholesterol concentration to be complementing neurite outgrowth, polarity reestablishment, and in determining the normal neuronal morphology, emphasizing the critical role of precise membrane lipid balance in defining the neuronal architecture. Membrane cholesterol enhancement modified neurite outgrowth but did not significantly alter polarity. Cholesterol sequestering at later stages of development has shown to enhance neurite outgrowth, whereas distinct effects for neurite development and polarity were observed at early developmental stages, signifying the relevance of precise membrane cholesterol balance in altering neuronal physiology. Our results confirm cholesterol to be a key determinant for axo-dendritic specification and neuronal architecture and emphasize the possibility to reverse neuronal developmental defects caused by cholesterol deficiency by modulating membrane cholesterol during the early developmental stages.

13.
Molecules ; 26(19)2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34641511

ABSTRACT

Non-small cell lung cancer (NSCLC), an aggressive subtype of pulmonary carcinomas with high mortality, accounts for 85% of all lung cancers. Drug resistance and high recurrence rates impede the chemotherapeutic effect, making it urgent to develop new anti-NSCLC agents. Recently, we have demonstrated that para-toluenesulfonamide is a potential anti-tumor agent in human castration-resistant prostate cancer (CRPC) through inhibition of Akt/mTOR/p70S6 kinase pathway and lipid raft disruption. In the current study, we further addressed the critical role of cholesterol-enriched membrane microdomain and autophagic activation to para-toluenesulfonamide action in killing NSCLC. Similar in CRPC, para-toluenesulfonamide inhibited the Akt/mTOR/p70S6K pathway in NSCLC cell lines NCI-H460 and A549, leading to G1 arrest of the cell cycle and apoptosis. Para-toluenesulfonamide significantly decreased the cholesterol levels of plasma membrane. External cholesterol supplement rescued para-toluenesulfonamide-mediated effects. Para-toluenesulfonamide induced a profound increase of LC3-II protein expression and a significant decrease of p62 expression. Double staining of lysosomes and cellular cholesterol showed para-toluenesulfonamide-induced lysosomal transportation of cholesterol, which was validated using flow cytometric analysis of lysosome staining. Moreover, autophagy inhibitors could blunt para-toluenesulfonamide-induced effect, indicating autophagy induction. In conclusion, the data suggest that para-toluenesulfonamide is an effective anticancer agent against NSCLC through G1 checkpoint arrest and apoptotic cell death. The disturbance of membrane cholesterol levels and autophagic activation may play a crucial role to para-toluenesulfonamide action.


Subject(s)
Antineoplastic Agents/pharmacology , Autophagy/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Membrane/drug effects , Lung Neoplasms/drug therapy , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Autophagy/physiology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Membrane/chemistry , Cell Membrane/metabolism , Cholesterol/metabolism , Gefitinib/administration & dosage , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lysosomes/drug effects , Lysosomes/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Sulfonamides/administration & dosage , Sulfonamides/pharmacology , TOR Serine-Threonine Kinases/metabolism , Toluene/administration & dosage , Toluene/analogs & derivatives , Toluene/pharmacology
14.
Front Pharmacol ; 12: 687360, 2021.
Article in English | MEDLINE | ID: mdl-34177597

ABSTRACT

BK channels are composed by the pore forming α subunit and, in some tissues, is associated with different accessory ß subunits. These proteins modify the biophysical properties of the channel, amplifying the range of BK channel activation according to the physiological context. In the vascular cells, the pore forming BKα subunit is expressed with the ß1 subunit, where they play an essential role in the modulation of arterial tone and blood pressure. In eukaryotes, cholesterol is a structural lipid of the cellular membrane. Changes in the ratio of cholesterol content in the plasma membrane (PM) regulates the BK channel activation altering its open probability, and hence, vascular contraction. It has been shown that the estrogen 17ß-Estradiol (E2) causes a vasodilator effect in vascular cells, inducing a leftward shift in the V0.5 of the GV curve. Here, we evaluate whether changes in the membrane cholesterol concentration modify the effect that E2 induces on the BKα/ß1 channel activity. Using binding and electrophysiology assays after cholesterol depletion or enrichment, we show that the cholesterol enrichment significantly decreases the expression of the α subunit, while cholesterol depletion increased the expression of that α subunit. Additionally, we demonstrated that changes in the membrane cholesterol cause the loss of the modulatory effect of E2 on the BKα/ß1 channel activity, without affecting the E2 binding to the complex. Our data suggest that changes in membrane cholesterol content could affect channel properties related to the E2 effect on BKα/ß1 channel activity. Finally, the results suggest that an optimal membrane cholesterol content is essential for the activation of BK channels through the ß1 subunit.

15.
Front Cell Dev Biol ; 9: 626316, 2021.
Article in English | MEDLINE | ID: mdl-33777935

ABSTRACT

Interpreting connections between the multiple networks of cell metabolism is indispensable for understanding how cells maintain homeostasis or transform into the decontrolled proliferation phenotype of cancer. Situated at a critical metabolic intersection, citrate, derived via glycolysis, serves as either a combustible fuel for aerobic mitochondrial bioenergetics or as a continuously replenished cytosolic carbon source for lipid biosynthesis, an essentially anaerobic process. Therein lies the paradox: under what conditions do cells control the metabolic route by which they process citrate? The Warburg effect exposes essentially the same dilemma-why do cancer cells, despite an abundance of oxygen needed for energy-generating mitochondrial respiration with citrate as fuel, avoid catabolizing mitochondrial citrate and instead rely upon accelerated glycolysis to support their energy requirements? This review details the genesis and consequences of the metabolic paradigm of a "truncated" Krebs/TCA cycle. Abundant data are presented for substrate utilization and membrane cholesterol enrichment in tumors that are consistent with criteria of the Warburg effect. From healthy cellular homeostasis to the uncontrolled proliferation of tumors, metabolic alterations center upon the loss of regulation of the cholesterol biosynthetic pathway. Deregulated tumor cholesterogenesis at the HMGR locus, generating enhanced carbon flux through the cholesterol synthesis pathway, is an absolute prerequisite for DNA synthesis and cell division. Therefore, expedited citrate efflux from cholesterol-enriched tumor mitochondria via the CTP/SLC25A1 citrate transporter is fundamental for sustaining the constant demand for cytosolic citrate that fuels the elevated flow of carbons from acetyl-CoA through the deregulated pathway of cholesterol biosynthesis.

16.
Appl Physiol Nutr Metab ; 46(6): 685-689, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33765397

ABSTRACT

One exercise session can elevate insulin-stimulated glucose uptake (GU) by skeletal muscle, but it is uncertain if this effect is accompanied by altered membrane cholesterol content, which is reportedly inversely related to insulin-stimulated GU. Muscles from sedentary (SED) or exercised 3 h post-exercise (3hPEX) rats were evaluated for GU, membrane cholesterol, and phosphorylation of cholesterol regulatory proteins (pHMCGRSer872 and pABCA1Ser2054). Insulin-stimulated GU for 3hPEX exceeded SED. Membrane cholesterol, pHMCGRSer872 and pABCA1Ser2054 did not differ between groups. Novelty: Alterations in membrane cholesterol and phosphorylation of proteins that regulate muscle cholesterol are not essential for elevated insulin-stimulated GU in skeletal muscle after acute exercise.


Subject(s)
Cholesterol/metabolism , Glucose/metabolism , Insulin/pharmacology , Muscle, Skeletal/metabolism , Physical Conditioning, Animal , ATP Binding Cassette Transporter 1/metabolism , Animals , Hydroxymethylglutaryl CoA Reductases/metabolism , Phosphorylation , Rats
17.
Methods Enzymol ; 649: 543-566, 2021.
Article in English | MEDLINE | ID: mdl-33712199

ABSTRACT

Cholesterol is a major component of the plasma membranes (PMs) of animal cells, comprising 35-40mol% of total PM lipids. Recent studies using cholesterol-binding bacterial toxins such as domain 4 of Anthrolysin O (ALOD4) and fungal toxins such as Ostreolysin A (OlyA) have revealed new insights into the organization of PM cholesterol. These studies have defined three distinct pools of PM cholesterol-a fixed pool that is essential for membrane integrity, a sphingomyelin (SM)-sequestered pool that can be detected by OlyA, and a third pool that is accessible and can be detected by ALOD4. Accessible cholesterol is available to interact with proteins and transport to the endoplasmic reticulum (ER), and controls many cellular signaling processes including cholesterol homeostasis, Hedgehog signaling, and bacterial and viral infection. Here, we provide detailed descriptions for the use of ALOD4 and OlyA, both of which are soluble and non-lytic proteins, to study cholesterol organization in the PMs of animal cells. Furthermore, we describe two new versions of ALOD4 that we have developed to increase the versatility of this probe in cellular studies. One is a dual His6 and FLAG epitope-tagged version and the other is a fluorescent version where ALOD4 is fused to Neon, a monomeric fluorescent protein. These new forms of ALOD4 together with previously described OlyA provide an expanded collection of tools to sense, visualize, and modulate levels of accessible and SM-sequestered cholesterol on PMs and study the role of these cholesterol pools in diverse membrane signaling events.


Subject(s)
Hedgehog Proteins , Hemolysin Proteins , Animals , Cell Membrane , Cholesterol , Fungal Proteins
18.
Front Cell Infect Microbiol ; 11: 830180, 2021.
Article in English | MEDLINE | ID: mdl-35155275

ABSTRACT

Ehrlichia chaffeensis is an obligatory intracellular bacterium that causes human monocytic ehrlichiosis, an emerging, potentially fatal tick-borne infectious disease. The bacterium enters human cells via the binding of its unique outer-membrane invasin EtpE to the cognate receptor DNase X on the host-cell plasma membrane; this triggers actin polymerization and filopodia formation at the site of E. chaffeensis binding, and blocks activation of phagocyte NADPH oxidase that catalyzes the generation of microbicidal reactive oxygen species. Subsequently, the bacterium replicates by hijacking/dysregulating host-cell functions using Type IV secretion effectors. For example, the Ehrlichia translocated factor (Etf)-1 enters mitochondria and inhibits mitochondria-mediated apoptosis of host cells. Etf-1 also induces autophagy mediated by the small GTPase RAB5, the result being the liberation of catabolites for proliferation inside host cells. Moreover, Etf-2 competes with the RAB5 GTPase-activating protein, for binding to RAB5-GTP on the surface of E. chaffeensis inclusions, which blocks GTP hydrolysis and consequently prevents the fusion of inclusions with host-cell lysosomes. Etf-3 binds ferritin light chain to induce ferritinophagy to obtain intracellular iron. To enable E. chaffeensis to rapidly adapt to the host environment and proliferate, the bacterium must acquire host membrane cholesterol and glycerophospholipids for the purpose of producing large amounts of its own membrane. Future studies on the arsenal of unique Ehrlichia molecules and their interplay with host-cell components will undoubtedly advance our understanding of the molecular mechanisms of obligatory intracellular infection and may identify hitherto unrecognized signaling pathways of human hosts. Such data could be exploited for development of treatment and control measures for ehrlichiosis as well as other ailments that potentially could involve the same host-cell signaling pathways that are appropriated by E. chaffeensis.


Subject(s)
Ehrlichia chaffeensis , Ehrlichiosis , Autophagy , Biological Warfare Agents , Ehrlichia chaffeensis/metabolism , Ehrlichiosis/microbiology , Humans , Monocytes/metabolism
19.
J Membr Biol ; 253(5): 445-457, 2020 10.
Article in English | MEDLINE | ID: mdl-32949248

ABSTRACT

The role of membrane cholesterol in modulating G protein-coupled receptor (GPCR) structure and function has emerged as a powerful theme in contemporary biology. In this paper, we report the subtlety and stringency involved in the interaction of sterols with the serotonin1A receptor. For this, we utilized two immediate biosynthetic precursors of cholesterol, 7-dehydrocholesterol (7-DHC) and desmosterol, which differ with cholesterol merely in a double bond in their chemical structures in a position-dependent manner. We show that whereas 7-DHC could not support the ligand binding function of the serotonin1A receptor in live cells, desmosterol could partially support it. Importantly, depletion and enrichment of membrane cholesterol over basal level resulted in an increase and reduction of the basal receptor activity, respectively. These results demonstrate the relevance of optimal membrane cholesterol in maintaining the activity of the serotonin1A receptor, thereby elucidating the relevance of cellular cholesterol homeostasis.


Subject(s)
Cholesterol/chemistry , Cholesterol/metabolism , Receptor, Serotonin, 5-HT1A/chemistry , Receptor, Serotonin, 5-HT1A/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Cell Line , Cell Membrane/metabolism , Cells, Cultured , Desmosterol/metabolism , Humans , Ligands , Membrane Lipids/metabolism , Metabolic Networks and Pathways , Protein Binding , Structure-Activity Relationship
20.
Front Immunol ; 11: 1675, 2020.
Article in English | MEDLINE | ID: mdl-32849582

ABSTRACT

Clostridium difficile, an obligate anaerobic gram-positive bacillus, generates spores and is commonly found colonizing the human gut. Patients with C. difficile infection (CDI) often exhibit clinical manifestations of pseudomembranous colitis or antibiotic-associated diarrhea. Surface layer proteins (SLPs) are the most abundant proteins in the C. difficile cell wall, suggesting that they might involve in immune recognition. Our previous results demonstrated that C. difficile triggers inflammasome activation. Here, we found SLPs as well as C. difficile induced inflammasome activation, and in a dose-dependent manner. In addition, the cholesterol-rich microdomains on the cell membrane (also referred to as lipid rafts) are thought to be crucial for bacterial adhesion and signal transduction. We demonstrated that lipid rafts participated in C. difficile SLPs binding to the cell membrane. Fluorescence microscopy showed that membrane cholesterol depletion by methyl-ß-cyclodextrin (MßCD) reduced the association of SLPs with the cell surface. The coalescence of SLPs in the cholesterol-rich microdomains was confirmed in C. difficile-infected cells. Furthermore, the inflammasome activations induced by SLPs or C. difficile were abrogated by MßCD. Our results demonstrate that SLPs recruit the lipid rafts, which may be a key step for C. difficile colonization and inducing inflammasome activation.


Subject(s)
Cholesterol/metabolism , Clostridium Infections/metabolism , Inflammasomes/immunology , Membrane Glycoproteins/metabolism , Membrane Microdomains/metabolism , Cholesterol/immunology , Clostridioides difficile/immunology , Clostridioides difficile/pathogenicity , Clostridium Infections/immunology , Humans , Inflammasomes/metabolism , Membrane Lipids/immunology , Membrane Lipids/metabolism , Membrane Microdomains/immunology , Protein Binding , THP-1 Cells
SELECTION OF CITATIONS
SEARCH DETAIL